Indecomposable linear orderings and hyperarithmetic analysis

Antonio Montalbán. Cornell University

July - August, 2005

Computational Prospects of Infinity Singapore.

(4月) (4日) (4日)

Reverse Mathematics ω -models Hyperarithmetic sets

Reverse Mathematics

Setting: Second order arithmetic.

Main Question: What axioms are necessary to prove the theorems of Mathematics?

・ 回 と ・ ヨ と ・ ヨ と

-

Reverse Mathematics ω -models Hyperarithmetic sets

Reverse Mathematics

Setting: Second order arithmetic.

Main Question: What axioms are necessary to prove the theorems of Mathematics?

Axiom systems: RCA_0 : Recursive Comprehension + Σ_1^0 -induction + Semiring ax.

(4回) (4回) (日)

Reverse Mathematics ω -models Hyperarithmetic sets

Reverse Mathematics

Setting: Second order arithmetic.

Main Question: What axioms are necessary to prove the theorems of Mathematics?

Axiom systems:

 RCA_0 : Recursive Comprehension + Σ^0_1 -induction + Semiring ax. WKL_0: Weak Königs lemma + RCA_0

(1) マン・ション・

Reverse Mathematics ω -models Hyperarithmetic sets

Reverse Mathematics

Setting: Second order arithmetic.

Main Question: What axioms are necessary to prove the theorems of Mathematics?

Axiom systems:

RCA₀: Recursive Comprehension + Σ_1^0 -induction + Semiring ax. WKL₀: Weak Königs lemma + RCA₀ ACA₀: Arithmetic Comprehension + RCA₀ \Leftrightarrow "for every set X, X' exists".

・ 同 ト ・ ヨ ト ・ ヨ ト

Reverse Mathematics ω -models Hyperarithmetic sets

Reverse Mathematics

Setting: Second order arithmetic.

Main Question: What axioms are necessary to prove the theorems of Mathematics?

Axiom systems:

 $\begin{array}{ll} \mathsf{RCA}_0: \ \mathsf{Recursive} \ \mathsf{Comprehension} + \Sigma_1^0 \text{-induction} + \mathsf{Semiring} \ \mathsf{ax}.\\ \mathsf{WKL}_0: \ \mathsf{Weak} \ \mathsf{K\ddot{o}nigs} \ \mathsf{lemma} + \mathsf{RCA}_0\\ \mathsf{ACA}_0: \ \mathsf{Arithmetic} \ \mathsf{Comprehension} + \mathsf{RCA}_0\\ \Leftrightarrow \ \text{``for every set} \ X, \ X' \ \mathsf{exists''}.\\ \mathsf{ATR}_0: \ \mathsf{Arithmetic} \ \mathsf{Transfinite} \ \mathsf{recursion} + \mathsf{ACA}_0.\\ \Leftrightarrow \ \ ``\forall X, \ \forall \ \mathsf{ordinal} \ \alpha, \ X^{(\alpha)} \ \mathsf{exists''}. \end{array}$

Reverse Mathematics ω -models Hyperarithmetic sets

Reverse Mathematics

Setting: Second order arithmetic.

Main Question: What axioms are necessary to prove the theorems of Mathematics?

Axiom systems:

 $\begin{array}{ll} \mathsf{RCA}_0: \ \mathsf{Recursive} \ \mathsf{Comprehension} + \Sigma_1^0\text{-induction} + \mathsf{Semiring} \ \mathsf{ax}.\\ \mathsf{WKL}_0: \ \mathsf{Weak} \ \mathsf{K\ddot{o}nigs} \ \mathsf{lemma} + \mathsf{RCA}_0\\ \mathsf{ACA}_0: \ \mathsf{Arithmetic} \ \mathsf{Comprehension} + \mathsf{RCA}_0\\ \Leftrightarrow \ \text{``for every set } X, \ X' \ \mathsf{exists''}.\\ \mathsf{ATR}_0: \ \mathsf{Arithmetic} \ \mathsf{Transfinite} \ \mathsf{recursion} + \mathsf{ACA}_0.\\ \Leftrightarrow \ \text{``} \ \forall X, \ \forall \ \mathsf{ordinal} \ \alpha, \ X^{(\alpha)} \ \mathsf{exists''}.\\ \mathsf{\Pi}_1^1\text{-}\mathsf{CA}_0: \ \mathsf{\Pi}_1^1\text{-}\mathsf{Comprehension} + \mathsf{ACA}_0. \end{array}$

Models

A model of (the language of) second order arithmetic is a tuple

$$\langle X, \mathcal{M}, +_{_{X}}, \times_{_{X}}, 0_{_{X}}, 1_{_{X}}, \leqslant_{_{X}} \rangle,$$

where \mathcal{M} is a set of subsets of X and $\langle X, +_x, \times_x, 0_x, 1_x, \leqslant_x \rangle$ is a structure in language of 1st order arithmetic.

Models

A model of (the language of) second order arithmetic is a tuple

$$\langle X, \mathcal{M}, +_{_{X}}, \times_{_{X}}, 0_{_{X}}, 1_{_{X}}, \leqslant_{_{X}} \rangle,$$

where \mathcal{M} is a set of subsets of X and $\langle X, +_x, \times_x, 0_x, 1_x, \leqslant_x \rangle$ is a structure in language of 1st order arithmetic.

A model of second order arithmetic is an ω -model if $\langle X, +_X, \times_X, 0_X, 1_X, \leqslant_X \rangle = \langle \omega, +, \times, 0, 1, \leqslant \rangle.$

Models

A model of (the language of) second order arithmetic is a tuple

$$\langle X, \mathcal{M}, +_{_{X}}, \times_{_{X}}, 0_{_{X}}, 1_{_{X}}, \leqslant_{_{X}} \rangle,$$

where \mathcal{M} is a set of subsets of X and $\langle X, +_x, \times_x, 0_x, 1_x, \leqslant_x \rangle$ is a structure in language of 1st order arithmetic.

A model of second order arithmetic is an ω -model if $\langle X, +_X, \times_X, 0_X, 1_X, \leqslant_X \rangle = \langle \omega, +, \times, 0, 1, \leqslant \rangle.$

 ω -models are determined by their second order parts, which are subsets of $\mathcal{P}(\omega)$.

We will identify subsets $\mathcal{M} \subseteq \mathcal{P}(\omega)$ with ω -models.

Reverse Mathematics ω -models Hyperarithmetic sets

The class of ω -models of a theory

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of $\mathsf{RCA}_0 \Leftrightarrow \mathcal{M}$ is closed under Turing reduction and \oplus

Antonio Montalbán. Cornell University Indecomposable linear orderings and hyperarithmetic analysis

- 4 回 2 - 4 □ 2 - 4 □

Reverse Mathematics ω -models Hyperarithmetic sets

The class of ω -models of a theory

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of $\mathsf{RCA}_0 \Leftrightarrow \mathcal{M}$ is closed under Turing reduction and \oplus

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of ACA₀ \Leftrightarrow \mathcal{M} is closed under Arithmetic reduction and \oplus

・ 同 ト ・ ヨ ト ・ ヨ ト

Reverse Mathematics ω -models Hyperarithmetic sets

The class of ω -models of a theory

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of $\mathsf{RCA}_0 \Leftrightarrow \mathcal{M}$ is closed under Turing reduction and \oplus

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of ACA₀ \Leftrightarrow \mathcal{M} is closed under Arithmetic reduction and \oplus

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of $\mathsf{ATR}_0 \Rightarrow$ \mathcal{M} is closed under Hyperarithmetic reduction and \oplus

(1) マン・ション・

Reverse Mathematics ω -models Hyperarithmetic sets

The class of ω -models of a theory

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of $\mathsf{RCA}_0 \Leftrightarrow$ \mathcal{M} is closed under Turing reduction and \oplus

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of ACA₀ \Leftrightarrow \mathcal{M} is closed under Arithmetic reduction and \oplus

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of $\mathsf{ATR}_0 \Rightarrow$ \mathcal{M} is closed under Hyperarithmetic reduction and \oplus

The class of *HYP*, of hyperarithmetic sets, is not a model of ATR_0 : There is a linear ordering \mathcal{L} which isn't an ordinal but looks like one in *HYP* (the Harrison I.o.), so,

 $HYP \models \mathcal{L}$ is an ordinal but $0^{(\mathcal{L})}$ does not exist.

Reverse Mathematics ω -models Hyperarithmetic sets

Hyperarithmetic sets

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, the following are equivalent:

• X is $\Delta_1^1 = \Sigma_1^1 \cap \Pi_1^1$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Reverse Mathematics ω -models Hyperarithmetic sets

Hyperarithmetic sets

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, the following are equivalent:

- X is $\Delta^1_1 = \Sigma^1_1 \cap \Pi^1_1$.
- X is computable in $0^{(\alpha)}$ for some $\alpha < \omega_1^{CK}$.

 $(\omega_1^{CK} \text{ is the least non-computable ordinal and} 0^{(\alpha)} \text{ is the } \alpha \text{th Turing jump of } 0.)$

Reverse Mathematics ω -models Hyperarithmetic sets

Hyperarithmetic sets

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, the following are equivalent:

- X is $\Delta^1_1 = \Sigma^1_1 \cap \Pi^1_1$.
- X is computable in $0^{(\alpha)}$ for some $\alpha < \omega_1^{CK}$.

 $(\omega_1^{CK} \text{ is the least non-computable ordinal and} 0^{(\alpha)} \text{ is the } \alpha \text{th Turing jump of 0.})$

・ロン ・回 と ・ ヨ と ・ ヨ と

X = {x : φ(x)}, where φ is a computable infinitary formula.
 (Computable infinitary formulas are 1st order formulas which may contain infinite computable disjunctions or conjunctions.)

Reverse Mathematics ω -models Hyperarithmetic sets

Hyperarithmetic sets

Proposition: [Suslin-Kleene, Ash]

For a set $X \subseteq \omega$, the following are equivalent:

- X is $\Delta^1_1 = \Sigma^1_1 \cap \Pi^1_1$.
- X is computable in $0^{(\alpha)}$ for some $\alpha < \omega_1^{CK}$.

 $(\omega_1^{CK} \text{ is the least non-computable ordinal and} 0^{(\alpha)} \text{ is the } \alpha \text{th Turing jump of 0.})$

X = {x : φ(x)}, where φ is a computable infinitary formula.
 (Computable infinitary formulas are 1st order formulas which may contain infinite computable disjunctions or conjunctions.)

