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Math 113 Praactice Midterm Exam

This exam consists of 7 questions. Answer the questions in the
spaces provided.

1. (25 points) Let G be a set.

(a) What is a binary operation on G?

Solution:

(b) Carefully define what it means for a set G with a binary operation ∗ to be a group.

Solution:
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(c) Let (G, ∗) be a group and g ∈ G. Prove that the map

φg : G → G

h → g−1 ∗ h ∗ g

is an automorphism. Carefully justify your answer

Solution:
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2. (25 points) Let (G, ∗) be a group and S a set.

(a) What is an action of G on S?

Solution:

(b) Assume we are given an action ϕ, of G on S. Let s ∈ S. Define stab(s) ⊂ G and
orb(s) ⊂ S.

Solution:

(c) State, without proof, the orbit-stabilizer theorem

Solution:

(d) If |G| = 5 is it possible for there to be an action of G on a set of size 5, where there
are precisely 2 orbits?

Solution:
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3. (25 points) (a) State, without proof, Lagrange’s Theorem.

Solution:

(b) Using this prove that all groups of prime order are simple. Is the same true of all
groups of prime power order? Carefully justify your answers.

Solution:

PLEASE TURN OVER



Math 113 Midterm Exam, Page 5 of 8

4. (25 points) (a) Define what it means for a group to be cyclic.

Solution:

(b) Prove that if G is cyclic and |G| = n ∈ N, then G ∼= Z/nZ. You may assume any
result from lectures are long as it is clearly stated.

Solution:
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5. (a) (20 points) Determine the number of cyclic subgroups of order 3 contained in Sym5.

Solution:

(b) (5 points) Prove that none of these are normal in Sym5. You may use any result
from lectures as long as it is clearly stated. Is Sym5 a simple group?

Solution:
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6. (25 points) (a) Define the dihedral group D3.

Solution:

(b) Prove that D3
∼= Sym3. In general is it true that Dn

∼= Symn? Carefully justify
your answer.

Solution:
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7. (25 points) (a) State the Structure Theorem for Finitely Generated Abelian Groups.

Solution:

(b) Let
G = Z× Z× Z/25Z× Z/9Z.

What is the rank of G? Explicitly describe the torsion subgroup of G and prove
that it is cyclic.

Solution:

(c) Up to isomorphism, how many Abelian groups are there of order 16 are there? Is
this all possible groups of order 16? Hint: Consider D4.

END OF EXAM


