MATH 113 FINAL EXAM (4.10PM-6PM) PROFESSOR PAULIN

\qquad

This exam consists of 7 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Carefully define what it means for a set R to be a field. State all the axioms precisely. Give two examples of a field, neither of which is contained in the other.

Solution:

(b) Prove that a field is an integral domain. If you use any result from lectures be sure to state it clearly.

Solution:

(c) Is the converse to b) true? Be sure to justify your answer. Solution:
2. (25 points) Let R and S be non-trivial rings and $\phi: R \rightarrow S$ be a ring homomorphism.
(a) Define $\operatorname{ker}(\phi) \subset R$ and prove it is an ideal. You do not need to prove it is a subgroup under addition.

Solution:

(b) Prove that $\operatorname{ker}(\phi) \subset R$ is not a subring. You may assume any results from the lectures as long as they are clearly stated.

Solution:

(c) Prove that if R is a field then R is isomorphic to a subring of S. You may assume any results from the lectures as long as they are clearly stated
Solution:
3. (25 points) Let R be a commutative ring
(a) Define what it means for an ideal $I \subset R$ to be prime.

Solution:

(b) Prove that R / I is an integral domain if and only if I is prime. Solution:
(c) Give an example of a prime ideal which is not maximal.

Solution:

4. (25 points) Let R be an integral domain.
(a) Define what is means for R to be UFD.

Solution:

(b) Define what it means for $r \in R$ to be prime. Prove that r prime $\Rightarrow r$ irreducible. Solution:
(c) Prove that in a UFD, r irreducible $\Rightarrow r$ prime.
5. (25 points) Let F be a field, $\alpha \in F$ and $f(x) \in F[x]$ such that $\operatorname{deg}(f(x)) \geq 1$. Prove $f(\alpha)=0_{F} \Longleftrightarrow(x-\alpha) \mid f(x)$ in $F[x]$. You may assume any results from the lectures as long as they are clearly stated. Is it true that if $f(x)$ is reducible in $F[x]$ then there exists $\alpha \in F$ such that $f(\alpha)=0_{F}$.?

Solution:

6. (25 points) (a) Define what it means for $f(x) \in \mathbb{Z}[x]$ to be primitive.

Solution:
(b) State, without proof, Gauss' Lemma for polynomials in $\mathbb{Z}[x]$.

Solution:

(c) Does the polynomial $f(x)=2 x^{11}-98 x^{5}+28 x^{2}+35$ have any roots in \mathbb{Z} ? Is the ring $\mathbb{Q}[x] /(f(x))$ a field? Is the ring $\mathbb{C}[x] /(f(x))$ a field? You may assume any results from the lectures as long as they are clearly stated.

Solution:

7. (25 points) (a) Let E / F be a field extension. Define what if means for $\alpha \in E$ to be algebraic over F.
Solution:
(b) Prove that $\sqrt{2}+\sqrt{3}$ is algebraic over \mathbb{Q}.

Solution:
(c) Using this, or otherwise, prove that if $\alpha \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$, then there exists $f(x) \in \mathbb{Q}[x]$ non-constant, such that $\operatorname{deg}(f(x) \leq 4$ and $f(\alpha)=0$. You may assume any results from the lectures as long as they are clearly stated.

Solution:

