A minimal pair of *K*-degrees.

Barbara F. Csima and Antonio Montalbán. Cornell University.

www.math.cornell.edu/~antonio

K-degrees

- For $\sigma \in 2^{<\omega}$, let $K(\sigma)$ be the prefix-free Kolmogorov complexity of σ .
- [Levin, Chaitin] A real $\alpha \in 2^{\omega}$ is *random* if $(\forall n) \ K(\alpha \restriction n) \ge n - \mathcal{O}(1)$
- A real $\alpha \in 2^{\omega}$ is *K*-*trivial* if $(\forall n) \ K(\alpha \restriction n) \leq K(n) - \mathcal{O}(1)$
- [Downey, Hirschfeldt, LaForte '01]
 We use K to define a notion of relative randomness between reals:

 $\alpha \leq_{K} \beta \iff (\forall n) \ K(\alpha \restriction n) \leq K(\beta \restriction n) + \mathcal{O}(1).$

• As usual, \leq_K induces a degree structure.

Some known facts about the *K*-degrees

- There is a minimal *K*-degree. It consists of the *K*-trivial reals.
- [Yu, Ding, Downey] There are 2^{\aleph_0} many *K*-degrees, indeed 2^{\aleph_0} many among the *K*-randoms.
- [J.Miller, Yu] For every random real there is another random real strictly *K*-below it.
- [Downey, Hirschfeldt, LaForte] The structure of K-degrees of c.e. reals is an upper-semi lattice, and join corresponds to real addition.
- [Downey, Hirschfeldt, LaForte] If α and β are c.e. reals such that $\alpha <_K \beta$, there is a c.e. real γ such that $\alpha <_K \gamma <_K \beta$.

•
$$\leq_T \not\Rightarrow \leq_K$$

• [Solovay] $\leq_K \not\Rightarrow \leq_T$

Main question.

Question: [Downey, Hirschfeldt] Is there a minimal pair of *K*-degrees?

In other words:

Are there reals α and β such that

- α and β aren't K-trivial, and
- if $\gamma \leq_K \alpha$ and $\gamma \leq_K \beta$, then γ is K-trivial?

Lemma: There exists a non-decreasing, unbounded function f such that, $\forall \gamma \in 2^{\omega}$, the following are equivalent.

(1)
$$\gamma$$
 is *K*-trivial.
(2) For a.e. n , $K(\gamma \upharpoonright n) \leq K(n) + f(n)$.
(3) $(\forall n) \ K(\gamma \upharpoonright n) \leq K(n) + f(n) + \mathcal{O}(1)$.

Definition: We call such a function f a *K*-bounding function.

Notation For $c \in \omega$, $\alpha \in 2^{\omega}$, we say that α is K-trivial(c), if it is K-trivial with constant c. i.e.,

$$(\forall n) \ K(\alpha \upharpoonright n) \leq K(n) + c.$$

The proof of the lemma uses only one property about K:

Theorem [Zambella]

For each c, there are finitely many K-trivials(c).

Complexity of *K*-bounding functions.

Looking at the proof of our Lemma, we get that there is a K-bounding function $\leq_T 0'''$.

Lemma: [Downey, J. Miller] A *K*-bounding function cannot be $\leq_T 0'$.

Definition: Given $c \in \omega$, let G(c) be the number of K-trivials(c).

Question: [Downey, Nies] What's the complexity of *G*?

Observation: [Downey, Nies] There is a *K*-bounding function $\leq_T 0'' \oplus G$ Relativized K-bounding functions

Definition: f is K-bounding over α if $(\forall n) \ K(\gamma \upharpoonright n) \leq K(\alpha \upharpoonright n) + f(n) \Rightarrow \gamma \leq_K \alpha$

Note: *K*-bounding = *K*-bouning over 0^{ω} .

Question: Are there *K*-bounding functions over other reals?

Observation: If α is such that $(\exists^{\infty}n) \ K(\alpha \upharpoonright n) \leq K(n) + \mathcal{O}(1),$ then such a *K*-bounding function over α exists.