A set satisfying the conditions above is said to be hyperarithmetic. In particular, every computable, Δ_2^0 , and arithmetic set is hyperarithmetic.

Reverse Mathematics ω -models Hyperarithmetic sets

Hyperarithmetic reducibility

Definition: X is hyperarithmetic in Y ($X \leq_H Y$) if $X \in \Delta_1^1(Y)$, or equivalently, if $X \leq_T Y^{(\alpha)}$ for some $\alpha < \omega_1^Y$.

Let HYP be the class of hyperarithmetic sets. Let HYP(Y) be the class of set hyperarithmetic in Y.

We say that an ω -model is hyperarithmetically closed is if it closed downwards under \leq_H and is closed under \oplus .

The class of ω -models of a theory

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of RCA₀ \Leftrightarrow \mathcal{M} is closed under Turing reduction and \oplus

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of ACA₀ \Leftrightarrow \mathcal{M} is closed under Arithmetic reduction and \oplus

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of ATR₀ \Rightarrow \mathcal{M} is hyperarithmetically closed.

・ 同 ト ・ ヨ ト ・ ヨ ト

The class of ω -models of a theory

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of RCA₀ \Leftrightarrow \mathcal{M} is closed under Turing reduction and \oplus

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of ACA₀ \Leftrightarrow \mathcal{M} is closed under Arithmetic reduction and \oplus

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω -models of ATR₀ \Rightarrow \mathcal{M} is hyperarithmetically closed.

Question

Are there theories whose ω -models are the hyperarithmetically closed ones?

イロト イポト イヨト イヨト

Definitions Known theories

Theories of Hyperarithmetic analysis.

Definition

We say that a theory T is a theory of hyperarithmetic analysis if for every set Y, HYP(Y) is the least ω -model of T containing Y, and every ω -model of T is closed under \oplus .

イロト イヨト イヨト イヨト

Definitions Known theories

Theories of Hyperarithmetic analysis.

Definition

We say that a theory T is a theory of hyperarithmetic analysis if for every set Y, HYP(Y) is the least ω -model of T containing Y, and every ω -model of T is closed under \oplus .

Note that T is a theory of hyperarithmetic analysis \Leftrightarrow

- every ω -model of T is hyperarithmetically closed, and
- for every Y, $HYP(Y) \models T$.

Theorem: [Kleene 59, Kreisel 62, Friedman 67, Harrison 68, Van Wesep 77, Steel 78, Simpson 99] The following are theories of hyperarithmetic analysis and each one is strictly weaker than the next one:

weak- Σ_1^1 -AC₀ (weak Σ_1^1 -choice): $\forall n \exists ! X(\varphi(n, X)) \Rightarrow \exists X \forall n(\varphi(n, X^{[n]})), \text{ when}$

where φ is arithmetic.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem: [Kleene 59, Kreisel 62, Friedman 67, Harrison 68, Van Wesep 77, Steel 78, Simpson 99] The following are theories of hyperarithmetic analysis and each one is strictly weaker than the next one:

weak-
$$\Sigma_1^1$$
-AC₀ (weak Σ_1^1 -choice):
 $\forall n \exists ! X(\varphi(n, X)) \Rightarrow \exists X \forall n(\varphi(n, X^{[n]})), \quad \text{where } \varphi \text{ is arithmetic.}$

$\begin{array}{l} \Delta_1^1\text{-}\mathsf{CA}_0\ (\Delta_1^1\text{-}\mathrm{comprehension}):\\ \forall n(\varphi(n)\Leftrightarrow\neg\psi(n))\Rightarrow\exists X\forall n(n\in X\Leftrightarrow\varphi(n)), \quad \ \ \, \text{where }\varphi\text{ and }\psi\text{ are }\Sigma_1^1. \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem: [Kleene 59, Kreisel 62, Friedman 67, Harrison 68, Van Wesep 77, Steel 78, Simpson 99] The following are theories of hyperarithmetic analysis and each one is strictly weaker than the next one:

weak-
$$\Sigma_1^1$$
-AC₀ (weak Σ_1^1 -choice):
 $\forall n \exists ! X(\varphi(n, X)) \Rightarrow \exists X \forall n(\varphi(n, X^{[n]})), \quad \text{where } \varphi \text{ is arithmetic.}$

$$\begin{array}{l} \Delta_1^1\text{-}\mathsf{CA}_0\ (\Delta_1^1\text{-}\mathrm{comprehension}):\\ \forall n(\varphi(n)\Leftrightarrow\neg\psi(n))\Rightarrow\exists X\forall n(n\in X\Leftrightarrow\varphi(n)),\quad \ \ \, \text{where }\varphi\text{ and }\psi\text{ are }\Sigma_1^1.\\ \\ \Sigma_1^1\text{-}\mathsf{AC}_0\ (\Sigma_1^1\text{-}\mathrm{choice}):\end{array}$$

$$orall n \exists X(arphi(n,X)) \Rightarrow \exists X orall n(arphi(n,X^{[n]})), \quad ext{ where } arphi ext{ is } \Sigma^1_1.$$

