Equimorphism invariants for scattered linear orderings.

Antonio Montalbán.

SouthEastern Logic Symposium April 2006

A *linear ordering* (a.k.a. total ordering) is a structure $\mathcal{L} = (L, \leq)$, where \leq is a transitive, reflexive and antisymmetric binary relation where every two elements are comparable. We say that \mathcal{A} embeds into \mathcal{B} , if \mathcal{A} is isomorphic to a subset of \mathcal{B} . We write $\mathcal{A} \leq \mathcal{B}$.

Def: \mathcal{L} is *scattered* if it doesn't contain a copy of \mathbb{Q} . **Theorem:** [Hausdorff '08] Let \mathbb{S} be the smallest class of linear orderings such that

- $\mathbf{1} \in \mathbb{S};$
- if $\mathcal{A}, \mathcal{B} \in \mathbb{S}$, then $\mathcal{A} + \mathcal{B} \in \mathbb{S}$; and

• if κ is a regular cardinal and $\{\mathcal{A}_{\gamma}: \gamma \in \kappa\} \subseteq \mathbb{S}$, then

$$\sum_{\gamma \in \kappa} \mathcal{A}_i \in \mathbb{S}$$
 and $\sum_{\gamma \in \kappa^*} \mathcal{A}_i \in \mathbb{S}$.

Then, S is the class of scattered linear orderings.

Hausdorff rank

Definition:

- Given a l.o. L, we define another l.o. L' by identifying the elements of L which have finitely many elements in between.
- Then we define $\mathcal{L}^0 = \mathcal{L}$, $\mathcal{L}^{\alpha+1} = (\mathcal{L}^{\alpha})'$, and take direct limits when α is a limit ordinal.
- rk(L), the Hausdorff rank of L, is the least α such that L^α is finite.

$$\begin{array}{lll} \text{Examples:} & \mathsf{rk}(\mathbb{N}) = \mathsf{rk}(\mathbb{Z}) = 1, & \mathsf{rk}(\mathbb{Z} + \mathbb{Z} + \mathbb{Z} + \cdots) = 2, \\ & \mathsf{rk}(\omega^{\alpha}) = \alpha, & \mathsf{rk}(\mathbb{Q}) = \infty. \end{array}$$

Observation:

- if $\mathcal{A} \preccurlyeq \mathcal{B}$, then $\mathsf{rk}(\mathcal{A}) \leqslant \mathsf{rk}(\mathcal{B})$;
- 2 $\mathsf{rk}(\mathcal{A} + \mathcal{B}) = \mathsf{max}(\mathsf{rk}(\mathcal{A}), \mathsf{rk}(\mathcal{B}));$
- **4** is scattered \Leftrightarrow for some α , \mathcal{A}^{α} is finite $\Leftrightarrow \mathsf{rk}(\mathcal{A}) \neq \infty$.

Theorem: [Fraïssé's Conjecture '48; Laver '71] The scattered linear orderings form a Well-Quasi-Ordering with respect to embeddablity. (i.e., there are no infinite descending sequences and no infinite antichains.)

Moreover, Laver proved that the class of σ -scattered linear orderings (countable union of scattered linear orderings) is Better-quasi-ordered with respect to emebeddability.

Question: What is the proof theoretic strength of Fraïssé's Conjecture?

Definition: A scattered \mathcal{L} is *indecomposable* if whenever $\mathcal{L} \preccurlyeq \mathcal{A} + \mathcal{B}$, either $\mathcal{L} \preccurlyeq \mathcal{A}$ or $\mathcal{L} \preccurlyeq \mathcal{B}$.

Example: ω^* and ω^3 are indecomposable, but \mathbb{Z} is not.

Theorem: [Laver '71] Every scattered linear ordering can be written as a finite sum of indecomposable ones.

Theorem: [Fraïsé's Conjecture '48; Laver '71] Every indecomposable linear ordering can be written either as a κ -sum or as a κ^* -sum of indecomposable l.o.'s of smaller rank, for some regular cardinal κ .

Linear orderings - Equimorphism types

We say that \mathcal{A} and \mathcal{B} are *equimorphic* if $\mathcal{A} \preccurlyeq \mathcal{B}$ and $\mathcal{B} \preccurlyeq \mathcal{A}$. We denote this by $\mathcal{A} \sim \mathcal{B}$.

All the properties mentioned so far are preserved under equimorphisms.

```
(scattered, indecomposable, rank, \kappa-sums, products...)
```

Notation: Let S be the class of equimorphism types of scattered linear orderings.

