MATH 113 MIDTERM EXAM 4.10PM-6PM PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.

\qquad

This exam consists of 7 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Carefully define what it means for a set G to be a group.

Solution:
A group is a set G equipped with a binary operation

$$
\begin{aligned}
* G \times G_{T} & \longmapsto G \\
(g, h) & \longmapsto g h
\end{aligned}
$$

$$
\forall(g h) k=g(n k) \quad \forall g, n, k \in G \quad \text { (ass cuitbvis) }
$$

3 Given $g \in G, \exists h \in G$ st. $g h=h g=e$ (Inverses)
(b) Prove that the identity is unique in a group G.

Solution:
Let $e, e^{\prime} \in G$ both behave as an identity \Rightarrow

$$
e=e e^{\prime}=e^{\prime}
$$

(c) Let G be a group and $H \subset G$. Define what it means for H to be a subgroup. Solution:
$H C G$ is a subgroup it

$$
\begin{aligned}
& \text { 1 etH } \\
& \text { 2/ } g \in H \Rightarrow g^{-1} \in H \\
& 3 g h \not g h \in H
\end{aligned}
$$

(d) Let $H \subset G$ be a subgroup. Prove the following is an equivalence relation:

$$
x \sim y \Longleftrightarrow x^{-1} y \in H
$$

Solution:

$$
\begin{aligned}
& \text { ע } e \in H \Rightarrow x^{-1} x \in H \forall x \Rightarrow x \sim y \text { (Ratlerive) } \\
& \geq x \sim y \Rightarrow x^{-1} y \in H \Rightarrow\left(x^{-1} y\right)^{-1}=y^{-1} x \in H \\
& \Rightarrow y \sim x \text { (symmetric) } \\
& 3 x \sim y, y \sim z \Rightarrow x^{-i} y, y^{-1} z \in H \\
& \Rightarrow\left(x^{-1} y\right)\left(y^{-1} z\right)=x^{-1}\left(y y^{-1}\right) z=x^{-1} z+1 \\
& \Rightarrow x-z \text { (transitive) }
\end{aligned}
$$

2. (25 points) Let G be a group.
(a) Define what it means for a subgroup $N \subset G$ to be normal. Solution:
N normal in $G \Leftrightarrow \forall n \in N, g \in G, g u g^{-1} \in N$
(b) If $N \subset G$ is a normal subgroup, prove that the binary operation

$$
\begin{aligned}
\phi: G / N \times G / N & \longrightarrow G / N \\
(x N, y N) & \longrightarrow(x y) N
\end{aligned}
$$

is well-defined, i.e. independent of coset representative choices. Solution:
Let $x_{1}, x_{2}, y_{1}, y_{2} \in G$ s.t. $x_{1} N=x_{2} N$ and $y_{1} N=y_{2} N$

$$
\Leftrightarrow \quad x_{1}^{-1} x_{2}, y_{1}^{-1} y_{2} \in N
$$

$$
\begin{aligned}
& \left(x_{1} y_{1}\right)^{-1}\left(x_{2} y_{2}\right)=y_{1}^{-1} x_{1}^{-1} x_{2} y_{2}=y_{1}^{-1}\left(x_{1}^{-1} x_{2}\right) y_{1} y_{1}^{-1} y_{2} \\
& x_{1}^{-1} x_{2} \in N
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}^{-1} x_{2} \in N \Rightarrow y_{1}^{-1}\left(x_{1}^{-1} x_{2}\right) y_{2} \in N \quad \text { and } y_{1}^{-1} y_{2} \in N \\
& \Rightarrow(x, y)^{-1}\left(x, y_{1} 1\right.
\end{aligned}
$$

$$
\Rightarrow(x, y)^{-1}\left(x_{2} y_{2}\right) \in N \Rightarrow x_{1}, N=x_{2} y_{2} N
$$

(c) Prove that G cyclic $\Rightarrow G / N$ cyclic

Solution:
G cgdic $\Rightarrow g p(x)=G$ for some $x \in N \Rightarrow$

$$
G=\left\{x^{m}(m \in \mathbb{Z}\} \Rightarrow G / N=\left\{x^{m} N=(x N)^{m} \mid m \in \mathbb{Z}\right)\right.
$$