Theorem: [Kleene 59, Kreisel 62, Friedman 67, Harrison 68, Van Wesep 77, Steel 78, Simpson 99] The following are theories of hyperarithmetic analysis and each one is strictly weaker than the next one:

weak-
$$\Sigma_1^1$$
-AC₀ (weak Σ_1^1 -choice):
 $\forall n \exists ! X(\varphi(n, X)) \Rightarrow \exists X \forall n(\varphi(n, X^{[n]})), \quad \text{where } \varphi \text{ is arithmetic.}$

$$\begin{array}{l} \Delta_1^1\operatorname{\mathsf{-CA}}_0(\Delta_1^1\operatorname{\mathsf{-comprehension}}):\\ \forall n(\varphi(n)\Leftrightarrow \neg\psi(n))\Rightarrow \exists X\forall n(n\in X\Leftrightarrow\varphi(n)), \quad \ \ \text{where }\varphi \text{ and }\psi \text{ are }\Sigma_1^1. \end{array}$$

$$\begin{split} & \sum_{1}^{1} - \mathsf{AC}_{0} \ (\Sigma_{1}^{1} - \mathsf{choice}): \\ & \forall n \exists X(\varphi(n, X)) \Rightarrow \exists X \forall n(\varphi(n, X^{[n]})), \quad \text{where } \varphi \text{ is } \Sigma_{1}^{1}. \end{split}$$

$$\begin{split} \Sigma_1^1 \text{-}\mathsf{DC}_0 \ & (\Sigma_1^1 \text{-}\mathsf{dependent choice}): \\ & \forall Y \exists Z(\varphi(Y,Z)) \Rightarrow \exists X \forall n(\varphi(X^{[n]},X^{[n+1]})), \quad {}_{\mathsf{where }\varphi \text{ is } \Sigma_1^1}. \end{split}$$

イロト イポト イヨト イヨト

The bad news

There is not theory T whose ω -models are exactly the hyperarithmetically closed ones.

Theorem: [Van Wesep 77] For every theory T whose ω -models are all hyperarithmetically closed, there is another theory T' whose ω -models are also all hyperarithmetically closed and which has more ω -models than T.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definitions Known theories

Statements of hyperarithmetic analysis

Definition

S is a sentence of hyperarithmetic analysis if RCA_0+S is a theory of hyperarithmetic analysis.

・ 同 ト ・ ヨ ト ・ ヨ ト

Statements of hyperarithmetic analysis

Definition

S is a sentence of hyperarithmetic analysis if RCA_0+S is a theory of hyperarithmetic analysis.

Friedman [1975] introduced two statements, Arithmetic Bolzano-Weierstrass (ABW) and, Sequential Limit Systems (SL), and he mentioned they were related to hyperarithmetic analysis. Both statements use the concept of arithmetic set of reals, which is not used outside logic.

Van Wesep [1977] introduced Game-AC and proved it is equivalent to $\Sigma_1^1\text{-}AC_0.$

It essentially says that if we have a sequence of open games such that player *II* has a winning strategy in each of them, then there exists a sequence of strategies for all of them.

Let $\mathcal{A},\,\mathcal{B}$ and \mathcal{L} be linear orderings

• If \mathcal{A} embeds into \mathcal{B} , we write $\mathcal{A} \preccurlyeq \mathcal{B}$.

イロト イヨト イヨト イヨト

-

Let $\mathcal{A},\,\mathcal{B}$ and \mathcal{L} be linear orderings

- If \mathcal{A} embeds into \mathcal{B} , we write $\mathcal{A} \preccurlyeq \mathcal{B}$.
- \mathcal{L} is scattered if $\mathbb{Q} \not\prec \mathcal{L}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Let $\mathcal{A},\,\mathcal{B}$ and \mathcal{L} be linear orderings

- If \mathcal{A} embeds into \mathcal{B} , we write $\mathcal{A} \preccurlyeq \mathcal{B}$.
- \mathcal{L} is scattered if $\mathbb{Q} \not\prec \mathcal{L}$.
- \mathcal{L} is indecomposable if whenever $\mathcal{L} = \mathcal{A} + \mathcal{B}$,

either
$$\mathcal{L} \preccurlyeq \mathcal{A}$$
 or $\mathcal{L} \preccurlyeq \mathcal{B}$.

イロト イポト イヨト イヨト

Let $\mathcal{A},\,\mathcal{B}$ and \mathcal{L} be linear orderings

- If \mathcal{A} embeds into \mathcal{B} , we write $\mathcal{A} \preccurlyeq \mathcal{B}$.
- \mathcal{L} is scattered if $\mathbb{Q} \not\prec \mathcal{L}$.
- \mathcal{L} is indecomposable if whenever $\mathcal{L} = \mathcal{A} + \mathcal{B}$,

either $\mathcal{L} \preccurlyeq \mathcal{A}$ or $\mathcal{L} \preccurlyeq \mathcal{B}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

• \mathcal{L} is indecomposable to the right if for every non-trivial cut $\mathcal{L} = \mathcal{A} + \mathcal{B}$, we have $\mathcal{L} \preccurlyeq \mathcal{B}$.

Let $\mathcal{A},\,\mathcal{B}$ and \mathcal{L} be linear orderings

- If \mathcal{A} embeds into \mathcal{B} , we write $\mathcal{A} \preccurlyeq \mathcal{B}$.
- \mathcal{L} is scattered if $\mathbb{Q} \not\prec \mathcal{L}$.
- \mathcal{L} is indecomposable if whenever $\mathcal{L} = \mathcal{A} + \mathcal{B}$,

either $\mathcal{L} \preccurlyeq \mathcal{A}$ or $\mathcal{L} \preccurlyeq \mathcal{B}$.

