MATH 113 FINAL EXAM (PRACTICE 2) PROFESSOR PAULIN

Name: ____ Alex Paulin

This exam consists of 7 questions. Answer the questions in the spaces provided.

(25 points) (a) Let R be a ring. Define what it means for a subset S ⊂ R to be a subring. State all the axioms precisely.
 Solution:

Let R be a ving. $S \subset R$ is a subring if $1 O_R \in S$ $2 a \in S \implies -a \in S$ $3 a, b \in S \implies a + b \in S$ $4 a, b \in S \implies ab \in S$ $5 I_R \in S$

(b) Define what it means for a ring to be an integral domain. Solution:

R is an int	tegral domain	A	
P is nou	-hived		
z R is com z ab = 0	r = a = 0	$a = b = 0_{R}$	Ha, be R

(c) Prove that if R is an integral domain then so is any subring $S \subset R$. Solution:

1 R non-trived => OR = 1 R. OR, IRES 2 R commutation => S commutation	=) 151>1 =) 5 nou- Erivica
3 Lot a, b \in 5 and assume $ab = 0_{2}$	
$=) a = 0_{R} a b = 0_{R}$	
=) S has no zero divisans	
=) 5 integral domain	

- (d) Give an example of a ring R which is not an integral domain, but contains a subring which is an integral domain.Solutions:
- $R = \mathbb{C}[x]/(x^{2}) = x + (x^{2}) \neq 0 + (x^{2})$ but $(x + (x^{2}))(x + (x^{2})) = x^{2} + (x^{2}) = 0 + (x^{2})$ $\Rightarrow R \text{ not an integral domain.}$ $5 = \{\lambda + (x^{2}) \mid \lambda \in \mathbb{C}\}$ $5 \cong \mathbb{C} \quad (1 \text{ is a Hield so it is an integral domain.})$

- 2. (25 points) Let R and S be non-trivial rings.
 - (a) Define what it means for a map $\phi: R \to S$ to be a ring homomorphism. Solution:

$$\begin{split} \varphi: E \longrightarrow S \quad 15 \quad a \quad ring \quad homomorphism \quad H \\ & r \quad \varphi(a+b) = \varphi(a) \in \varphi(b) \quad \forall a, b \in R \\ & \neq \varphi(ab) = \varphi(a) \varphi(b) \quad \forall a, b \in R \\ & \neq \varphi(ab) = \varphi(a) \varphi(b) \quad \forall a, b \in R \\ & \neq \varphi(ab) = \varphi(ab) \varphi(b) \quad \forall a, b \in R \\ & \varphi(ab) = \varphi(ab) \varphi(b) \quad \forall a, b \in R \\ & \forall \varphi(ab) = \varphi(ab) \varphi(ab) \varphi(ab) = \varphi(ab) \varphi(a$$

 $\phi(r) \phi(r^{-1}) = \phi(r^{-1})\phi(r) = \phi(l_{E}) = l_{S} =) \phi(r) \in S^{+}$ Couvern is not true. E.g. $\phi: \mathbb{C}[x] \to \mathbb{C}$ $f(x) = l \in \mathbb{C}^{+}, \text{ however } x \notin (\mathbb{C}[x])^{+}$

- 3. (25 points) Let R be an integral domain.
 - (a) Define the field of fractions of R, denoted Frac(R). Make sure you define both addition and multiplication. You do not need to prove they are well-defined.
 Solution:

 $Frac(R) = equivalence classes in R \times (R \setminus [O_R]) mdn$ $Ehe relation (a;b) \sim (c,d) \implies ad-bc = O_R$ $Let = \frac{a}{b} = ((a,b)].$ $\frac{a}{b} + \frac{c}{d} := \frac{ad+bc}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$

(b) Prove that if R is a field then $R \cong Frac(R)$. You may use any result in lectures as long as it is clearly stated.

Fit There is an injecture homomorphism
$$\varphi: \mathbb{R} \rightarrow \operatorname{Frac}(\mathbb{R})$$

 $a \mapsto \frac{a}{1}$
Assume \mathbb{R} is a tield. Let $\frac{a}{b} \in \operatorname{Frac}(\mathbb{R}) \Rightarrow b \neq 0_{\mathbb{R}}$
 $\Rightarrow b^{-1} \operatorname{exists} \Rightarrow \frac{a}{b} = \frac{ab^{-1}}{1} \Rightarrow \varphi$ is surjective
 $\Rightarrow \varphi$ bijective $\Rightarrow \mathbb{R} \cong \operatorname{Frac}(\mathbb{R})$

PLEASE TURN OVER

- - 1

4. (25 points) Let R be an integral domain.

