MATH 113 FINAL EXAM (PRACTICE 1) PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.

\qquad

This exam consists of 7 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Carefully define what it means for a set R to be a ring. State all the axioms precisely.
Solution:
(b) Define the units $R^{*} \subset R$.

Solution:
(c) Prove, using only the axioms, that $R^{*}=R$ implies that $|R|=1$. Solution:
2. (25 points) Let R be a ring.
(a) Define what it means for a subset $I \subset R$ to be an ideal.

Solution:
(b) Prove that the binary operation

$$
\begin{aligned}
\phi: R / I \times R / I & \longrightarrow R / I \\
(x+I, y+I) & \longrightarrow(x y)+I
\end{aligned}
$$

is well-defined, i.e. independent of coset representative choices.

Solution:

(c) If R / I is the quotient ring, is the following true: $x+I \in(R / I)^{*} \Rightarrow x \in R^{*}$. Be sure to justify your answer.

Solution:

3. (25 points) Let R be an integral domain.
(a) Define the characteristic of R.

Solution:
(b) Prove that if the characteristic of R is p, then there is an injective homomorphism $\phi: \mathbb{F}_{p} \rightarrow R$. Be sure to carefully justify your answer.
4. (25 points) Let R be a commutative ring.
(a) Define what it means for two elements $a, b \in R$ to be associated.

Solution:

(b) Prove that if R is an integral domain then a and b are associated if and only if there exists $u \in R^{*}$ such that $a=u b$.

Solution:

(c) Using this, prove that $2 \sqrt{2}+1$ and $5+3 \sqrt{2}$ are associated in $\mathbb{Z}[\sqrt{2}]$.
5. (25 points) Prove that if R is a PID then $a \in R$ is irreducible $\Longleftrightarrow(a) \subset R$ is maximal. Solution:
6. (25 points) Let R be an integral domain.
(a) Define what it means for an ideal $I \subset R$ to be maximal.

Solution:
(b) Is the ideal $\left(x^{4}-1, x^{5}-x^{3}\right) \subset \mathbb{Q}[X]$ maximal? Be sure to carefully justify your answer. If you use any results from lecture be sure to state them clearly.

Solution:
7. (25 points) (a) Let E / F be a field extension and let $\alpha \in E$ be algebraic over F. Define the minimal polynomial of α over F.
Solution:
(b) Prove the minimal polynomial is irreducible.

Solution:
(c) Determine the degree of the extension $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$. You may use any results from lectures as long as they are clearly stated.