・ロト ・回ト ・ヨト ・ヨト

- \mathcal{L} is indecomposable to the right if for every non-trivial cut $\mathcal{L} = \mathcal{A} + \mathcal{B}$, we have $\mathcal{L} \preccurlyeq \mathcal{B}$.
- \mathcal{L} is indecomposable to the left if for every non-trivial cut $\mathcal{L} = \mathcal{A} + \mathcal{B}$, we have $\mathcal{L} \preccurlyeq \mathcal{A}$.

Let $\mathcal{A},\,\mathcal{B}$ and \mathcal{L} be linear orderings

- If \mathcal{A} embeds into \mathcal{B} , we write $\mathcal{A} \preccurlyeq \mathcal{B}$.
- \mathcal{L} is scattered if $\mathbb{Q} \not\preccurlyeq \mathcal{L}$.
- \mathcal{L} is indecomposable if whenever $\mathcal{L} = \mathcal{A} + \mathcal{B}$,

either $\mathcal{L} \preccurlyeq \mathcal{A}$ or $\mathcal{L} \preccurlyeq \mathcal{B}$.

- \mathcal{L} is indecomposable to the right if for every non-trivial cut $\mathcal{L} = \mathcal{A} + \mathcal{B}$, we have $\mathcal{L} \preccurlyeq \mathcal{B}$.
- \mathcal{L} is indecomposable to the left if for every non-trivial cut $\mathcal{L} = \mathcal{A} + \mathcal{B}$, we have $\mathcal{L} \preccurlyeq \mathcal{A}$.

Theorem[Jullien '69] **INDEC**: Every scattered indecomposable linear ordering is indecomposable either to the right or to the left.

The indecomposability statement Game statements

Δ_1^1 -CA₀ \vdash INDEC

Proof: $(\Delta_1^1$ -CA₀) Let \mathcal{A} be scattered and indecomposable.

We want to show that $\ensuremath{\mathcal{A}}$ is indecomposable either to the left or to the right

The indecomposability statement Game statements

Δ_1^1 -CA₀ \vdash INDEC

Proof: $(\Delta_1^1$ -CA₀) Let \mathcal{A} be scattered and indecomposable.

• For every $x \in A$, either $A \preccurlyeq A_{(>a)}$ or $A \preccurlyeq A_{(\leqslant a)}$.

(日) (同) (E) (E) (E)

Proof: $(\Delta_1^1$ -CA₀) Let \mathcal{A} be scattered and indecomposable.

- For every $x \in A$, either $A \preccurlyeq A_{(>a)}$ or $A \preccurlyeq A_{(\leqslant a)}$.

イロト イポト イヨト イヨト

The indecomposability statement Game statements

Δ_1^1 -CA₀ \vdash INDEC

Proof: $(\Delta_1^1$ -CA₀) Let \mathcal{A} be scattered and indecomposable.

- For every $x \in \mathcal{A}$, either $\mathcal{A} \preccurlyeq \mathcal{A}_{(>a)}$ or $\mathcal{A} \preccurlyeq \mathcal{A}_{(\leqslant a)}$.
- $\begin{aligned} & \textbf{ ? For no } x \text{ we could have both } \mathcal{A} \preccurlyeq \mathcal{A}_{(>a)} \text{ and } \mathcal{A} \preccurlyeq \mathcal{A}_{(\leqslant a)}. \\ & \text{Otherwise } \mathcal{A} \succcurlyeq \mathcal{A} + \mathcal{A} \succcurlyeq \mathcal{A} + \mathcal{A} + \mathcal{A} \succcurlyeq \mathcal{A} + 1 + \mathcal{A}. \\ & \text{So, } \mathcal{A} \succcurlyeq \mathcal{A} + 1 + \mathcal{A} \succcurlyeq (\mathcal{A} + 1 + \mathcal{A}) + 1 + (\mathcal{A} + 1 + \mathcal{A}) \end{aligned}$

・ 同 ト ・ ヨ ト ・ ヨ ト

The indecomposability statement Game statements

Δ_1^1 -CA₀ \vdash INDEC

Proof: $(\Delta_1^1$ -CA₀) Let \mathcal{A} be scattered and indecomposable.

- For every $x \in A$, either $A \preccurlyeq A_{(>a)}$ or $A \preccurlyeq A_{(\leqslant a)}$.
- For no x we could have both A ≤ A_(>a) and A ≤ A_(≤a). Otherwise A ≥ A + A ≥ A + A + A ≥ A + 1 + A.
 So, A ≥ A + 1 + A ≥ (A + 1 + A) + 1 + (A + 1 + A) ...
 Following this procedure we could build an embedding Q ≤ A.

▲圖▶ ★ 国▶ ★ 国▶

Proof: $(\Delta_1^1$ -CA₀) Let \mathcal{A} be scattered and indecomposable.

