Complete sets of Π_n^c relations.

Antonio Montalbán. U. of Chicago

Sofia, August 2009

Antonio Montalbán. U. of Chicago Complete sets of Π_n^c relations.

Let \mathcal{A} be an \mathcal{L} -structure.

Def: A relation R on \mathcal{A} is *relatively intrinsically computable* if in every copy $(\mathcal{B}, Q) \cong (\mathcal{A}, R)$, Q is computable in \mathcal{B} .

Def: A relation R on \mathcal{A} is *relatively intrinsically c.e.* $\Sigma_n^0 \Pi_n^0$ if in every copy $(\mathcal{B}, Q) \cong (\mathcal{A}, R)$, Q is c.e. $\Sigma_n^0 \Pi_n^0$ in \mathcal{B} .

Ex: on a lin.ord. let $Succ = \{(a, b) \in A^2 : a < b \& \exists c \ (a < c < b)\}$. Then Succ is relatively intrinsically co-c.e.

Q: Given \mathcal{A} , which relations on \mathcal{A} are the relatively intrinsically \prod_n ?

Computably infinitary formulas.

A computably infinitary \mathcal{L} -formula is a

1st order \mathcal{L} -formula where infinite conjunctions or disjunctions are allowed, so long as they are c.e.

A $\sum_{i}^{c} \prod_{j}^{c} \mathcal{L}$ -formula is one of the form $\bigvee_{j \in \omega} \exists \bar{y} \bigwedge_{j \in \omega} \forall \bar{y} \psi_j(\bar{z}, \bar{y})$ where $\{\psi_j : j \in \omega\}$ is a comp. list of finitary quantifier-free \mathcal{L} -formulas.

A $\sum_{n+1}^{c} \prod_{n+1}^{c} \mathcal{L}$ -formula is one of the form $\bigvee_{j \in \omega} \exists \bar{y} \land \bigwedge_{j \in \omega} \forall \bar{y} \ \psi_j(\bar{z}, \bar{y})$ where $\{\psi_j : j \in \omega\}$ is a comp. list of $\prod_n^c \sum_n^c \mathcal{L}$ -formulas.

Thm: [Ash,Knight, Mennasse,Slaman] [Chisholm] Let R be a relation on A. TFAE

- R is relatively intrinsically Π_n^0 .
- *R* is definable in \mathcal{A} by a $\prod_{n=1}^{c} \mathcal{L}$ -formula.

Complete sets of Π_n^c relations

Let P_0 , P_n ,... be uniformly \prod_n^c relations on \mathcal{A} .

Definition ([M])

 $\{P_0, P_1, ...\}$ is a complete set of \prod_n^c relations on \mathcal{A} if every $\prod_n^c \mathcal{L}$ -form. is unif- equivalent to a $\Sigma_1^{c,0'}$ $(\mathcal{L} \cup \{P_0, ...\})$ form.

Obs: There is always a complete set of Π_n^c relations. Namely the set of all Π_n^c relations.

Lemma: (1) $\implies \iff$ (2) (1) $\{P_0, P_1, ...\}$ is a complete set of \prod_n^c relations on \mathcal{A} (2) whenever R is rel. intrinsically \prod_n^c on \mathcal{A} in any copy \mathcal{B} of $(\mathcal{A}, P_0, P_1,), R^{\mathcal{B}} \leq_T \mathcal{B}$. (2) whenever $R_0, R_1, ...$ are uniformly rel. intrinsically \prod_n^c on \mathcal{A} in any copy \mathcal{B} of $(\mathcal{A}, P_0, P_1,), \bigoplus_i R_i^{\mathcal{B}} \leq_T \mathcal{B}$.

Example: Π_1^c relations on Linear orderings

Let \mathcal{A} be a linear ordering. Let $Succ = \{(a, b) \in \mathcal{A}^2 : a < b \& \exists c \ (a < c < b)\}.$

Example:

On a linear order, $\{Succ\}$ is a complete set of Π_1^c relations.

Every Σ_2^c relation on \mathcal{A} is a 0'-disjunction of Σ_1 finitary formulas in the language $\{\leq, Succ\}$.