$\Rightarrow \operatorname{gp}(x N)=G / N \Rightarrow G / N$ cydic.
3. (25 points) (a) State, without proof, Lagrange's Theorem. Solution:
Let $H C G$ be a sabquaup. If $|G|<\infty$ then

$$
1 H / /|G|
$$

(b) Let G be a group and $x, y \in G$ such that $\operatorname{ord}(x)$ and $\operatorname{ord}(y)$ are coprime. Prove that if $n, m \in \mathbb{Z}$ then

$$
x^{n}=y^{m} \Rightarrow \operatorname{ord}(x) \mid n \text { and } \operatorname{ord}(y) \mid m
$$

You may use any result from lectures as long as it is clearly stated.
Facts about and (x) and and (y) :
1

$$
\left.\begin{aligned}
& \operatorname{ard}(x)=|g p(x)| \quad \text { and } 2 \quad x^{n}=e \Leftrightarrow \operatorname{ad}(x) \mid u \\
& \operatorname{ard}(y)=|g p(y)|
\end{aligned} \quad y^{m}=e \Leftrightarrow \operatorname{ad}(y) \right\rvert\, m
$$

$g p(x) \cap g p(x)$ is a subyrap of beth $g p(x)$ all $g p(y)$.
Because their andes ave coprime $(g p(x) \cap g p(y) \mid=1$

$$
\begin{aligned}
& \Rightarrow g p(x) \cap g p(y)=(e) \\
& x^{n} \in g p(x), y^{m} \in g p(y) . \text { Henna } x^{n}=y^{m} \Rightarrow \\
& x^{n}=y^{m}=e \Leftrightarrow \text { and }(x) \mid a \text { and add }(y) \mid m .
\end{aligned}
$$

4. (25 points) Let G be a group and S be a set.
(a) Define the concept of an action of G in S.

Solution:
A group action is a aug $\varphi: G \times S \rightarrow S$ sit.

$$
\begin{aligned}
& 1 / e(s)=s \quad \forall s \in s \\
& 2(x y)(s)=x(y(s)) \forall \quad \in G \text {, es } \\
& \text { (b) Prove that } \\
& \phi: G \times G \longrightarrow G \\
& (g, h) \longrightarrow g h g^{-1}
\end{aligned}
$$

gives a group action on G on itself.
Solution:

$$
\begin{aligned}
& 1 e(h)=e h e^{-1}=h \quad \forall h \in G \\
& \frac{2}{2}(x y)(h)=(x y) h(x y)^{-1}=x\left(y h y^{-1}\right) x^{-1} \\
&
\end{aligned}
$$

(c) Using this, prove the following: If G is finite then

$$
\left|\left\{g h g^{-1} \mid g \in G\right\}\right| \text { divides }|G| \text { for any } h \in G
$$

You may use any result from the course as long as it is clearly stated.
$\left[g^{\prime} g^{-1} \mid g \in \epsilon\right]=\operatorname{wb}(h)$ urdu above action. orbit-stabilice $\Rightarrow|G|=\mid$ stab (h) $|\cdot| \operatorname{lorb}(h) \mid$

$$
\Rightarrow|a \operatorname{b}(h)| /|G| \Rightarrow\left|\left\{g_{\lg }{ }^{-1} \mid g \in G\right\}\right| /|G|
$$

5. (25 points) Show that for $x, y \in \operatorname{Sym}_{5}$, if $\operatorname{ord}(x)=\operatorname{ord}(y)=6$, then x and y are conjugate. Is the same true of elements of order 2? You may use any result from the course as long as it is clearly stated.
Solution:
Possible by de structure in Syms:

$$
\left.\begin{array}{lll}
1,1,1,1,1 & \leftarrow & \text { andes }
\end{array}=1 \quad \text { (LCM) }\right)
$$

Hence $\operatorname{ard}(x)=$ and $(y) \Leftrightarrow x$ and y have the same cycle structure 2,3 .