Lemma: [Csima, J. Miller, M.] If α is such that $(\forall n) \ K(\alpha \upharpoonright n) \ge K(n) + g(n) - \mathcal{O}(1),$ where $g(n) = \min\{K(m) : m \ge n\}$, and f is a function with limit ∞ , then there exists 2^{\aleph_0} many γ 's such that $(\forall n) \ K(\gamma \upharpoonright n) < K(\alpha \upharpoonright n) + f(n)$ and $\gamma \not\leq_K \alpha.$ Main Theorem.

Theorem:

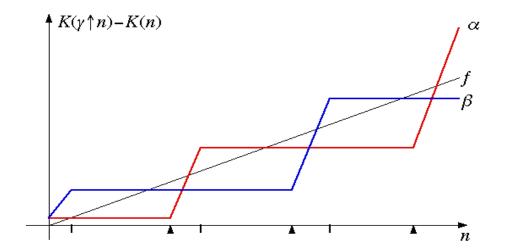
There exists a minimal pair of K-degrees.

Proof: Let *f* be a *K*-bounding function.

We construct two non-K-trivial reals $\pmb{\alpha}$ and $\pmb{\beta}$ such that

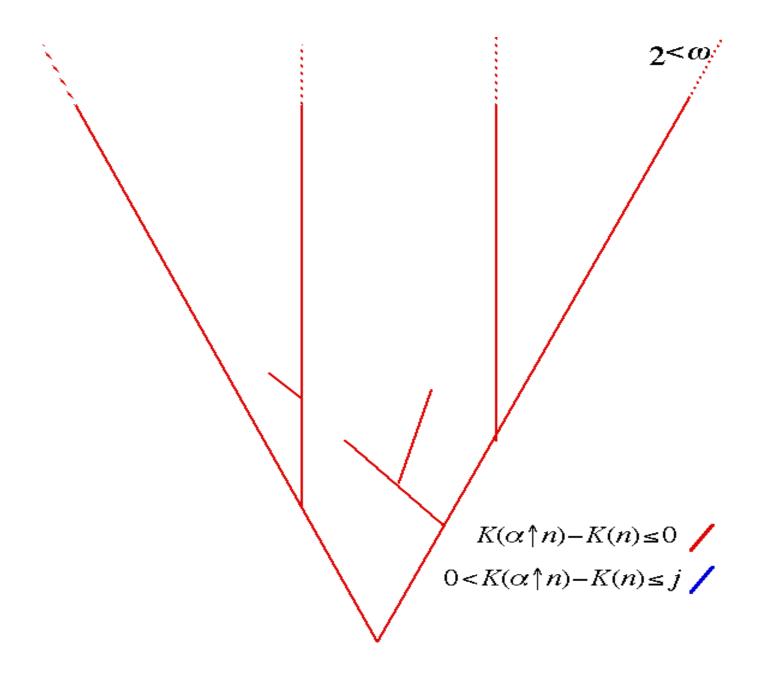
 $(\forall n) \quad \min\{K(\alpha \mid n), K(\beta \mid n)\} \leq K(n) + f(n).$

Note that
$$\gamma \leq_K \alpha$$
 and $\gamma \leq_K \beta$,
 $\Rightarrow K(\gamma \upharpoonright n) \leq K(n) + f(n) + O(1),$
 $\Rightarrow \gamma$ is *K*-trivial.