Let $\mathbb{H} \subset \mathbb{S}$ be the class of equimorphism types of indecomposable linear orderings.

To each $\mathcal{L} \in \mathbb{S}$ we will assign a finite object with ordinal labels, $Inv(\mathcal{L})$, such that

$$\mathcal{A} \sim \mathcal{B} \quad \Leftrightarrow \quad \mathtt{Inv}(\mathcal{A}) = \mathtt{Inv}(\mathcal{B}).$$

Def: $A_0 + ... + A_n$ is a *minimal decomposition* of \mathcal{L} if each A_i is indecomposable and n is minimal possible.

Theorem: [Jullien '69] Every scattered linear has a unique minimal decomposition, up to equimorphism.

To each $\mathcal{A} \in \mathbb{H}$ we will assign an invariant $T(\mathcal{A})$ which is a finite tree with labels in $\mathcal{O}n \times \{+, -\}$ such that $\mathcal{A} \sim \mathcal{B} \iff T(\mathcal{A}) = T(\mathcal{B}).$

Then, we will then define

$$Inv(\mathcal{L}) = \langle T(\mathcal{A}_0), ..., T(\mathcal{A}_n) \rangle.$$

Definition:

 \mathcal{L} is *indecomposable to the right* if whenever $\mathcal{L} = \mathcal{A} + \mathcal{B}$, $\mathcal{L} \preccurlyeq \mathcal{B}$. If this is the case we let $\epsilon_{\mathcal{L}} = +$.

 \mathcal{L} is *indecomposable to the left* if whenever $\mathcal{L} = \mathcal{A} + \mathcal{B}$, $\mathcal{L} \preccurlyeq \mathcal{A}$. If this is the case we let $\epsilon_{\mathcal{L}} = -$.

Theorem[Jullien 69] Every scattered indecomposable linear ordering is indecomposable either to the right or to the left.

Definition: Given a countable ordinal α , let $\mathbb{H}_{\alpha} = \{ \mathcal{L} \in \mathbb{I} \}$

 $\mathbb{H}_{\alpha} = \{ \mathcal{L} \in \mathbb{H} : \mathsf{rk}(\mathcal{L}) < \alpha \}.$

Definition: Given $\mathcal{L} \in \mathbb{H}$, let $\mathbb{I}_{\mathcal{L}} = \{\mathcal{A} \in \mathbb{H} : 1 + \mathcal{A} + 1 \prec \mathcal{L}\}.$

Note that $\mathbb{I}_{\mathcal{L}} \subseteq \mathbb{H}_{\mathsf{rk}(\mathcal{L})}$ and that $\mathbb{I}_{\mathcal{L}}$ is and *ideal*.

Theorem

For $\mathcal{A}, \mathcal{B} \in \mathbb{H}$, $\mathcal{A} \sim \mathcal{B} \Leftrightarrow \epsilon_{\mathcal{A}} = \epsilon_{\mathcal{B}}$ and $\mathbb{I}_{\mathcal{A}} = \mathbb{I}_{\mathcal{B}}$.

Idea of the proof: Let $\kappa = cf(rk(A)) \lor \omega$.

Lemma: $\mathbb{I}_{\mathcal{A}}$ has a cofinal subset of size κ .

Let $\{\mathcal{A}_{\xi} : \xi < \kappa\} \subseteq \mathbb{I}_{\mathcal{A}}$ be a set cofinal in $\mathbb{I}_{\mathcal{A}}$, where each member appears κ many times in the sequence.

Lemma:
$$\mathcal{A} \sim \sum_{\xi \in \kappa^{\epsilon} \mathcal{A}} \mathcal{A}_{\xi}$$
.

Lemma: $\kappa = cf(\mathbb{I}_{\mathcal{A}}) \vee \omega$.

So, we get that
$$\sum_{\xi \in \kappa^{\epsilon_{\mathcal{A}}}} \mathcal{A}_{\xi}$$
 depends only on $\epsilon_{\mathcal{A}}$ and $\mathbb{I}_{\mathcal{A}}$.

