# MATH 113 FINAL EXAM (PRACTICE 2) PROFESSOR PAULIN 



Name: Alex Pauling

This exam consists of 7 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Let $R$ be a ring. Define what it means for a subset $S \subset R$ to be a subring. State all the axioms precisely.
Solution:
Let $R$ be a ring.

$$
\begin{aligned}
& 1=O_{R} \in S \\
& 2 \quad a \in S \Rightarrow-a \in S \\
& 3 a, b \in S \Rightarrow a+b \in S
\end{aligned}
$$

4) $a, b \in S \Rightarrow a b \in S$
5. $\quad I_{R} \in S$
(b) Define what it means for a ring to be an integral domain.

Solution:
$R$ is an integral domain $A$
$1 / R$ is nou-trivial
$2 R$ is commutation

$$
\begin{aligned}
& 2 R \text { is commutation } \\
& 3 \quad a b=O_{R} \Rightarrow a=O_{R} a b=O_{R} \quad \forall a, b \in R
\end{aligned}
$$

(c) Prove that if $R$ is an integral domain then so is any subbing $S \subset R$. Solution:
y $R$ non-trivial $\Rightarrow O_{R} \neq l_{R} . O_{R}, I_{R} \in S \Rightarrow|S|>1$ $\Rightarrow S$ non-
$2 R$ conmentation $\Rightarrow S$ commination. taivid

3 Let $a, b \in S$ and assumes $a b=O_{k}$

$$
\Rightarrow a=O_{a} \text { ar } b=O_{R}
$$

$\Rightarrow S$ has no zero dubbers
$\Rightarrow \quad S$ integral domain
(d) Give an example of a ring $R$ which is not an integral domain, but contains a subring which is an integral domain. Solutions:

$$
R=\mathbb{C}[x] /\left(x^{2}\right) \Rightarrow x+\left(x^{2}\right) \neq 0+\left(x^{2}\right)
$$

but $\left(x+\left(x^{2}\right)\right)\left(x+\left(x^{2}\right)\right)=x^{2}+\left(x^{2}\right)=0+\left(x^{2}\right)$ $\Rightarrow R$ not an integral domain.

$$
S=\left\{\lambda+\left(x^{2}\right) \mid \lambda \in \mathbb{C}\right\}
$$

$S \cong \mathbb{C} . \mathbb{C}$ is a Field so it is an integral domain.
2. (25 points) Let $R$ and $S$ be non-trivial rings.
(a) Define what it means for a map $\phi: R \rightarrow S$ to be a ring homomorphism.

Solution:
$\phi: R \rightarrow S$ is a ring homomoupluon it
$\prime \phi(a+b)=\phi(a)+\phi(b) \quad \forall a, b \in R$
$\geqslant \phi(a b)=\phi(a) \phi(b) \quad \forall a, b \in R$
$3 / \phi\left(I_{R}\right)=I_{s}$
(b) Prove $\operatorname{Im}(\phi) \subset S$ is a subring.

Solution:
$\phi: R \rightarrow S$ is a grays homomaphion under $t$. Hence In $\phi \subset S$ is a subgroup under $t$.
Let $a, b \in \operatorname{Im} \phi \Rightarrow \exists r, s \in R$ set. $\phi(r)=a \phi(s)=b$

$$
\begin{aligned}
& \text { Let } a, b \in a b=\phi(r) \phi(s)=\phi(r s) \in \operatorname{Im} \phi \\
& \phi\left(I_{R}\right)=I_{s} \Rightarrow I_{s} \in \operatorname{Im} \phi
\end{aligned}
$$

$\Rightarrow \operatorname{Im} \propto \subset S$ is a subbing
(c) Prove that $r \in R^{*} \Rightarrow \phi(r) \in S^{*}$. Is the converse true? Be sure to justify your answer.
Solution:
Let $r \in R^{*} \Rightarrow r r^{-1}=r^{-1} r=l_{R} \Rightarrow$

$$
\begin{aligned}
& \text { Let } r \in R \Rightarrow \phi r=\phi\left(r^{-1}\right)=\phi\left(r^{-1}\right) \phi(r)=\phi\left(l_{R}\right)=l_{s} \Rightarrow \phi(r) \in S^{-2} \\
& \phi(r)
\end{aligned}
$$