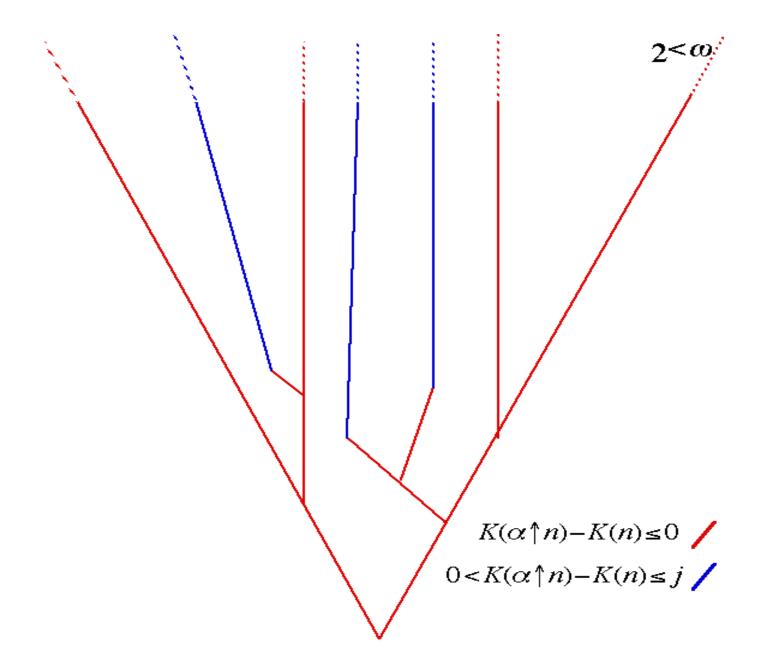


We want to construct a K-bounding function f. i.e., a non-decreasing, unbounded function f such that if $K(\alpha \upharpoonright n) \leq K(n) + f(n) + O(1) \Rightarrow \alpha$ is K-trivial.

We start by constructing f_0 such that if $K(\alpha \upharpoonright n) \le K(n) + f_0(n)$, then α is K-trivial(0).

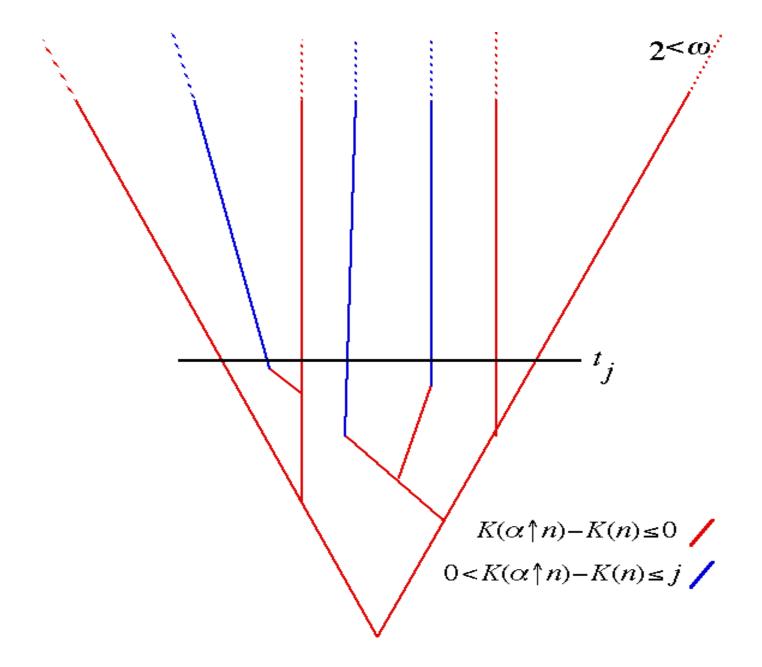


For each $j \in \omega$, there are only finitely many reals which are K-tivial(j).

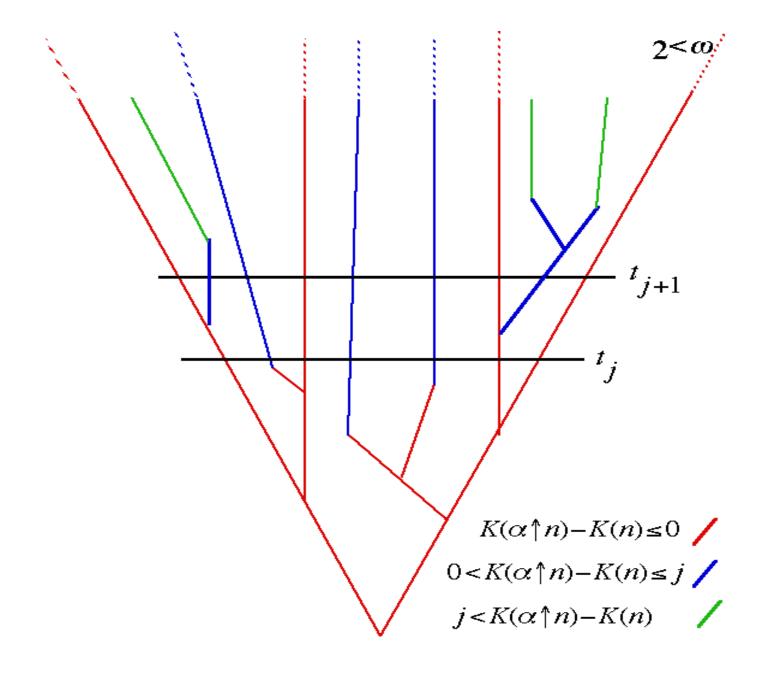


For each $j \in \omega$, there are only finitely many reals which are K-tivial(j).

