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Background
Hyperarithmetic analysis

New statements

Reverse Mathematics
ω-models
Hyperarithmetic sets

Reverse Mathematics

Setting: Second order arithmetic.

Main Question: What axioms are necessary to prove the
theorems of Mathematics?

Axiom systems:
RCA0: Recursive Comprehension + Σ0

1-induction + Semiring ax.
WKL0: Weak Königs lemma + RCA0

ACA0: Arithmetic Comprehension + RCA0

⇔ “for every set X , X ′ exists”.
ATR0: Arithmetic Transfinite recursion + ACA0.

⇔ “ ∀X , ∀ ordinal α, X (α) exists”.
Π1

1-CA0: Π1
1-Comprehension + ACA0.
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Models

A model of (the language of) second order arithmetic is a tuple

〈X ,M,+
X
,×

X
, 0

X
, 1

X
,6

X
〉,

where M is a set of subsets of X and 〈X ,+
X
,×

X
, 0

X
, 1

X
,6

X
〉 is a

structure in language of 1st order arithmetic.

A model of second order arithmetic is an ω-model if
〈X ,+

X
,×

X
, 0

X
, 1

X
,6

X
〉 = 〈ω,+,×, 0, 1,6〉.

ω-models are determined by their second order parts, which are
subsets of P(ω).

We will identify subsets M⊆ P(ω) with ω-models.
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The class of ω-models of a theory

Observation: M⊆ P(ω) is an ω-models of RCA0 ⇔
M is closed under Turing reduction and ⊕

Observation: M⊆ P(ω) is an ω-models of ACA0 ⇔
M is closed under Arithmetic reduction and ⊕

Observation: M⊆ P(ω) is an ω-models of ATR0 ⇒
M is closed under Hyperarithmetic reduction and ⊕

The class of HYP, of hyperarithmetic sets, is not a model of ATR0:
There is a linear ordering L which isn’t an ordinal but looks like one in
HYP (the Harrison l.o.), so,

HYP |= L is an ordinal but 0(L) does not exist.
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Hyperarithmetic sets

Proposition: [Suslin-Kleene, Ash]

For a set X ⊆ ω, the following are equivalent:

X is ∆1
1 = Σ1

1 ∩ Π1
1.

X is computable in 0(α) for some α < ωCK
1 .

(ωCK
1 is the least non-computable ordinal and

0(α) is the αth Turing jump of 0.)

X = {x : ϕ(x)}, where ϕ is a computable infinitary formula.
(Computable infinitary formulas are 1st order formulas which may

contain infinite computable disjunctions or conjunctions.)

A set satisfying the conditions above is said to be hyperarithmetic.

In particular, every computable, ∆0
2, and arithmetic set is

hyperarithmetic.
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Hyperarithmetic reducibility

Definition: X is hyperarithmetic in Y (X 6H Y ) if X ∈ ∆1
1(Y ),

or equivalently, if X 6T Y (α) for some α < ωY
1 .

Let HYP be the class of hyperarithmetic sets.
Let HYP(Y ) be the class of set hyperarithmetic in Y .

We say that an ω-model is hyperarithmetically closed is if it closed
downwards under 6H and is closed under ⊕.
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Hyperarithmetic analysis
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Definitions
Known theories

The class of ω-models of a theory

Observation: M⊆ P(ω) is an ω-models of RCA0 ⇔
M is closed under Turing reduction and ⊕

Observation: M⊆ P(ω) is an ω-models of ACA0 ⇔
M is closed under Arithmetic reduction and ⊕

Observation: M⊆ P(ω) is an ω-models of ATR0 ⇒
M is hyperarithmetically closed.

Question

Are there theories whose ω-models are the hyperarithmetically
closed ones?
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New statements

Definitions
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Theories of Hyperarithmetic analysis.

Definition

We say that a theory T is a theory of hyperarithmetic analysis if
for every set Y , HYP(Y ) is the least ω-model of T containing Y ,
and every ω-model of T is closed under ⊕.

Note that T is a theory of hyperarithmetic analysis ⇔

every ω-model of T is hyperarithmetically closed, and

for every Y , HYP(Y ) |= T.
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Hyperarithmetic analysis

New statements

Definitions
Known theories

Choice and Comprehension schemes

Theorem: [Kleene 59, Kreisel 62, Friedman 67, Harrison 68, Van

Wesep 77, Steel 78, Simpson 99]

The following are theories of hyperarithmetic analysis and each one
is strictly weaker than the next one:

weak-Σ1
1-AC0 (weak Σ1

1-choice):
∀n∃!X (ϕ(n,X )) ⇒ ∃X∀n(ϕ(n,X [n])), where ϕ is arithmetic.

∆1
1-CA0 (∆1

1-comprehension) :
∀n(ϕ(n) ⇔ ¬ψ(n)) ⇒ ∃X∀n(n ∈ X ⇔ ϕ(n)), where ϕ and ψ are Σ1

1.

Σ1
1-AC0 (Σ1

1-choice):
∀n∃X (ϕ(n,X )) ⇒ ∃X∀n(ϕ(n,X [n])), where ϕ is Σ1

1.