Converse is nat true. E.g. $\phi: \mathbb{C}[x] \rightarrow \mathbb{C}$ $f(x) \longrightarrow f(1)$
$\phi(x)=1 \in \mathbb{C}^{*}$, however $\quad x \notin(\mathbb{C}[x])^{*}$
3. (25 points) Let $R$ be an integral domain.
(a) Define the field of fractions of $R$, denoted $\operatorname{Frac}(R)$. Make sure you define both addition and multiplication. You do not need to prove they are well-defined. Solution:
Frack $(R)=$ equivalence classes in $R \times\left(R \backslash\left(O_{R}\right)\right)$ under

$$
\text { the relation }(a, b) \sim(c, d) \Leftrightarrow a d-b c=O_{R}
$$

Let $\frac{a}{b}=[(a, b)]$.

$$
\frac{a}{b}+\frac{c}{d}:=\frac{a d+b c}{b d}, \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
$$

(b) Prove that if $R$ is a field then $R \cong \operatorname{Frac}(R)$. You may use any result in lectures as long as it is clearly stated.
Fat. There is an infective homomaplusen $\phi: R \rightarrow$ Frae $(R)$

$$
a \longmapsto \frac{a}{1}
$$

Assume $R$ is a field. Let $\frac{a}{b} \in \operatorname{Frac}(R) \Rightarrow b \neq O_{R}$
$\Rightarrow b^{-1}$ exist $\Rightarrow \frac{a}{b}=\frac{a b^{-1}}{1} \Rightarrow \varnothing$ is sujgatin
$\Rightarrow \varnothing$ bijection $\Rightarrow \quad R \cong$ Frae $(R)$
4. (25 points) Let $R$ be an integral domain.
(a) Define what it means for $a \in R$ to be irreducible. Solution:
$a \in R$ is ineduaibl $\Rightarrow$
1 a ${ }^{\neq O_{R}}$.
$2 / a \notin R^{x}$
$3 \quad a=b c \Rightarrow b \in R^{*} a c \in R^{*}$
(b) Prove that if $a, b \in R$ are associated then $a$ irreducible $\Rightarrow b$ irreducible. Solution:
$a, b$ associated $\Rightarrow a=b u$ tor som $u \in \mathbb{R}^{*}$ Assume a iweduaits an wite $b=c d \Rightarrow a=(u c) d$ $\Rightarrow u c \in R^{*}$ w $d \in R^{*} \Rightarrow c \in R^{*}$ or $d \in R^{*}$ $\Rightarrow b$ ineduaith.
(c) prove that $1+i$ is irreducible in $\mathbb{Z}[i]$. Be sure to justify your answer.

$$
\begin{aligned}
& \quad \text { (c) prove that } 1+i \text { is irreducible in } \mathbb{Z}[i] . \text { Be sure to justify your answer. } \\
& \mathbb{Z}[i]=\left\{a+b_{i} \mid a, b \in \mathbb{Z}\right\} \quad|\alpha| \geqslant 1 \forall \mathbb{Z}[i] \\
& \Rightarrow \alpha \in(\mathbb{Z}[i])^{*} \Leftrightarrow|\alpha|=1 \Leftrightarrow \alpha= \pm 1, \pm i
\end{aligned}
$$

Assume $1+i=\alpha \beta$ when $\alpha, \beta \in \mathbb{Z}[i] \Rightarrow|\alpha||\beta|=\sqrt{2}$

$$
\begin{aligned}
& \Rightarrow|\alpha 1,|\beta| \leq \sqrt{2} \Rightarrow \alpha \in \mathbb{Z}[i],|\alpha| \leq \sqrt{2} \Rightarrow \\
& |\alpha|=\sqrt{2} \text { ar }|\quad| \alpha \mid=1 \Rightarrow \alpha \in(\mathbb{Z}[i])^{*} \\
& |\alpha|=\sqrt{2} \Rightarrow|\beta|=1 \Rightarrow \beta \in(\mathbb{Z}[i])^{*}
\end{aligned}
$$

$\Rightarrow 1+i$ ineducibl.
5. (25 points) Prove that a Euclidean ring is a PID. Solution:

Assume $(R, Q)$ is Endidean. Let ICR be an ideal. $I=\left\{O_{R}\right\} \Rightarrow I=\left(O_{R}\right)$. Assume $I \neq\left\{O_{R}\right\}$. Choose $b \in I, b \neq O_{R}$ s.t. $C(b) \in \mathbb{N} \cup\{0)$ is minimal.