Example: Π_2^c relations on Linear orderings

Let
$$D_1 = \{(a, b) \in \mathcal{A}^2 : a < b \& \nexists c_0, c_1 \text{ in between }, Succ(c_0, c_1)\}$$

Let $D_n = \{(a, b) \in \mathcal{A}^2 : a < b \&$
 $\nexists c_0, ..., c_n \text{ in between }, \bigwedge_{i < n} Succ(c_i, c_{i+1})\}$
Let $D_n^{+\infty} = \{a \in \mathcal{A}^2 : a < b \&$
 $\nexists c_0, ..., c_n > a, \bigwedge_{i < n} Succ(c_i, c_{i+1})\}$

Example:

The relations $\{Succ, D_1, D_2, D_3, ..., D_1^{+\infty}, ... D_1^{-\infty} ...\}$ are a complete set of Π_2^c relations.

Every Σ_3^c relation on \mathcal{A} is a 0'-disjunction of Σ_1 finitary formulas in the language $\{\leq, Succ, D_1, D_2, ...\}$.

Q: Is there a finite complete set of Π_2^c relations on linear ords.? **Q**: Are there natural complete set of Π_3^c relations on linear ords.?

Lemma

Let P_0 , P_1 ,... be a complete set of Π_1^c relations on \mathcal{A} . If $Y \ge_{\mathcal{T}} 0'$ computes a copy of $(\mathcal{A}, P_0, P_1, ...)$, then $\exists X$ that computes a copy of \mathcal{A} and $X' \equiv_{\mathcal{T}} Y$.

So,
$$DegSp(\mathcal{A}, P_0, P_1, ...) \cap \mathcal{D}_{(\geq 0')} = \{\mathbf{x}' : \mathbf{x} \in DegSp(\mathcal{A})\}$$

Other similar Jump Inversion Theorems have been considered by I. Soskov, A. Soskova, V. Baleva, A. Stukachev.

Lemma

Let $P_0, P_1,...$, and $R_0, R_1...$ be complete sets of Π_n^c relations on \mathcal{A} . Then, there is a uniform computable procedure that in any presentation \mathcal{B} of $(\mathcal{A}, P_0, P_1, ...)$ computes $R_0^{\mathcal{B}}, R_1^{\mathcal{B}},...,$ and vise-versa.

Definition ([M])

Let \mathcal{A} be an \mathcal{L} -structure. The *jump of* \mathcal{A} is an \mathcal{L}_1 -structure \mathcal{A}' where: \mathcal{L}_1 is $\mathcal{L} \cup \{P_0, P_1, ...\},$ $P_0, P_1, ...$ is a complete set of Π_1^c relations on \mathcal{A} and $\mathcal{A}' = (\mathcal{A}, P_0, P_1, ...).$

Theorem ([Harris, M] rels. used by Downey-Jockusch, Thurber, Knight-Stob)

Let \mathcal{B} be a Boolean algebra. $\mathcal{B}' = (\mathcal{B}, At^{\mathcal{B}})$ $\mathcal{B}'' = (\mathcal{B}, At^{\mathcal{B}}, Inf^{\mathcal{B}}, Atless^{\mathcal{B}}).$ $\mathcal{B}''' = (\mathcal{B}, At^{\mathcal{B}}, Inf^{\mathcal{B}}, Atless^{\mathcal{B}}, atomic^{\mathcal{B}}, 1\text{-}atom^{\mathcal{B}}, atominf^{\mathcal{B}}).$ $\mathcal{B}^{(4)} = (\mathcal{B}, At^{\mathcal{B}}, Inf^{\mathcal{B}}, Atless^{\mathcal{B}}, atomic^{\mathcal{B}}, 1\text{-}atom^{\mathcal{B}}, atominf^{\mathcal{B}}, \sim\text{-}inf^{\mathcal{B}}, Int(\omega + \eta)^{\mathcal{B}}, infatomicless^{\mathcal{B}}, 1\text{-}atomless^{\mathcal{B}}, nomaxatomless^{\mathcal{B}}).$ Furthermore, $\forall n$ there is a finite complete set of \prod_{n}^{c} relations

For $\mathcal{B}^{(5)}$ we use 27 relations. For $\mathcal{B}^{(6)}$ we use 1578 relations.

Q: Does every low_n -BA have a computable copy? [DJ 94]

Thm: [Knight Stob 00] Every low₄ BA has a computable copy.

[Harris, M] The case n = 5 is essentially different than the previous cases.

Example: Boolean algebras

Thm: [Downey, Jockush] [Thurber] [Knight, Stob] For n = 1, 2, 3, 4, Every low_n BA is $0^{(n+2)}$ -isomorphic to a computable one.