TC

(a) Define what it means for $a \in R$ to be irreducible. Solution: inceducilly 7

$$\frac{1}{2} = \frac{40}{2}$$

$$\frac{1}{3} = \frac{1}{2}$$

(b) Prove that if $a, b \in R$ are associated then a irreducible $\Rightarrow b$ irreducible. Solution:

a = by For som ue R* associated 3 a,b Assum a redución al unite b = cd =) a = (uc)d ucer « der =) cer « der h incoduce tob. ->>

->=

(c) prove that 1 + i is irreducible in $\mathbb{Z}[i]$. Be sure to justify your answer. Z[i] = {a+bi |a, b∈Z} ⇒ l∝l≥l ∀ x∈Z[i] $\Rightarrow \propto e(\mathbb{Z}[i])^* \Leftrightarrow |\alpha| = | \Leftrightarrow \alpha = \pm |, \pm i$ l+i= x B When x, B ∈ Z[i] => |x||B| = 12 Assum $\Rightarrow |x|, |\beta| \leq \sqrt{2} \Rightarrow \alpha \in \mathbb{Z}[i], |\alpha| \leq \sqrt{2}$ -) $|\alpha| = T_2 \quad \alpha \quad |\alpha| = 1 =) \quad \alpha \in (\mathbb{Z}[i])^*$ $|\alpha| = \sqrt{2} = |B| = |=) B \in (\mathbb{Z}(7))^*$ Iti ineducibh =)

PLEASE TURN OVER

5. (25 points) Prove that a Euclidean ring is a PID.Solution:

Assum (R, Q) is Evolvalean. Let TCR be an ideal. $T = \{O_R\} \Rightarrow T = (O_R)$. Assum $T \neq \{O_R\}$. Choise $b \in T$, $b \neq O_R$ s.t. $Q(b) \in Nv\{O\}$ is minimul. Let $a \in T$. $\Rightarrow a = 9b + r$ when $r = O_R(=) a \in (b)$ or Q(r) < Q(b) $r = a - qb \in T$. Hence $r = O_R$ by minimally $a \in Q(b)$. $T = (b) \Rightarrow R$ is a P.T.D. 6. (25 points) Prove that the quotient ring $\mathbb{Q}[X]/(x^3 + x^2 + 1)$ is a field. You may assume that $x^3 + x^2 + 1 \neq 0$ for all $x \in \mathbb{Q}$, where |x| > 2. If you use any results from lectures be sure to state them clearly.

Solution:

$$(77) = 7.7.7.7 = (x^{3} + x^{2} + 1) \text{ maximul } (x^{3} + x^{2} + 1) = 3 = (x^{3} + x^{2} + 1) \text{ reducible}.$$

$$deg(x^{3} + x^{2} + 1) = 3 = x^{3} + x^{2} + 1 \text{ reducible}.$$

$$(a) = 3 - c \in 0 \text{ s.t. } x^{3} + x^{2} + 1 = 0$$

$$x^{3} + x^{2} + 1 \text{ mouse} = x \in 0 \text{ a road must be in } \mathbb{Z}.$$

$$x^{3} + x^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| > 2$$

$$z^{3} + z^{2} + 1 \neq 0 \quad \forall x \in 0 \quad |x| = 2$$

$$z^{3} + z^{2} + 1 \quad \text{in } \mathbb{Z}$$

$$z^{3} + z^{2} + 1 \quad \text{in } \mathbb{Z}$$

$$z^{3} + z^{2} + 1 \quad \text{in } \mathbb{Z}$$

$$z^{3} + z^{2} + 1 \quad \text{in } \mathbb{Z}$$

$$\Rightarrow (x^{3}+z^{2}+1) \subset \mathbb{Q}[x] \quad \text{maximal}$$

$$\Rightarrow \qquad \mathbb{Q}[x] \qquad \text{a field}.$$

$$= (x^{3}+x^{2}+1) \qquad \text{a field}.$$

7. (25 points) (a) Let E/F be a field extension. Define what it means for the extension to be finite.
Solution:

 $E_{/F} \text{ Armote means } \dim_{F}(E) < \infty . Explicitly$ this means $\exists x_{1,rr}, x_{n} \in E \quad \text{s.t.}$ $E = \{\lambda, x_{1} + \cdots + \lambda_{n} \times n \mid \lambda_{1} \in \#\}$

(b) Prove that E/F finite $\Rightarrow E/F$ algebraic. Solution: Lot [E:F] = h, and $x \in E$. $\Rightarrow \{1, x, x^2, x^3, \dots, x^n\}$ CE must be (in early dependent over F. $\Rightarrow \exists a_0, a_1, \dots, a_n \in F$, not all zero s.t. $a_a + a_1 \alpha + \dots + a_n \alpha^n = 0_6$ $\Rightarrow f(x) = a_a + a_1 x + \dots + a_n x^n \neq 0 \neq Exp$ and $f(\alpha) = 0_E \Rightarrow \alpha$ is algebraic over F. $\Rightarrow E(F) = a_0 e_0 x^{-1}$.

END OF EXAM