MATH 113 PRACTICE MIDTERM EXAM PROFESSOR PAULIN

\qquad

This exam consists of 7 questions. Answer the questions in the spaces provided.

1. (25 points) Let $(G, *)$ be a group.
(a) Let $H \subset G$. Definite what it means for H to be a subgroup of G.

Solution:
$1 / e \in H$
2/ $h \in H \Leftrightarrow h^{-1} \in H$
$3 g, h \in H \Rightarrow g h \in H$
(b) For $x \in G$, let $x H=\{x * h \mid h \in H\}$. Prove that $y \in x H \Longleftrightarrow y H=x H$. Solution:

$$
\begin{aligned}
& \Leftrightarrow y \in x H \Rightarrow y=x h, \quad \text { for some } h_{1} \in H \\
& \Rightarrow y h=x(\overbrace{H} h, h) \quad \forall h \in \overbrace{e H}^{H} \Rightarrow \overbrace{H} \Rightarrow x H \\
& y=x h_{1} \Rightarrow h_{1}^{-1}=x \Rightarrow y\left(h_{1}^{-1} h\right)=x h \quad \forall h \in H \\
& \Rightarrow x H \subset y H \Rightarrow y H=x H . \\
& \Leftrightarrow \quad e \in H \Rightarrow y \in y H . \Rightarrow y \in x H .
\end{aligned}
$$

(c) Show that if H is of finite index in G, then there exist $x_{1}, \cdots, x_{n} \in G$ such that given any $x \in G, x=x_{i} * h$ for some x_{i} and some $h \in H$ Solution:
$|G / H|<\infty \Rightarrow G / H=\left\{x_{1} H, \ldots, x_{n} H\right\}$ for some fincte set $\left\{x_{1}, \ldots, x_{n}\right\} \subset G$. The counts of H in G from a partition of G. Hence given $x \in G$ $x \in x_{i} H$ for some $i \in\{1, \ldots, n\}$. $\Rightarrow x=x$ ch where $h \in H$.
2. (25 points) Let H and G be two groups.
(a) What is a homomorphism ϕ from G to H ?

Solution:
A homomorphism from G to H is a

(b) Define the $\operatorname{ker} \phi \subset G$. Prove that it is a normal subgroup. You may assume any standard results about homomorphisms from lectures.
Solution:

$$
\operatorname{kew} \phi=\left\{g \in G \mid \phi(g)=e_{4}\right\}
$$

$1 \phi\left(e_{c}\right)=e_{H} \Rightarrow e_{G} \in \operatorname{ken} \phi$
$2 \phi(x)=e_{4} \Rightarrow(\phi(x))^{-1}=e_{4} \Rightarrow \phi\left(x^{-1}\right)=e_{4} \Rightarrow x^{-1}$ ken ϕ
$3 x, y \in$ ten $\boldsymbol{3} \Rightarrow \phi(x y)=\phi(x) \phi(y)=e_{4} e_{A}=e_{4} \Rightarrow x y \in$ ten ϕ
$4 x \in k=\varnothing, y \in G \Rightarrow \phi\left(y x y^{-1}\right)=\phi(y) \phi(x) \phi(y)^{-1}=\phi(y) \phi(y)^{-1}=e_{k}$ $\Rightarrow y x y^{-1} \in$ Rem ϕ
$\Rightarrow \operatorname{ken} \& G$.
(c) State, without proof, the First Isomorphism Theorem.

Solution: Let $\phi: G \rightarrow H$ be a homomouplusen then $\psi: G / k e n \phi \rightarrow \operatorname{Im} \phi$ is a well-dizined x kent $\rightarrow \phi(x) \rightarrow$ isomanjohyin.
(d) Using this, or otherwise, show that there are no non-trivial homomorphisms from $\mathbb{Z} / 5 \mathbb{Z}$ to $D_{11} . \boldsymbol{\mathcal { S }}: \mathbb{Z} / 5 \mathbb{Z} \rightarrow D_{1,}$ a homomorphism Solution:
1 st Isommphon Theorem $\Rightarrow|\operatorname{Im} \phi| / s$
Lagrange $\Rightarrow I \operatorname{Im} \phi / / 22$
$H C F(22,5)=1 \Rightarrow|\operatorname{Im} \phi|=1 \Rightarrow \phi$ trivial.
3. (25 points) Let G be a group.
(a) If $x \in G$ is of finite order, define $\operatorname{ord}(x)$. You need only give one of the two equivalent definitions.
Solution:
$\operatorname{ard}(x)=$ minimal $m \in \mathbb{N}$ s.t. $x^{m}=e$

$$
(\text { and }(x)=\operatorname{lgp}(\{x\}) \mid)
$$

(b) Prove that if $d \in \mathbb{N}$ such that $x^{d}=e$, then $\operatorname{ord}(x) \mid d$.

Solution:
Assume $x^{d}=e$ and mHd $\quad(\operatorname{ard}(x)=m)$

$$
\begin{aligned}
& d=9 m+r \quad \text { when } 0<r<m \Rightarrow \\
& e=x^{d}=x^{9 m+r}=\left(x^{m}\right)^{9} \cdot x^{r}=x^{r}
\end{aligned}
$$

This is a contradiction by the minimality of m. $\Rightarrow \quad \operatorname{and}(x) / d$
(c) If $|G|=20$, is it possible that there is $x \in G$ such that $\operatorname{ord}(x)=3$. You may use any result from lectures as long as it is clearly stated.

$$
\begin{aligned}
& \text { Cagraase } \Rightarrow \operatorname{md}(x)=|\lg (\{x\}) / /|G| \\
& 3 X 20 \Rightarrow I \neq|G|=20 \quad \nexists x \in G \text { sit. } \\
& \operatorname{add}(x)=3 .
\end{aligned}
$$

4. (25 points) Let S be a set equipped with an action of a group G.
(a) Define what it means for the action to be transitive. Be sure to carefully explain any terminology you use.
Solution:
The action is transitive it $\operatorname{wb}(s)=\{g(s) / g \in \epsilon\}=S$ $\forall s \in S$.
(b) Define what it means for the action to be faithful.