Theorem ([Harris, M.])

There is a low₅ BA not $0^{(7)}$ -isomorphic to any computable one.

Lemma ([Harris, M.] Diagonalization Lemma)

Given a computable list of 5-BAs, there is a computable 5-BA that is not $0^{(2)}$ -isomorphic to any BA in the list.

A 5-BA, is a Boolean algebra together with its set of complete Π_5^c -relations.

- $0^{(5)}$ can list all computable BAs and calculate their Π_5^c -relations.
- Given this $0^{(5)}$ -list $\{\mathcal{B}_0^{(5)}, \mathcal{B}_1^{(5)}, ...\}$, there is

a $0^{(5)}$ -comp 5-BA $\mathcal{B}^{(5)}$ not $0^{(7)}$ -isomorphic to any \mathcal{B}_i .

• By the jump inversion, there is a low₅ degree that computes a copy of \mathcal{B} .

Strongly-complete set of Π_n^c relations

There is always a complete set of Π_n^c -relations, namely the set of all the Π_n^c -relations.

Q: Which structures have natural complete set of $\prod_{n=1}^{c}$ -relations?

Let \mathcal{K} be a class of structures and $\mathcal{P}_0, \mathcal{P}_1, ...$ be a list of \prod_n^c -formulas.

Definition ([M])

 $\{P_0, P_1, ...\}$ is a strongly-complete set of \prod_n^c formulas for \mathcal{K} if every $\prod_n^{c,Z} \mathcal{L}$ -form. is unif- equivalent to a $\Sigma_1^{c,Z'}$ $(\mathcal{L} \cup \{P_0, ...\})$ form.

Examples:

- $\{Succ\}$ is a strongly-complete set of Π_1^c formula for lin. orders.
- {Succ, D₁, D₂, D₃, ..., D₁^{+∞}, ...D₁^{-∞}...} is a strongly-complete set of Π₂^c formulas for the class of lin. orders.
- {*Atom*} is a strongly-complete set of Π_1^c formulas for BAs.

• ...

Theorem[Ash, Knight] Let \mathcal{A} and \mathcal{B} be structures. TFAE

• Given
$$C$$
 that's isomorphic to either A or B ,
deciding whether $C \cong A$ is Σ_n^0 -hard.

2 All the infinitary Π_n sentences true in \mathcal{A} are true in \mathcal{B} .

If so we say that \mathcal{A} is *back-and-forth below* \mathcal{B} $\mathcal{A} \leq_n \mathcal{B}$.

If
$$\mathcal{A} \leq_n \mathcal{B}$$
 and $\mathcal{B} \leq_n \mathcal{A}$, then $\mathcal{A} \equiv_n \mathcal{B}$.

Theorem ([M] Work in progress.)

If there are uncountably many \equiv_n -equivalent classes in \mathcal{K} , then there is no countable strongly-complete set of \prod_n^c form for \mathcal{K} .

Obs: There are 2^{\aleph_0} many \equiv_3 -equivalent classes of linear orders, for example for each increasing $f : \mathbb{N} \to \mathbb{N}$ consider $\mathbb{Q} + f(1) + \mathbb{Q} + f(2) + \mathbb{Q} + f(3) + \mathbb{Q} +$

Corollary: There is NO countable strongly-complete set of Π_3^c formulas for linear orderings.

$\mathbf{Q} \text{:}$ What are natural classes that have natural complete set of $\Pi_n^c\text{-}\text{formulas}?$

Q: Is there a finite complete set of Π_2^c formulas for linear orderings?

Section 2. Strongly-complete set of Π_n^c relations for Boolean algebras.

Theorem ([Harris, M])

 $\forall n \text{ there is a finite strongly-complete set of } \Pi_n^c \text{ relations for Boolean algebras}$

Back-and-forth relations are key to prove this Lemma.

Notation: $a_1, ..., a_k$ is a partition of a BA \mathcal{B} if $a_0 \lor ... \lor a_k = 1$ and $\forall i \neq j \ (a_i \land a_j = 0)$. We write $\mathcal{B} \upharpoonright a$ for the BA whose domain is $\{x \in \mathcal{B} : x \leq a\}$.

Theorem[Ash, Knight] TFAE

2 Given C that's isomorphic to either A or B,

deciding whether $\mathcal{C} \cong \mathcal{A}$ is Σ_n^0 -hard.