Fact: x, y have same cycle structure \Leftrightarrow tho y ane comingate

Hence and $(x)=\operatorname{nd}(y)=6 \Rightarrow x$ conjugate to y.

$$
\text { and }(x)=\text { nd }(y)=2 \Rightarrow x \text { conjugate to } y
$$

e.g. (12) and (12)(34).
6. (25 points) Let G and H be groups.
(a) Define the concept of a homomorphism from G to H.

Solution:
A homomarplion is a map $\varnothing: G \rightarrow H$ s.t.

$$
\phi(x y)=\phi(x) \phi(y) \quad \forall x \cdot y \in G
$$

(b) State, without proof, the first isomorphism theorem for groups.

Solution:
Let $\varphi: G \rightarrow H$ be a homomorpmion. Then the induced

$$
\phi:
$$

$$
G /_{\text {kew } \phi} \rightarrow \operatorname{Ian} \phi
$$

$$
x \operatorname{ken} \phi \longmapsto \phi(x)
$$

is a well-detined isomaplusin.
(c) Give an example of a non-trivial homomorphism from $\mathbb{Z} / 3 \mathbb{Z}$ to D_{6}. You do not need to prove it is a homomorphism.
Solution:
Lat $D_{6}=\left\{e, \sigma, \sigma^{2}, \sigma^{3}, \sigma^{4}, \sigma^{5}, \tau, \tau \sigma, \tau \sigma^{2}, \tau \sigma^{4}, \tau \sigma^{5}\right\}$

7. (25 points) (a) State the structure theorem for finitely generated Abelian groups.

Solution:
Let G be a $7 . g$. Thehon gros. Them G s
isomaphic to the direct product of cyclic grays. These grays ave either infincte $(\cong(\mathbb{C},+))$ or prim
 reocodeving and isomorplusin this decomposition is unique
(b) Using this, show that an Abelian group of order 30 must contain an element of order 5 .
Solution:

$$
\begin{aligned}
& \quad 30=5 \times 2 \times 3 \\
& 1 G 1=30 \text { ant } G \text { shelia } \Rightarrow G \equiv \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{\mathbb { C }} / 3 \mathbb{Z} \\
& \text { ad }\left([1]_{s,},[0]_{2},[0]_{3}\right)=S \Rightarrow \exists x \in G \\
& \text { sit. and }(x)=S
\end{aligned}
$$

(c) Prove that, up to isomorphism, there is only one group of size 100, such that every element has order dividing 10.

$$
\begin{aligned}
& |G|=100=5^{2} \cdot 2^{2} \text {, Amelia } \Rightarrow \\
& G \cong \mathbb{Z} / 5^{2} \mathbb{Z} \times \mathbb{Z} / \mathbb{Z}^{2} \mathbb{Z} \leftarrow \operatorname{add}\left([1]_{5^{2}},[1]_{2^{2}}\right)=100 / 10 \\
& \text { a } \mathbb{Z} / s \mathbb{Z} \times \mathbb{Z} / s \mathbb{Z} \times \mathbb{Z} \mathbb{Z}^{2} \mathbb{Z} \leftarrow \operatorname{ard}\left([0)_{5},(0)_{51}(1]_{\mathbb{Z}^{2}}\right)=4 \times 10 \\
& \mathbb{s ^ { 2 }} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \leftarrow \operatorname{and}(C 1]_{\left.s^{2},[0]_{2},[0]_{2}\right)=25110} \\
& \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} / 2 z \times \mathbb{Z} / 2 \mathbb{Z} \\
& 10\left([a]_{5},[b]_{5},[c]_{2},[a]_{2}\right)=\left([10 a]_{5},[10 b]_{5},[10 c]_{2},[000]_{2}\right) \\
& =\left([0]_{5},\left[03_{s},[0]_{2},[0]_{2}\right)\right. \\
& \Rightarrow \operatorname{and}\left([a]_{5},[b]_{5},[c]_{2},[d]_{2}\right) \mid 10 \\
& \Rightarrow \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / s_{\mathbb{Z}} \times \mathbb{Z} / \mathbb{Z} \times \mathbb{Z} / \mathbb{Z} \text { is the only gram }
\end{aligned}
$$

(up to isomaphisim) which satostion the dosived prapentios.