Key observation: For every ideal $\mathbb{I} \subset \mathbb{H}_{\alpha}$, let $X_{\mathbb{I}}^{\alpha}$ be the set of minimal elements of $\mathbb{H}_{\alpha} \smallsetminus \mathbb{I}$. Since \mathbb{H} is a WQO,

 $X^{lpha}_{\mathbb{I}}$ is finite and $orall \mathcal{L} \in \mathbb{H}_{lpha} \ (\mathcal{L} \in \mathbb{I} \iff orall \mathcal{A} \in X^{lpha}_{\mathbb{I}} \ (\mathcal{A}
eq \mathcal{L})).$

Definition

Recall that $\epsilon_{\mathcal{L}} = +$ if \mathcal{L} is indec. to the right and $\epsilon_{\mathcal{L}} = -$ otherwise, and that $\mathbb{I}_{\mathcal{L}} = \{\mathcal{A} \in \mathbb{H} : 1 + \mathcal{A} + 1 \prec \mathcal{L}\}$

Observation: For $\mathcal{A}, \mathcal{B} \in \mathbb{H}$, $\mathcal{A} \sim \mathcal{B} \Leftrightarrow T(\mathcal{A}) = T(\mathcal{B})$.

Comparison of invariants for $\mathbb H$

The key point is that for $\mathcal{A}, \mathcal{B} \in \mathbb{H}$, $\mathcal{A} \preccurlyeq \mathcal{B}$ if and only if

- either $\tau(\mathcal{A}) \preccurlyeq \tau(\mathcal{B})$ and $\mathbb{I}_{\mathcal{A}} \subseteq \mathbb{I}_{\mathcal{B}}$,
- or $\tau(\mathcal{A}) \not\preccurlyeq \tau(\mathcal{B})$ and $\mathcal{A} \in \mathbb{I}_{\mathcal{B}}$. where $\tau(\mathcal{L}) = (cf(\mathsf{rk}(\mathcal{L}) \lor \omega)^{\epsilon_{\mathcal{L}}})$

Definition

For
$$S = [\langle \alpha, \epsilon_S \rangle; S_0, ..., S_{l-1}]$$
 and $T = [\langle \beta, \epsilon_T \rangle; T_0, ..., T_{k-1}]$ we let $S \preccurlyeq T$ if,

• either
$$\alpha \leq \beta$$
, $\tau(S) \leq \tau(T)$ and
 $\forall i < k \ (\mathsf{rk}(T_i) \geq \alpha \lor \exists j < l(S_j \leq T_i)),$
• or $\alpha < \beta$, $\tau(S) \not\leq \tau(T)$ and $\forall i < k \ (T_i \not\leq S).$

..,where $\mathsf{rk}(T) = \beta$ and $\tau(T) = \mathrm{cf}(\beta)^{\epsilon_T}$.

Proposition

For $\mathcal{A}, \mathcal{B} \in \mathbb{H}$, $\mathcal{A} \preccurlyeq \mathcal{B}$ if and only if $T(\mathcal{A}) \preccurlyeq T(\mathcal{B})$.

Comparison of invariants for $\mathbb S$

Key point: If
$$\mathcal{A} = \mathcal{A}_0 + ... + \mathcal{A}_I$$
 and $\mathcal{B} = \mathcal{B}_0 + ... + \mathcal{B}_k$ then
 $\mathcal{A} \preccurlyeq \mathcal{B} \Leftrightarrow \mathcal{A}_0 + ... + \mathcal{A}_{i_1-1} \preccurlyeq \mathcal{B}_0 \quad \& \quad \cdots \quad \& \quad \mathcal{A}_{i_k} + ... + \mathcal{A}_I \preccurlyeq \mathcal{B}_k,$

for some $0 = i_0 \leqslant ... \leqslant i_k \leqslant i_{k+1} = l + 1..$

Definition

Now, given
$$S = \langle S_0, ..., S_l \rangle$$
 and $T = \langle T_0, ..., T_k \rangle$ we let $S \preccurlyeq T$ if

$$\bigvee_{0=i_0\leqslant \ldots\leqslant i_k\leqslant i_{k+1}=l+1} \left(\bigwedge_{n\leqslant k} \langle S_{i_n}, S_{i_n+1}, \ldots, S_{i_{n+1}-1}\rangle \preccurlyeq T_n\right).$$

Proposition

Let $\mathcal{A}, \mathcal{B} \in \mathbb{S}$. Then, $Inv(\mathcal{A}) \preccurlyeq Inv(\mathcal{B})$ if and only if $\mathcal{A} \preccurlyeq \mathcal{B}$.

Def: Let $Tr = \{T(\mathcal{L}) : \mathcal{L} \in \mathbb{H}\}$ and $Tn = \{Inv(\mathcal{L}) : \mathcal{L} \in \mathbb{S}\}.$

We are interested in characterizing Tr and In.

Obs: $A_0 + ... + A_n$ is a minimal decomposition of $\mathcal{L} \in \mathbb{S}$, iff for no i < n we have

- $\mathcal{A}_i + \mathcal{A}_{i+1} \sim \mathcal{A}_i$ or
- $\mathcal{A}_i + \mathcal{A}_{i+1} \sim \mathcal{A}_{i+1}$.

