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Scattered linear orderings

A linear ordering (a.k.a. total ordering) is a structure L = (L,6), where

6 is a transitive, reflexive and antisymmetric binary relation where every

two elements are comparable. We say that A embeds into B, if A is

isomorphic to a subset of B. We write A 4 B.

Def: L is scattered if it doesn’t contain a copy of Q.
Theorem: [Hausdorff ’08]

Let S be the smallest class of linear orderings such that

1 ∈ S;

if A,B ∈ S, then A+ B ∈ S; and

if κ is a regular cardinal and {Aγ : γ ∈ κ} ⊆ S, then∑
γ∈κAi ∈ S and

∑
γ∈κ∗ Ai ∈ S.

Then, S is the class of scattered linear orderings.
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Hausdorff rank

Definition:

Given a l.o. L, we define another l.o. L′ by identifying the
elements of L which have finitely many elements in between.

Then we define L0= L, Lα+1= (Lα)′, and take direct limits
when α is a limit ordinal.

rk(L), the Hausdorff rank of L, is the least α such that Lα is
finite.

Examples: rk(N) = rk(Z) = 1, rk(Z + Z + Z + · · · ) = 2,
rk(ωα) = α, rk(Q) = ∞.

Observation:

1 if A 4 B, then rk(A) 6 rk(B);

2 rk(A+ B) = max(rk(A), rk(B));

3 rk(A · B) = rk(A) + rk(B);

4 A is scattered ⇔ for some α, Aα is finite ⇔ rk(A) 6= ∞.
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Fräıssé’s Conjecture

Theorem: [Fräıssé’s Conjecture ’48; Laver ’71]

The scattered linear orderings form a Well-Quasi-Ordering
with respect to embeddablity.
(i.e., there are no infinite descending sequences

and no infinite antichains.)

Moreover, Laver proved that the class of σ-scattered linear
orderings (countable union of scattered linear orderings) is
Better-quasi-ordered with respect to emebeddability.

Question: What is the proof theoretic strength of Fräıssé’s
Conjecture?
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The structure of the scattered linear orderings

Definition: A scattered L is indecomposable if
whenever L 4 A+ B, either L 4 A or L 4 B.

Example: ω∗ and ω3 are indecomposable, but Z is not.

Theorem: [Laver ’71] Every scattered linear ordering can be
written as a finite sum of indecomposable ones.

Theorem: [Fräısé’s Conjecture ’48; Laver ’71]

Every indecomposable linear ordering can be written
either as a κ-sum or as a κ∗-sum of indecomposable l.o.’s
of smaller rank, for some regular cardinal κ.
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Linear orderings - Equimorphism types

We say that A and B are equimorphic if A 4 B and B 4 A.
We denote this by A ∼ B.

All the properties mentioned so far are preserved under
equimorphisms.
(scattered, indecomposable, rank, κ-sums, products...)

Notation: Let S be the class of equimorphism types of scattered
linear orderings.
Let H ⊂ S be the class of equimorphism types of indecomposable
linear orderings.

To each L ∈ S we will assign a finite object with ordinal labels,
Inv(L), such that

A ∼ B ⇔ Inv(A) = Inv(B).
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Def: A0 + ... +An is a minimal decomposition of L
if each Ai is indecomposable and n is minimal possible.

Theorem: [Jullien ’69] Every scattered linear has a unique minimal
decomposition, up to equimorphism.

To each A ∈ H we will assign an invariant T(A) which is
a finite tree with labels in On × {+,−} such that

A ∼ B ⇔ T(A) = T(B).

Then, we will then define

Inv(L)= 〈T(A0), ..., T(An)〉.
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The structure of the indecomposables.

Definition:
L is indecomposable to the right if whenever L = A+B, L 4 B.
If this is the case we let εL = +.
L is indecomposable to the left if whenever L = A+ B, L 4 A.
If this is the case we let εL = −.
Theorem[Jullien 69] Every scattered indecomposable linear ordering

is indecomposable either to the right or to the left.

Definition: Given a countable ordinal α, let
Hα = {L ∈ H : rk(L) < α}.

Definition: Given L ∈ H, let IL = {A ∈ H : 1 +A+ 1 ≺ L}.

Note that IL ⊆ Hrk(L) and that IL is and ideal.
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Theorem

For A,B ∈ H, A ∼ B ⇔ εA = εB and IA = IB.

Idea of the proof:
Let κ = cf(rk(A)) ∨ ω.

Lemma: IA has a cofinal subset of size κ.

Let {Aξ : ξ < κ} ⊆ IA be a set cofinal in IA, where each memeber
appears κ many times in the sequence.

Lemma: A ∼
∑

ξ∈κεA

Aξ.