③ All the infinitary Σ_n sentences true in \mathcal{B} are true in \mathcal{A} .

• for every partition
$$(b_i)_{i \leq k}$$
 of \mathcal{B} ,
there is a partition $(a_i)_{i \leq k}$ of \mathcal{A} such that $\forall i \leq k$
 $\mathcal{B} \upharpoonright b_i \leq_{n-1} \mathcal{A} \upharpoonright a_i$.

The bf-types

Obs: \equiv_n is an equivalence relation on the class of BAs.

We call the equivalence classes *n-bf-types*.

We study the following family of ordered monoids

 $(BAs / \equiv_n, \leq_n, \oplus)$

where $\mathcal{A} \oplus \mathcal{B}$ is the product BA with coordinatewise operations, together with the projections $(\cdot)_{n-1} : BAs / \equiv_n \rightarrow BAs / \equiv_{n-1}$.

Theorem

 $BAs \equiv_n$ is countable.

For each *n* we define a set **INV**_n of finite objects, and an invariant map $T_n: BAs \to INV_n$ such that $\mathcal{A} \equiv_n \mathcal{B} \iff T_n(\mathcal{A}) = T_n(\mathcal{B})$

Moreover, on **INV**_n we define \leq_n and + so that

$$(BAs/\equiv_n,\leq_n,\oplus)\cong(INV_n,\leq_n,+),$$

We also define a computable operator $\mathcal{B}_{::}$: $\mathbf{INV}_n \to BAs$ $(\forall \sigma \in \mathbf{INV}_n) \ T_n(\mathcal{B}_\sigma) = \sigma.$

In general such operator doesn't need to be computable

The relations

Def: For each $\sigma \in INV_n$ we define a unary relation R_σ on a BA \mathcal{A} : $\mathcal{A} \models R_\sigma(x) \iff \mathcal{A} \upharpoonright x \ge_n \mathcal{B}_\sigma.$

Theorem

In the case of BAs, the relations R_{σ} for $\sigma \in INV_n$ are uniformly Π_n^c .

In general these relations are infinitary Π_n , but not computable.

Theorem

 $\{R_{\sigma} : \sigma \in INV_n\}$ is a strongly-complete set of Π_n^c relations.

Idea: For every Π_n^c sentence ψ , notice that if $\sigma \in \mathbf{INV}_n$, $\mathcal{B}_\sigma \models \psi$, and $\mathcal{A} \models R_\sigma$, then $\mathcal{A} \models \psi$. So,

$$\psi \iff \bigvee_{\sigma:\mathcal{B}_{\sigma}\models\psi} R_{\sigma},$$

which is $\Sigma_1^{c,0^{(n)}}$.

Definition

A BA \mathcal{A} is *n*-indecomposable if for every partition $a_1, ..., a_k$ of \mathcal{A} , there is an $i \leq k$ such that $\mathcal{A} \equiv_n \mathcal{A} \upharpoonright a_i$.

Theorem

- Every BA is a finite sum of n-indecomposable BAs.
- 2 There are finitely many ≡_n-equivalence classes among the n-indecomposable BAs.

Let $\mathbf{BF}_n = \{ \sigma : \mathcal{B}_\sigma \text{ is } n \text{-indecomposable} \} \subset \mathbf{INV}_n.$

 BF_n is a finite generator of $(INV_n, \leq_n, +)$.

n	1	2	3	4	5	6	
$ \mathbf{BF}_n $	2	3	5	9	27	1578	

Def: For each $\sigma \in INV_n$ we define a unary relation R_σ on a BA \mathcal{A} : $\mathcal{A} \models R_\sigma(x) \iff \mathcal{A} \upharpoonright x \ge_n \mathcal{B}_\sigma.$

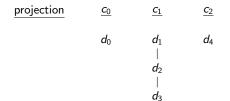
Theorem

 $\{R_{\alpha} : \alpha \in \mathbf{BF}_n\}$ is a strongly-complete set of \prod_n^c formulas for BAs.

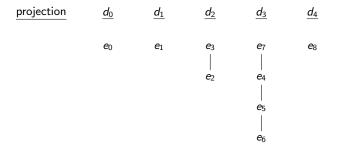
Picture - Levels 1, 2 and 3

bf-relations for 1- and 2-indecomposable bf-types

bf-relations for 3-indecomposable bf-types



bf-relations for 4-indecomposable bf-types



Picture - Level 5

bf-relations for 5-indecomposable bf-types