Let t_j be such that every α that is K-trivial(j), but not K-trival(0), is already not K-trivial(0) by t_j .



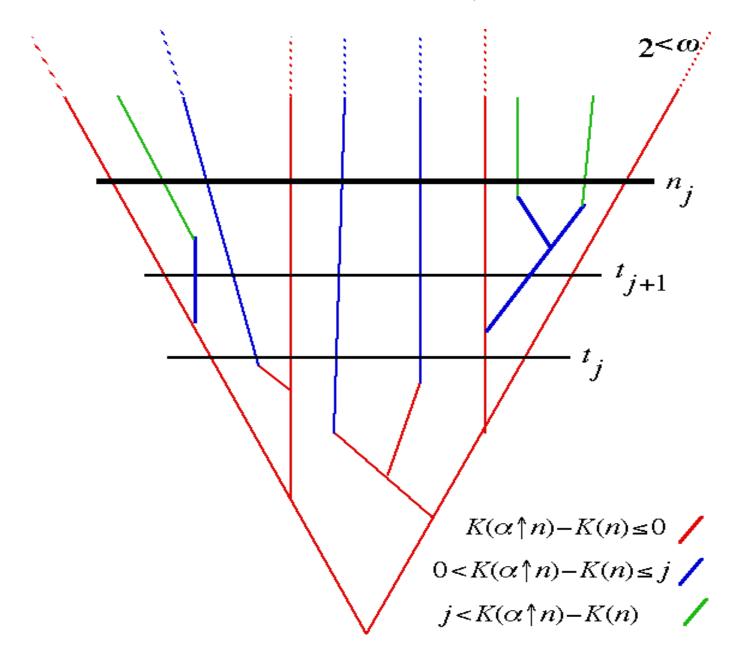
Now, every real α which is not K-trival(0), but that it stops being K-trivial(0) after t_j , is not K-trivial(j). So, at some n, $K(\alpha \upharpoonright n) - K(n) > j$.



Now, every real α which is not K-trival(0), but that it stops being K-trivial(0) after t_j , is not K-trivial(j). So, at some n, $K(\alpha \upharpoonright n) - K(n) > j$.

Let n_j be such that every such α has stopped being K-trivial(j) by n_j .

We define f_0 such that for every $m \leq n_j$, $f_0(m) \leq j$.



Let $f_0(n) = j$ for every m, $n_{j-1} < m \le n_j$.

For every α which is not K-trivial(0), there exists j such that α stops being K-trvial(0) between t_j and t_{j+1} . So, at some $m \leq n_j$, α stops being K-trivial(j). Then,

 $K(\alpha \upharpoonright m) \geq K(m) + j + 1 > K(m) + f_0(m).$

We have constructed f_0 such that

if $K(\alpha \upharpoonright n) \leq K(n) + f_0(n)$, then α is K-trivial(0).

We want to define f such that if $K(\alpha \upharpoonright n) \leq K(n) + f(n) + O(1) \Rightarrow \alpha$ is K-trivial. For each $e \in \omega$, let f_e be a non-decreasing unbounded function such that $f_e(0) = e$ and if $K(\alpha \upharpoonright n) \leq K(n) + f_e(n) \Rightarrow \alpha$ is K-trivial(e).

Let $f(n) = \min\{f_{2e}(n) - e : e \in \omega\}.$

If α is a real such that

 $K(\alpha \upharpoonright n) \leq K(n) + f(n) + e$ for some constant e, Then $K(\alpha \upharpoonright n) \leq K(n) + f_{2e}(n)$, and hence α is K-trivial(2e).