MATH 113 PRACTICE MIDTERM EXAM PROFESSOR PAULIN

DO NOT TURN OVER UNTIL INSTRUCTED TO DO SO.

CALCULATORS ARE NOT PERMITTED
REMEMBER THIS EXAM IS GRADED BY A HUMAN BEING. WRITE YOUR SOLUTIONS NEATLY AND
COHERENTLY, OR THEY RISK NOT RECEIVING FULL CREDIT

THIS EXAM WILL BE ELECTRONICALLY SCANNED. MAKE SURE YOU WRITE ALL SOLUTIONS IN THE SPACES PROVIDED. YOU MAY WRITE SOLUTIONS ON THE BLANK PAGE AT THE BACK BUT BE SURE TO CLEARLY LABEL THEM

\qquad

This exam consists of 7 questions. Answer the questions in the spaces provided.

1. (25 points) Let G be a set.
(a) What is a binary operation on G ?

Solution:

(b) Carefully define what it means for a set G with a binary operation $*$ to be a group. Solution:
(c) Let $(G, *)$ be a group and $g \in G$. Prove that the map

$$
\begin{aligned}
\phi_{g}: G & \rightarrow G \\
h & \rightarrow g^{-1} * h * g
\end{aligned}
$$

is an automorphism. Carefully justify your answer Solution:
2. (25 points) Let $(G, *)$ be a group and S a set.
(a) What is an action of G on S ?

Solution:
(b) Assume we are given an action φ, of G on S. Let $s \in S$. Define stab $s) \subset G$ and $\operatorname{orb}(s) \subset S$.
Solution:
(c) State, without proof, the orbit-stabilizer theorem

Solution:
(d) If $|G|=5$ is it possible for there to be an action of G on a set of size 5 , where there are precisely 2 orbits?

Solution:

3. (25 points) (a) State, without proof, Lagrange's Theorem.

Solution:

(b) Using this prove that all groups of prime order are simple. Is the same true of all groups of prime power order? Carefully justify your answers.

Solution:

4. (25 points) (a) Define what it means for a group to be cyclic.

Solution:

(b) Prove that if G is cyclic and $|G|=n \in \mathbb{N}$, then $G \cong \mathbb{Z} / n \mathbb{Z}$. You may assume any result from lectures are long as it is clearly stated.
Solution:
5. (a) (20 points) Determine the number of cyclic subgroups of order 3 contained in Sym $_{5}$. Solution:
(b) (5 points) Prove that none of these are normal in $S_{5 m_{5}}$. You may use any result from lectures as long as it is clearly stated. Is $S y m_{5}$ a simple group?

Solution:

6. (25 points) (a) Define the dihedral group D_{3}.

Solution:
(b) Prove that $D_{3} \cong S y m_{3}$. In general is it true that $D_{n} \cong S y m_{n}$? Carefully justify your answer.

Solution:
7. (25 points) (a) State the Structure Theorem for Finitely Generated Abelian Groups. Solution:
(b) Let

$$
G=\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} / 25 \mathbb{Z} \times \mathbb{Z} / 9 \mathbb{Z}
$$

What is the rank of G ? Explicitly describe the torsion subgroup of G and prove that it is cyclic.

Solution:

(c) Up to isomorphism, how many Abelian groups are there of order 16 are there? Is this all possible groups of order 16? Hint: Consider D_{4}.