Σ1
1-DC0 (Σ1

1-dependent choice):
∀Y ∃Z (ϕ(Y ,Z )) ⇒ ∃X∀n(ϕ(X [n],X [n+1])), where ϕ is Σ1

1.
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Definitions
Known theories

The bad news

There is not theory T whose ω-models are exactly the
hyperarithmetically closed ones.

Theorem: [Van Wesep 77] For every theory T whose ω-models are
all hyperarithmetically closed, there is another theory T ′ whose
ω-models are also all hyperarithmetically closed and which has
more ω-models than T .
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Background
Hyperarithmetic analysis

New statements

Definitions
Known theories

Statements of hyperarithmetic analysis

Definition

S is a sentence of hyperarithmetic analysis if RCA0+S is a theory
of hyperarithmetic analysis.

Friedman [1975] introduced two statements, Arithmetic
Bolzano-Weierstrass (ABW) and, Sequential Limit Systems (SL),
and he mentioned they were related to hyperarithmetic analysis.
Both statements use the concept of arithmetic set of reals, which is not

used outside logic.

Van Wesep [1977] introduced Game-AC and proved it is equivalent
to Σ1

1-AC0.
It essentially says that if we have a sequence of open games such that

player II has a winning strategy in each of them, then there exists a

sequence of strategies for all of them.
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Background
Hyperarithmetic analysis

New statements

The indecomposability statement
Game statements

The indecomposability statement

Let A, B and L be linear orderings

If A embeds into B, we write A 4 B.

L is scattered if Q 64 L.

L is indecomposable if whenever L = A+ B,
either L 4 A or L 4 B.

L is indecomposable to the right if for every non-trivial cut
L = A+ B, we have L 4 B.

L is indecomposable to the left if for every non-trivial cut
L = A+ B, we have L 4 A.

Theorem[Jullien ’69] INDEC: Every scattered indecomposable
linear ordering is indecomposable either to the right or to the left.
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L = A+ B, we have L 4 B.

L is indecomposable to the left if for every non-trivial cut
L = A+ B, we have L 4 A.

Theorem[Jullien ’69] INDEC: Every scattered indecomposable
linear ordering is indecomposable either to the right or to the left.
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The indecomposability statement
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∆1
1-CA0`INDEC

Proof:(∆1
1-CA0) Let A be scattered and indecomposable.

We want to show that A is indecomposable either to the left or to
the right

1 For every x ∈ A, either A 4 A(>a) or A 4 A(6a).
2 For no x we could have both A 4 A(>a) and A 4 A(6a).

Otherwise A <A+A < A+A+A < A+ 1 +A.
So, A < A+ 1 +A < (A+ 1 +A) + 1 + (A+ 1 +A) ...
Following this procedure we could build an embedding Q 4 A.

3 Using ∆1
1-CA0 define

L = {x ∈ A : A 4 A(>x)} and R = {x ∈ A : A 4 A(6x)}.
4 If L = ∅, then A is indecomposable to the right.

If R = ∅, then A is indecomposable to the left.
5 Suppose this is not the case and assume A 4 L. Then
A+ 1 4 L + 1 4 A 4 L. So, for some x ∈ L, A 4 A(<x).
Therefore A+A 4 A, again contradicting Q 64 A.
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An equivalent formulation

A is weakly indecomposable if for every a ∈ A, either A 4 A(>a)

or A 4 A(6a).

Looking at the proof of ∆1
1-CA0`INDEC carefully, we can observe

the following:

Theorem

The following are equivalent over RCA0:

1 INDEC

2 If A is a scattered, weakly indecomposable linear ordering,
then there exists a cut 〈L,R〉 of A such that
L = {a ∈ A : A 4 A(>a)} and R = {a ∈ A : A 4 A(6a)}
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strength of INDEC

Theorem

INDEC implies ACA0 over RCA0.

Proof:
1 Construct a computable linear ordering A such that in RCA0,

A is infinite,
∀x ∈ A, either A(<x) or A(>x) is finite,
any infinite descending sequence in A computes 0′.

2 For each x ∈ A, let Bx be such that

Bx
∼=

{
ωx if A(<x) is finite

(ωx)∗ if A(>x) is finite.

Let C =
∑

x∈A Bx .
3 C is scattered and weakly indecomposable. Then, by INDEC,

the middle cut of C exists, and from it we can compute a
descending sequence in A. Therefore 0′ exists.
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A is infinite,
∀x ∈ A, either A(<x) or A(>x) is finite,
any infinite descending sequence in A computes 0′.

For instance, given s > t ∈ N, let s 6k t if t looks like a true for
the enumeration of 0′ at time s.
Let A = 〈N,6k〉.

Note that A is isomorphic ω + ω∗, and that A is weakly
indecomposable. But RCA0 cannot prove this.
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ω-models of INDEC

Theorem

INDEC is a statement of hyperarithmetic analysis.

Let M |= INDEC.
We want to show that M is hyperarithmetically closed.

We do it by proving that for every X ∈M,
if α ∈M is an ordinal and ∀β < α(X (β) ∈M) then X (α) ∈M.