- For every $x \in \mathcal{A}$, either $\mathcal{A} \preccurlyeq \mathcal{A}_{(>a)}$ or $\mathcal{A} \preccurlyeq \mathcal{A}_{(\leqslant a)}$.
- For no x we could have both A ≤ A_(>a) and A ≤ A_(≤a). Otherwise A ≽A + A ≽ A + A + A ≽ A + 1 + A. So, A ≽ A + 1 + A ≽ (A + 1 + A) + 1 + (A + 1 + A) ... Following this procedure we could build an embedding Q ≤ A.

$$\begin{array}{ll} \textbf{O} \quad \textbf{Using} \ \Delta_1^1\text{-}\mathsf{CA}_0 \ \text{define} \\ L = \{x \in \mathcal{A} : \mathcal{A} \preccurlyeq \mathcal{A}_{(>x)}\} \quad \text{and} \quad R = \{x \in \mathcal{A} : \mathcal{A} \preccurlyeq \mathcal{A}_{(\leqslant x)}\}. \end{array}$$

▲圖▶ ★ 国▶ ★ 国▶

Proof: $(\Delta_1^1$ -CA₀) Let \mathcal{A} be scattered and indecomposable.

- For every $x \in A$, either $A \preccurlyeq A_{(>a)}$ or $A \preccurlyeq A_{(\leqslant a)}$.
- For no x we could have both A ≤ A_(>a) and A ≤ A_(≤a). Otherwise A ≽A + A ≽ A + A ≽ A + 1 + A. So, A ≽ A + 1 + A ≽ (A + 1 + A) + 1 + (A + 1 + A) ... Following this procedure we could build an embedding Q ≤ A.
- Using Δ_1^1 -CA₀ define $L = \{x \in \mathcal{A} : \mathcal{A} \preccurlyeq \mathcal{A}_{(>x)}\}$ and $R = \{x \in \mathcal{A} : \mathcal{A} \preccurlyeq \mathcal{A}_{(\leqslant x)}\}.$
- If L = Ø, then A is indecomposable to the right.
 If R = Ø, then A is indecomposable to the left.

イロト イポト イヨト イヨト

Proof: $(\Delta_1^1$ -CA₀) Let \mathcal{A} be scattered and indecomposable.

- For every $x \in \mathcal{A}$, either $\mathcal{A} \preccurlyeq \mathcal{A}_{(>a)}$ or $\mathcal{A} \preccurlyeq \mathcal{A}_{(\leqslant a)}$.
- For no x we could have both A ≤ A_(>a) and A ≤ A_(≤a). Otherwise A ≽A + A ≽ A + A + A ≽ A + 1 + A. So, A ≽ A + 1 + A ≽ (A + 1 + A) + 1 + (A + 1 + A) ... Following this procedure we could build an embedding Q ≤ A.
- Using Δ_1^1 -CA₀ define $L = \{x \in \mathcal{A} : \mathcal{A} \preccurlyeq \mathcal{A}_{(>x)}\}$ and $R = \{x \in \mathcal{A} : \mathcal{A} \preccurlyeq \mathcal{A}_{(\leqslant x)}\}.$
- If L = Ø, then A is indecomposable to the right.
 If R = Ø, then A is indecomposable to the left.
- Suppose this is not the case and assume A ≤ L. Then A+1 ≤ L+1 ≤ A ≤ L. So, for some x ∈ L, A ≤ A_(<x). Therefore A + A ≤ A, again contradicting Q ≤ A.

(日) (同) (E) (E) (E)

An equivalent formulation

 \mathcal{A} is weakly indecomposable if for every $a \in \mathcal{A}$, either $\mathcal{A} \preccurlyeq \mathcal{A}_{(>a)}$ or $\mathcal{A} \preccurlyeq \mathcal{A}_{(\leqslant a)}$.

Looking at the proof of Δ_1^1 -CA₀ \vdash INDEC carefully, we can observe the following:

Theorem

The following are equivalent over RCA₀:

- INDEC
- If A is a scattered, weakly indecomposable linear ordering, then there exists a cut (L, R) of A such that
 L = {a ∈ A : A ≤ A_(>a)} and R = {a ∈ A : A ≤ A_(≤a)}

・ロト ・回ト ・ヨト ・ヨト

Theorem

INDEC implies ACA₀ over RCA₀.

Proof:

- $\textcircled{O} Construct a computable linear ordering \mathcal{A} such that in RCA_0,}$
 - ${\mathcal A}$ is infinite,
 - $\forall x \in \mathcal{A}$, either $\mathcal{A}_{(<x)}$ or $\mathcal{A}_{(>x)}$ is finite,
 - \bullet any infinite descending sequence in ${\cal A}$ computes 0'.

Theorem

INDEC implies ACA₀ over RCA₀.

Proof:

- **(**) Construct a computable linear ordering \mathcal{A} such that in RCA₀,
 - \mathcal{A} is infinite,
 - $\forall x \in \mathcal{A}$, either $\mathcal{A}_{(<x)}$ or $\mathcal{A}_{(>x)}$ is finite,
 - \bullet any infinite descending sequence in ${\cal A}$ computes 0'.

For instance, given $s > t \in \mathbb{N}$, let $s \leq_k t$ if t looks like a true for the enumeration of 0' at time s.

Let $\mathcal{A} = \langle \mathbb{N}, \leq_k \rangle$.

Note that \mathcal{A} is isomorphic $\omega + \omega^*$, and that \mathcal{A} is weakly indecomposable. But RCA₀ cannot prove this.

Theorem

INDEC implies ACA₀ over RCA₀.