Obs: For $\mathcal{L} \in \mathbb{H}$ of rank α , we have

- $\mathbb{I}_{\mathcal{L}} \subseteq \mathbb{H}_{\alpha}$ has elements of arbitrary large rank $< \alpha$.
- $\mathbb{I}_{\mathcal{L}}$ has the same cofinality as α , if infinite.

Obs: $A_i + A_{i+1} \sim A_i$ iff A_i is indec. to the left and $A_{i+1} \in \mathbb{I}_{A_i}$.

Proposition

Let $T = \langle T_0, ..., T_k \rangle \in Tr^{<\omega}$. Then, $T \in In$ if and only if for no i < k we have that

• either
$$\epsilon_i = -$$
 and $T_{i+1} \in \mathcal{I}_{T_i}$,

2 or
$$\epsilon_{i+1} = +$$
 and $T_i \in \mathcal{I}_{T_{i+1}}$,

where
$$\mathcal{I}_T = \mathcal{I}^{\alpha}_{T_0,...,T_{k-1}}$$
.

Recognizing $\mathcal{T}r$, the invariants for \mathbb{H} .

Let $Tr_{\alpha} = \{T \in Tr : \mathsf{rk}(T) < \alpha\}.$

Suppose we already know how to recognize the elements of Tr_{α} .

Proposition

A tree
$$T = [\langle \alpha, \epsilon \rangle; T_0, ..., T_{k-1}]$$
 with labels in $On \times \{+, -\}$ belongs to Tr if and only if

1 for each
$$i, T_i \in Tr_{\alpha}$$
;

2
$$T_0, .., T_{k-1}$$
 are mutually \preccurlyeq -incomparable;

• for no i,
$$\tau(T_i) \prec \tau(T)$$
.

•
$$\mathsf{rk}(\mathcal{I}^{\alpha}_{\mathcal{T}_{0},...,\mathcal{T}_{k-1}}) = \alpha;$$

where $\mathcal{I}^{\alpha}_{\mathcal{T}_{0},...,\mathcal{T}_{k-1}} = \{ S \in \mathcal{T}r_{\alpha} : \mathsf{rk}(S) < \alpha \& \forall i < k(\mathcal{T}_{i} \not\preccurlyeq S) \}.$ Given and ideal $\mathcal{I} \subset \mathcal{T}r$, let $\mathsf{rk}(\mathcal{I}) = \sup\{\mathsf{rk}(\mathcal{T}) + 1 : \mathcal{T} \in \mathcal{I}\}.$ So, to be able to recognize the elements of $\mathcal{I}n$ we need to recognize the ideals $\mathbb{I} \subseteq \mathbb{H}_{\alpha}$ of rank α .

Laver proved that \mathbb{H} is a better-quasi-ordered (BQO), a stronger notion than wqo. **Remark:** The set of ideals of a BQO is also a BQO.

So, the ideals of \mathbb{H}_{α} form, in particular, a WQO. Hence, there exists a finite set of minimal ideals of \mathbb{H}_{α} of rank α .

If we found them we could tell whether an ideal has rank α by comparing it with these finitely many ideals.

Theorem: [Hausdorff] Let κ be a regular cardinal and \mathcal{L} a scattered linear ordering. Then

 $\kappa \leqslant |\mathcal{L}| \Leftrightarrow \text{ either } \kappa \preccurlyeq \mathcal{L} \text{ or } \kappa^* \preccurlyeq \mathcal{L}.$

Equivalently: κ and κ^* are the minimal linear orderings of rank $\geqslant \kappa$.

For each α we want to find the minimal linear ord. of rank α .

(From these we can get the minimal ideals of $\mathbb{H}_{\alpha+1}$ of rank α .)

Minimal linear orderings of rank $\beta = \omega^{\delta}$

Consider an ordinal β of the form ω^{δ} , and let $\{\beta_{\xi} : \xi < \lambda\}$ be an increasing sequence cofinal in β . **Note** that $\omega^{\beta} = \sum_{\xi \in \lambda} \omega^{\beta_{\xi}}$.

 $\text{Def: Given } \epsilon_0, \epsilon_1 \in \{+.-\}, \text{ let } \quad \omega^{\langle \beta, \epsilon_0, \epsilon_1 \rangle} = \sum_{\xi \in \lambda^{\epsilon_1}} (\omega^{\beta_\xi})^{\epsilon_0}.$

Examples:
$$\omega^{\langle \omega, +, + \rangle} \sim \mathbf{1} + \omega + \omega^2 + ... = \omega^{\omega}$$

and $\omega^{\langle \omega, +, - \rangle} \sim ... + \omega^2 + \omega + \mathbf{1}$.