Solution:
The action is faithful if the induced homomorphioin $\varphi: G \rightarrow \sum(S)$ is infective.
(c) Give an example of an action which is both faithful and transitive. Give an example of an action that is transitive but not faithful.
Solution:
$S=$ vertices of an equilateral trays.

anticlockwise by $\frac{2 \pi}{3} a$. This acton is both transitive and faithful.
$G_{2}=\mathbb{Z} / 6 \mathbb{Z}$. Let $[a]_{c}$ act on $\{1,2,3\}$ by rotation anticlockwise by $\frac{2 \pi}{3}$ a. This action is transitive but not faittal. Egg. $\begin{aligned} {[3]_{6}(1) } & =(1)=[0]_{,}(1) \\ {[3]_{6}(2) } & =(2)=[0]_{6}(2) \\ (3]_{6}(3) & =(3)=[0]_{6}(3)\end{aligned}$
5. (25 points) (a) Define what it means for a subgroup $N \subset G$ to be normal. Define what it means for G to be simple.
Solution:
$N \triangleleft G \Rightarrow N$ is a subgroup and $g n g^{-1} \in N \quad \forall g \in G, u \in N$
G is simph if $N \triangleleft G \Rightarrow N=\{e\} a N=G$.
(b) State, without proof, the Third Isomorphism Theorem.

Solution:
Let G be a group and $N \triangleleft G$.

1) There is an inclusion preserving bijection between

(c) Using this, prove that if there are no normal subgroups of G strictly between G and N, then G / N is simple.
Solution:
If G / N is not simple then exists $N \subset H \subset G$ sit.
$H / N \triangleleft G / N$ and $H / N \neq\{e N\} \sim G / N$
$\Rightarrow \quad N \neq H \nrightarrow G$
$H / N \Delta G / N \Rightarrow H \sigma G$. This is a contradiction, hence G / N is simple.
6. (25 points) (a) How many conjugacy classes of Sym 5 are there. Give an example of three elements, none of which are conjugate.
Solution:
Number At conjugacy castes
Number at pontifions
of Sym_{5}

$$
\begin{gathered}
1+1+1+1+1 \\
1+1+1+2 \\
1+2+2 \\
1+1+3 \\
2+3 \\
1+4
\end{gathered}
$$

$$
s
$$

(b) What is the highest possible order of an element in Sym_{5}. Using this, or otherwise, prove that Sym $_{5}$ is not cyclic.

Solution:
$\Rightarrow \operatorname{Max}$ order of $x \in$ Sym is 6. |Gyms $\mid=S!=120$
$\Rightarrow \nexists x \in$ Sym $_{s}$ st. $g p(\{x))=$ Sym s $_{s}$.
\Rightarrow Sym is not cyclic.

$$
\begin{aligned}
& 1,1,1,1,1 \rightarrow C C M=1 \\
& 1,1,1,2 \longrightarrow C C M=2 \\
& 1,2,2 \longrightarrow C C M=2 \\
& 1,1,3 \quad \mathrm{CCM}=3 \\
& \text { 2,3 } \sim L C M=6 \\
& 1,4 \longrightarrow \mathrm{CCM}=4 \\
& s \quad \longrightarrow C C M=S
\end{aligned}
$$

7. (25 points) Let G be a finitely generated Abelian group.
(a) Define the torsion subgroup $t G \subset G$. Prove that it is a subgroup.

Solution:

$$
t G=\{x \in G 1 \quad \operatorname{ard}(x)<\infty\}
$$

\prime and $(0)=1 \Rightarrow 0 \in t G$
2) $n x=0 \Rightarrow$ for $n \in \mathbb{N} \Rightarrow-(n x)=0 \Rightarrow n(-x)=0 \Rightarrow-x \in t G$
3) $x, y \in t G \Rightarrow n x=0$ and $m y=0$ Fan some $n, m \in \mathbb{N}$.

$$
\Rightarrow(n m)(x+y)=m(n x)+n(m y)=0+0=0 \Rightarrow x+y \in t G .
$$

(b) Prove that $G / t G$ is torsion-free.

Solution:
Let $x+t G \in t(G / t G) \Rightarrow \exists n \in \mathbb{N}$ st. $u(x+t G)$

$$
\begin{aligned}
& =0+t G \Rightarrow n x+t G=0+t G \Rightarrow n x \in t G \\
& \Rightarrow J m \in N \quad m(n x)=(m n) x=0 \Rightarrow x \in t G \\
& \Rightarrow x+t G=0+t G \Rightarrow t(G(t G)=\{0+t G\} .
\end{aligned}
$$

(c) Give an example of a torsion group that is infinite. Make sure you justify why it is torsion.

$$
\begin{aligned}
& (\mathbb{Q},+) \cdot\left[\frac{a}{b}\right] \in \mathbb{Q} / 2 \Rightarrow b\left[\frac{a}{b}\right]=[a]=\cos \\
& \Rightarrow\left[\frac{a}{b}\right]=+(\mathbb{Q} / \mathbb{Z}) .
\end{aligned}
$$