By transfinite induction, this implies that if Y 6H X , then Y ∈M.

The successor steps follow from ACA0. For the limit steps we
construct a linear ordering using the recursion theorem and results
that Ash and Knight proved using the Ash’s method of α-systems.
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The Jump Iteration statement

Let JI be the statement that says:
∀X∀α(α an ordinal & ∀β(0(β) exists) ⇒ 0(α) exists)

Conjecture: (RCA0) INDEC implies JI.

Theorem

JI is a statement of hyperarithmetic analysis.
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Incomparable statements

Observation: INDEC is Π1
2-conservative over ACA0

(because Σ1
1-AC0 is Π1

2-conservative over ACA0[Barwise, Schlipf 75]).

Therefore, for instance, INDEC is incomparable with Ramsey’s
theorem.

Also, INDEC is incomparable with ACA0
+.

(ACA0
+ essentially says that for every X , X (ω) exists.)

Hence, INDEC is incomparable with the statement that says that
elementary equivalence invariants for boolean algebra exists, which
is equivalent to ACA0

+ [Shore 04].
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GAME STATEMENTS.
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Finitely terminating games

To each well founded tree T ⊆ ω<ω, we associate a game G (T )
which is played as follows. Player I starts by playing a number
a0 ∈ N such that 〈a0〉 ∈ T . Then player II plays a1 ∈ N such that
〈a0, a1〉 ∈ T , and then player I plays a2 ∈ N such that
〈a0, a1, a2〉 ∈ T . They continue like this until they get stuck. The
first one who cannot play looses.

We will refer to games of the form G (T ), for T well-founded, as
finitely terminating games

Observation Finitely terminating games are in 1-1 correspondence
with clopen games.
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Finitely terminating games

Let TI = {σ ∈ T : |σ| is even}, TII = {σ ∈ T : |σ| is odd}.
A strategy for I in G (T ) is a function s : TI → N .
A strategy s for I is a winning strategy if whenever I plays
following the s, he wins.
A game G (T ) is determined if there is a winning strategy for
one of the two players.

We say that a game is completely determined if there is a
map d : T → {W, L} such that for every σ ∈ T ,

d(s) = W ⇔ I has a winning strategy in G (Tσ), and
d(s) = L ⇔ II has a winning strategy in G (Tσ).

Note that completely determined games are determined.
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Known results

Theorem [Steel 1976] The following are equivalent over RCA0.

ATR0;

Every finitely terminating game is determined;

Every finitely terminating game is completely determined.
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New statements

CDG-CA: Given a sequence {Tn : n ∈ N} of completely
determined trees, there exists a set X such that

∀n (n ∈ X iff I has a winning strategy in G (Tn)).

CDG-AC: Given a sequence {Tn : n ∈ N} of completely
determined trees, there exists a sequence {dn : n ∈ N} where
for each n, dn : T → {W, L} is a winning function for G (Tn).

DG-CA: Given a sequence {Tn : n ∈ N} of determined trees,
there exists a set X such that

∀n (n ∈ X iff I has a winning strategy in G (Tn)).

DG-AC: Given a sequence {Tn : n ∈ N} of determined trees,
there exists a sequence {sn : n ∈ N} of winning strategies for
the Tn’s.
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Implications between statements

Theorem
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JI doesn’t imply CDG-CA

To prove this non-implication we construct an ω-model of JI using
Steel’s method of forcing with tagged trees [Steel 76].

Steel used his method to prove that ∆1
1-CA0 6⇒ Σ1

1-AC0.

Maybe, similar arguments can be used to prove other
non-implications between statements of hyperarithmetic analysis.
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DG-CA implies ∆1
1-CA0

Let ϕ and ψ be Σ1
1 formulas such that ∀n(ϕ(n) ⇔ ¬ψ(n)).

There exists sequences of trees {Sn : n ∈ N} and {Tn : n ∈ N}
such that for every n, ϕ(n) ⇔ Sn is not well founded,

ψ(n) ⇔ Tn is not well founded.

For each n consider the game Gn where I plays nodes in Sn and II
plays nodes in Tn. The first one who cannot move looses.

Since for every n, either Sn or Tn is well founded, this is a finitely
terminating game. Moreover, each Gn is determined and I wins the
game iff Tn is well founded. Therefore, I wins Gn iff ϕ(n).

Then, by DG-CA, the set {n : ϕ(n)} exists.
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CDG-AC implies JI.

It is not hard to show that CDG-AC implies ACA0.

Let α be a limit ordinal and suppose that ∀β < α, 0(β) exists. By
recursive transfinite induction, we construct a family of finitely
terminating games {Gβ,n : β < α, n ∈ N}, such that

n ∈ 0(β) ⇔ I has a winning strategy in Gβ,n.

Moreover, we claim that, using our assumption that for every
β < α, 0(β) exists, we can prove that each game Gβ,n is completely
determined:

By CDG-CA, there exits a set X such that
〈β, n〉 ∈ X ⇔ I wins Gβ,n.

This X is 0(α).
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