Let $a \in I . \Rightarrow a=9 b+r$ when $r=O_{R}(\Rightarrow a \in(b))$ w $\varphi(r)<\varphi(b)$ $r=a-q b \in I$. Henna $r=O_{R}$ by minimality of $\varphi(b)$.
$\Rightarrow I=(b) \quad \Rightarrow \quad R$ is a P.I.D.
6. (25 points) Prove that the quotient ring $\mathbb{Q}[X] /\left(x^{3}+x^{2}+1\right)$ is a field. You may assume that $x^{3}+x^{2}+1 \neq 0$ for all $x \in \mathbb{Q}$, where $|x|>2$. If you use any results from lectures be sure to state them clearly.
Solution:

$$
\begin{aligned}
\mathbb{Q}[x] \text { a P.I.D. } \Rightarrow & \left(x^{3}+x^{2}+1\right) \text { maximal } \leftrightarrow \\
& x^{3}+x^{2}+1 \text { iweduabl. } \\
\operatorname{deg}\left(x^{3}+x^{2}+1\right)=3 \Rightarrow & x^{3}+x^{2}+1 \text { reducibh } \\
& \Rightarrow \exists x \in \mathbb{Q} \text { s.t. } \alpha^{3}+\alpha^{2}+1=0
\end{aligned}
$$

$x^{3}+x^{2}+1$ mourc $\Rightarrow \alpha \in \mathbb{Q}$ a root must be in $\mathbb{Z}$.

$$
\begin{aligned}
& x^{3}+x^{2}+1 \neq 0 \quad \forall x \in \Phi \quad|x|>2 \\
& 2^{3}+2^{2}+1 \neq 0 \quad
\end{aligned}
$$

$\left.\begin{array}{l}1^{3}+1^{2}+1 \neq 0 \\ 0^{3}+\Delta^{2}+1 \neq 0\end{array}\right\}$ No rods at $x^{3}+x^{2}+1$ is $\mathbb{Z}$ $\left.\begin{array}{l}0^{3}+\Delta^{2}+1 \neq 0 \\ (-1)^{3}+(-1)^{2}+1 \neq 0 \\ (-2)^{3}+(-2)^{2}+1 \neq 0\end{array}\right\} \Rightarrow \begin{aligned} & x^{3}+x^{2}+1 \quad \text { rweducible in } \\ & \mathbb{Q}[x]\end{aligned}$
$\Rightarrow\left(x^{3}+x^{2}+1\right) \subset \mathbb{Q}[x]$ maximal

$$
\Rightarrow \frac{\mathbb{Q}[x]}{\left(x^{3}+x^{2}+1\right)} \text { a field. }
$$

7. (25 points) (a) Let $E / F$ be a field extension. Define what it means for the extension to be finite. Solution:
$E / F$ fincte mean $\operatorname{dim}_{F}(E)<\infty$. Explicitly this means $\exists x_{1, \ldots} x_{n} \in E$ s.t.

$$
E=\left\{\lambda_{1} x_{1}+\cdots+\lambda_{n} x_{n} \mid \lambda ; \in F\right\}
$$

(b) Prove that $E / F$ finite $\Rightarrow E / F$ algebraic.

Solution:
Let $[E: F]=n$, and $\alpha \in E$.
$\Rightarrow\left\{1, \alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{a}\right\} \subset E$ mast be linear 2 dependent over $F$.
$\Rightarrow \exists a_{0}, a_{1}, \ldots, a_{n} \in F$, not all zero sit.

$$
\begin{aligned}
& a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}=O_{E} \\
& \Rightarrow f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \neq O_{F[x]} \text { and }
\end{aligned}
$$

$f(\alpha)=O_{E} \Rightarrow \alpha$ is algamaic serer $F$.
$\Rightarrow E / F$ algatoraic.