Proof:

- $\textbf{O} \ \ Construct \ a \ computable \ linear \ ordering \ \mathcal{A} \ such \ that \ in \ RCA_0,$
 - ${\mathcal A}$ is infinite,
 - $\forall x \in \mathcal{A}$, either $\mathcal{A}_{(<x)}$ or $\mathcal{A}_{(>x)}$ is finite,
 - \bullet any infinite descending sequence in ${\cal A}$ computes 0'.
- **2** For each $x \in A$, let \mathcal{B}_x be such that

$$\mathcal{B}_{x} \cong \begin{cases} \omega^{x} & \text{if } \mathcal{A}_{(x)} \text{ is finite.} \end{cases}$$

Let $\mathcal{C} = \sum_{x \in \mathcal{A}} \mathcal{B}_{x}.$

Theorem

INDEC implies ACA₀ over RCA₀.

Proof:

- ${\small \bigcirc}$ Construct a computable linear ordering ${\cal A}$ such that in RCA_0,
 - ${\mathcal A}$ is infinite,
 - $\forall x \in \mathcal{A}$, either $\mathcal{A}_{(<x)}$ or $\mathcal{A}_{(>x)}$ is finite,
 - \bullet any infinite descending sequence in ${\cal A}$ computes 0'.

3 For each
$$x \in \mathcal{A}$$
, let \mathcal{B}_x be such that

$$\mathcal{B}_{x} \cong \begin{cases} \omega^{x} & \text{if } \mathcal{A}_{(x)} \text{ is finite.} \end{cases}$$

Let $\mathcal{C} = \sum_{x \in \mathcal{A}} \mathcal{B}_{x}.$

C is scattered and weakly indecomposable. Then, by INDEC, the middle cut of C exists, and from it we can compute a descending sequence in A. Therefore 0' exists.

$\omega\text{-models}$ of INDEC

Theorem

INDEC is a statement of hyperarithmetic analysis.

Let $\mathcal{M} \models$ INDEC. We want to show that \mathcal{M} is hyperarithmetically closed.

We do it by proving that for every $X \in \mathcal{M}$, if $\alpha \in \mathcal{M}$ is an ordinal and $\forall \beta < \alpha(X^{(\beta)} \in \mathcal{M})$ then $X^{(\alpha)} \in \mathcal{M}$. By transfinite induction, this implies that if $Y \leq_H X$, then $Y \in \mathcal{M}$.

The successor steps follow from ACA₀. For the limit steps we construct a linear ordering using the recursion theorem and results that Ash and Knight proved using the Ash's method of α -systems.

イロン イ部ン イヨン イヨン 三連

The Jump Iteration statement

Let JI be the statement that says: $\forall X \forall \alpha (\alpha \text{ an ordinal } \& \forall \beta (0^{(\beta)} \text{ exists}) \Rightarrow 0^{(\alpha)} \text{ exists})$

Conjecture: (RCA₀) INDEC implies JI.

Theorem

JI is a statement of hyperarithmetic analysis.

Incomparable statements

Observation: INDEC is Π_2^1 -conservative over ACA₀ (because Σ_1^1 -AC₀ is Π_2^1 -conservative over ACA₀[Barwise, Schlipf 75]).

Therefore, for instance, INDEC is incomparable with Ramsey's theorem.

Also, INDEC is incomparable with ACA_0^+ . (ACA_0^+ essentially says that for every X, $X^{(\omega)}$ exists.) Hence, INDEC is incomparable with the statement that says that elementary equivalence invariants for boolean algebra exists, which is equivalent to ACA_0^+ [Shore 04].

The indecomposability statement Game statements

Finitely terminating games

GAME STATEMENTS.

Antonio Montalbán. Cornell University Indecomposable linear orderings and hyperarithmetic analysis

イロン イヨン イヨン イヨン

-2

Finitely terminating games

To each well founded tree $T \subseteq \omega^{<\omega}$, we associate a game G(T) which is played as follows. Player *I* starts by playing a number $a_0 \in \mathcal{N}$ such that $\langle a_0 \rangle \in T$. Then player *II* plays $a_1 \in \mathcal{N}$ such that $\langle a_0, a_1 \rangle \in T$, and then player *I* plays $a_2 \in \mathcal{N}$ such that $\langle a_0, a_1, a_2 \rangle \in T$. They continue like this until they get stuck. The first one who cannot play *looses*.

We will refer to games of the form G(T), for T well-founded, as finitely terminating games

Observation Finitely terminating games are in 1-1 correspondence with clopen games.

Finitely terminating games

Let *T_I* = {*σ* ∈ *T* : |*σ*| is even}, *T_{II}* = {*σ* ∈ *T* : |*σ*| is odd}. A strategy for *I* in *G*(*T*) is a function *s* : *T_I* → *N*. A strategy *s* for *I* is a winning strategy if whenever *I* plays following the *s*, he wins. A game *G*(*T*) is determined if there is a winning strategy for one of the two players.

(日) (同) (E) (E) (E)

Finitely terminating games

- Let *T_I* = {*σ* ∈ *T* : |*σ*| is even}, *T_{II}* = {*σ* ∈ *T* : |*σ*| is odd}. A strategy for *I* in *G*(*T*) is a function *s* : *T_I* → *N*. A strategy *s* for *I* is a winning strategy if whenever *I* plays following the *s*, he wins. A game *G*(*T*) is determined if there is a winning strategy for one of the two players.
- We say that a game is completely determined if there is a map d: T → {W, L} such that for every σ ∈ T,
 d(s) = W ⇔ I has a winning strategy in G(T_σ), and
 d(s) = L ⇔ II has a winning strategy in G(T_σ).