(Up to equimorphism, $\omega^{\langle\beta,\epsilon_0,\epsilon_1
angle}$ doesn't depend on the cofinal sequence.)

Theorem

Let $\mathcal{L} \in \mathbb{S}$ and $\beta = \omega^{\delta}$. Then $\mathsf{rk}(\mathcal{L}) \ge \beta \iff (\exists \epsilon_0, \epsilon_1 \in \{+, -\}) \ \omega^{\langle \beta, \epsilon_0, \epsilon_1 \rangle} \preccurlyeq \mathcal{L}$

So $\mathbb{F}_{\beta} = \{\omega^{\langle \beta, +, + \rangle}, \omega^{\langle \beta, +, - \rangle}, \omega^{\langle \beta, -, + \rangle}, \omega^{\langle \beta, -, - \rangle}\}$ is the set of minimal equimorphism types of rank β .

Theorem

Let $\mathcal{L} \in \mathbb{S}$ and α have Cantor Normal Form $\omega^{\alpha_0} + ... + \omega^{\alpha_n}$. Then rk(\mathcal{L}) $\geq \alpha$ IFF there exist $\epsilon_0, ..., \epsilon_{2n+1} \in \{+, -\}$ such that

 $\omega^{\langle \omega^{\alpha_0}, \epsilon_0, \epsilon_1 \rangle} \cdot \omega^{\langle \omega^{\alpha_1}, \epsilon_2, \epsilon_3 \rangle} \cdot \ldots \cdot \omega^{\langle \omega^{\alpha_n}, \epsilon_{2n}, \epsilon_{2n+1} \rangle} \preccurlyeq \mathcal{L}.$

So $\mathbb{F}_{\alpha} = \{ \omega^{\langle \omega^{\alpha_0}, \epsilon_0, \epsilon_1 \rangle} \cdot \ldots \cdot \omega^{\langle \omega^{\alpha_n}, \epsilon_{2n}, \epsilon_{2n+1} \rangle} : \epsilon_0, \ldots, \epsilon_{2n+1} \in \{+, -\} \}$ is the set of minimal equimorphism types of rank α .

Computing representatives for members of ${\mathcal I}$

We say that \mathcal{L} is *finitely alternating* if it is of the form $\omega^{\langle \omega^{\alpha_0}, \epsilon_0, \epsilon_1 \rangle} \cdot \ldots \cdot \omega^{\langle \omega^{\alpha_n}, \epsilon_{2n}, \epsilon_{2n+1} \rangle}.$

Theorem

We find:

- The set of minimal elements of H_α \ I_L, for each finitely alternating L, which is a set of finitely alternating linear orderings.
- **2** The invariant $T(\mathcal{L})$ for each finitely alternating \mathcal{L} .
- **3** The set of minimal ideals of \mathbb{H}_{α} of rank α , for each α . which is a set of finitely alternating linear orderings.

Corollary: We can decide whether an ideal in Tr_{α} has rank α via a finite algorithm that compares ordinals and their cofinalities.

(To decide whether a tree $T \in Tr$ we still need to be able to compute cofinalities of ideals of Tr_{α} .)

An application

Corollary

For every computable ordinal α , $(\mathcal{I}n_{\alpha}, \preccurlyeq)$ is computable.

Corollary

For every $\alpha < \omega_1^{CK}$, there exists a computable transformation lin that assigns a linear ordering lin(a) to each $a \in \mathcal{I}_{\alpha}$, such that inv(lin(a)) = a.

Theorem

Every linear ordering of Hausdorff rank $< \omega_1^{CK}$ is equimorphic to a computable one.

Corollary

Every hyperarithmetic linear ordering is equimorphic to a computable one.

Antonio Montalbán. Equimorphism invariants for scattered linear orderings.

Open Questions

Question: Given a tree with labels in $On \times \{+, -\}$, is it possible to decide if it belongs to Tr via a finite manipulation of the symbols in the tree, using some basic operations on ordinals?

Question: What about computing the invariant of the product of two linear orderings?

Definition: We say that \mathcal{L} is σ -scatteered if it is a countable union of scattered linear orderings.

Versions of all of Laver's results were proved for this class, including Fraïssé's conjecture.

Question: Can we define invariants of this sort for the class of σ -scattered linear ordering?

Question: Is it consistent that the class of σ -scattered linear ordering is the well-founded part of the whole class of linear orderings?