Note that completely determined games are determined.

Known results

Theorem [Steel 1976] The following are equivalent over RCA₀.

- ATR₀;
- Every finitely terminating game is determined;
- Every finitely terminating game is completely determined.

Background Hyperarithmetic analysis New statements Game statements

New statements

 CDG-CA: Given a sequence {T_n : n ∈ N} of completely determined trees, there exists a set X such that ∀n (n ∈ X iff I has a winning strategy in G(T_n)).

イロト イヨト イヨト イヨト

Background Hyperarithmetic analysis New statements Game statements

New statements

- CDG-CA: Given a sequence {*T_n* : *n* ∈ *N*} of completely determined trees, there exists a set *X* such that ∀*n* (*n* ∈ *X* iff *I* has a winning strategy in *G*(*T_n*)).
 CDG-AC: Given a sequence {*T_n* : *n* ∈ *N*} of completely
- CDG-AC: Given a sequence $\{T_n : n \in \mathcal{N}\}$ of completely determined trees, there exists a sequence $\{d_n : n \in \mathcal{N}\}$ where for each $n, d_n : T \to \{W, L\}$ is a winning function for $G(T_n)$.

イロト イポト イヨト イヨト 二日

Background Hyperarithmetic analysis New statements The indecomposability statement

New statements

- CDG-CA: Given a sequence {T_n : n ∈ N} of completely determined trees, there exists a set X such that ∀n (n ∈ X iff I has a winning strategy in G(T_n)).
- CDG-AC: Given a sequence $\{T_n : n \in \mathcal{N}\}$ of completely determined trees, there exists a sequence $\{d_n : n \in \mathcal{N}\}$ where for each $n, d_n : T \to \{W, L\}$ is a winning function for $G(T_n)$.
- DG-CA: Given a sequence {*T_n* : *n* ∈ *N*} of determined trees, there exists a set *X* such that

 $\forall n \ (n \in X \text{ iff } I \text{ has a winning strategy in } G(T_n)).$

New statements

- CDG-CA: Given a sequence {T_n : n ∈ N} of completely determined trees, there exists a set X such that ∀n (n ∈ X iff I has a winning strategy in G(T_n)).
- CDG-AC: Given a sequence {*T_n* : *n* ∈ *N*} of completely determined trees, there exists a sequence {*d_n* : *n* ∈ *N*} where for each *n*, *d_n*: *T* → {W, L} is a winning function for *G*(*T_n*).
- DG-CA: Given a sequence {*T_n* : *n* ∈ *N*} of determined trees, there exists a set *X* such that

 $\forall n \ (n \in X \text{ iff } I \text{ has a winning strategy in } G(T_n)).$

DG-AC: Given a sequence {T_n : n ∈ N} of determined trees, there exists a sequence {s_n : n ∈ N} of winning strategies for the T_n's.

◆□→ ◆□→ ◆注→ ◆注→ □注 □

The indecomposability statement Game statements

Implications between statements

The indecomposability statement Game statements

JI doesn't imply CDG-CA

To prove this non-implication we construct an ω -model of JI using Steel's method of forcing with tagged trees [Steel 76].

Steel used his method to prove that Δ_1^1 -CA₀ $\neq \Sigma_1^1$ -AC₀.

Maybe, similar arguments can be used to prove other non-implications between statements of hyperarithmetic analysis.

イロト イポト イヨト イヨト

DG-CA implies Δ_1^1 -CA₀

Let φ and ψ be Σ_1^1 formulas such that $\forall n(\varphi(n) \Leftrightarrow \neg \psi(n))$.

There exists sequences of trees $\{S_n : n \in \mathbb{N}\}\$ and $\{T_n : n \in \mathbb{N}\}\$ such that for every n, $\varphi(n) \Leftrightarrow S_n$ is not well founded, $\psi(n) \Leftrightarrow T_n$ is not well founded.

For each *n* consider the game G_n where *I* plays nodes in S_n and *II* plays nodes in T_n . The first one who cannot move looses.

Since for every *n*, either S_n or T_n is well founded, this is a finitely terminating game. Moreover, each G_n is determined and *I* wins the game iff T_n is well founded. Therefore, *I* wins G_n iff $\varphi(n)$.

Then, by DG-CA, the set $\{n : \varphi(n)\}$ exists.

CDG-AC implies JI.

It is not hard to show that CDG-AC implies ACA_0 .

Let α be a limit ordinal and suppose that $\forall \beta < \alpha$, $0^{(\beta)}$ exists. By recursive transfinite induction, we construct a family of finitely terminating games $\{G_{\beta,n} : \beta < \alpha, n \in \mathcal{N}\}$, such that $n \in 0^{(\beta)} \Leftrightarrow I$ has a winning strategy in $G_{\beta,n}$.

Moreover, we claim that, using our assumption that for every $\beta < \alpha$, $0^{(\beta)}$ exists, we can prove that each game $G_{\beta,n}$ is completely determined:

By CDG-CA, there exits a set X such that

$$\langle \beta, n \rangle \in X \Leftrightarrow I \text{ wins } G_{\beta,n}.$$

This X is $0^{(\alpha)}$.