Lemma: κ = cf(IA) ∨ ω.

So, we get that
∑

ξ∈κεA

Aξ depends only on εA and IA.
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Finite Invariants

Key observation: For every ideal I ⊂ Hα,
let Xα

I be the set of minimal elements of Hα r I.
Since H is a WQO,

Xα
I is finite and ∀L ∈ Hα (L ∈ I ⇔ ∀A ∈ Xα

I (A 64 L)).

Definition

Given L ∈ H of rank α, we define a finite tree T(L):
Let Xα

IL = {A0, ...,Ak} and let

T(L) = 〈εL, α〉

T(A0)

kkkkkk
...

vvvv ... ...

HHHH
T(Ak)

SSSSSS

Recall that εL = + if L is indec. to the right and εL = − otherwise,

and that IL = {A ∈ H : 1 +A+ 1 ≺ L}

Observation: For A,B ∈ H, A ∼ B ⇔ T(A) = T(B).
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Comparison of invariants for H

The key point is that for A,B ∈ H, A 4 B if and only if

either τ(A) 4 τ(B) and IA ⊆ IB,

or τ(A) 64 τ(B) and A ∈ IB. where τ(L) = (cf(rk(L) ∨ ω)εL

Definition

For S = [〈α, εS〉;S0, ...,Sl−1] and T = [〈β, εT 〉;T0, ...,Tk−1]
we let S 4 T if,

either α 6 β, τ(S) 4 τ(T ) and
∀i < k (rk(Ti ) > α ∨ ∃j < l(Sj 4 Ti )),

or α < β, τ(S) 64 τ(T ) and ∀i < k (Ti 64 S).

..,where rk(T ) = β and τ(T ) = cf(β)εT .

Proposition

For A,B ∈ H, A 4 B if and only if T(A) 4 T(B).

Antonio Montalbán. Equimorphism invariants for scattered linear orderings.



Comparison of invariants for S

Key point: If A = A0 + ... +Al and B = B0 + ... + Bk then

A 4 B ⇔ A0 + ... +Ai1−1 4 B0 & · · · & Aik + ... +Al 4 Bk ,

for some 0 = i0 6 ... 6 ik 6 ik+1 = l + 1..

Definition

Now, given S = 〈S0, ...,Sl〉 and T = 〈T0, ...,Tk〉 we let S 4 T if

∨
0=i06...6ik6ik+1=l+1

 ∧
n6k

〈Sin ,Sin+1, ...,Sin+1−1〉 4 Tn

 .

Proposition

Let A,B ∈ S. Then, Inv(A) 4 Inv(B) if and only if A 4 B.
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Recognizing invariants

Def: Let Tr = {T(L) : L ∈ H} and In = {Inv(L) : L ∈ S}.

We are interested in characterizing Tr and In.

Obs: A0 + ... +An is a minimal decomposition of L ∈ S, iff
for no i < n we have

Ai +Ai+1 ∼ Ai or

Ai +Ai+1 ∼ Ai+1.

Obs: For L ∈ H of rank α, we have

IL ⊆ Hα has elements of arbitrary large rank < α.

IL has the same cofinality as α, if infinite.
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Recognizing In, the invariants for S.

Obs: Ai +Ai+1 ∼ Ai iff Ai is indec. to the left and Ai+1 ∈ IAi
.

Proposition

Let T = 〈T0, ...,Tk〉 ∈ Tr<ω. Then, T ∈ In if and only if for no
i < k we have that

1 either εi = − and Ti+1 ∈ ITi
,

2 or εi+1 = + and Ti ∈ ITi+1
,

where IT = Iα
T0,...,Tk−1

.
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Recognizing Tr , the invariants for H.

Let Trα = {T ∈ Tr : rk(T ) < α}.
Suppose we already know how to recognize the elements of Trα.

Proposition

A tree T = [〈α, ε〉;T0, ...,Tk−1] with labels in On × {+,−}
belongs to Tr if and only if

1 for each i , Ti ∈ Trα;

2 T0, ..,Tk−1 are mutually 4-incomparable;

3 for no i , τ(Ti ) ≺ τ(T ).

4 rk(Iα
T0,...,Tk−1

) = α;

5 cf(Iα
T0,...,Tk−1

) ∨ ω = cf(α) ∨ ω;

where Iα
T0,...,Tk−1

= {S ∈ Trα : rk(S) < α & ∀i < k(Ti 64 S)}.
Given and ideal I ⊂ Tr , let rk(I) = sup{rk(T ) + 1 : T ∈ I}.
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Minimal Ideals

So, to be able to recognize the elements of In we need to
recognize the ideals I ⊆ Hα of rank α.

Laver proved that H is a better-quasi-ordered (BQO), a stronger
notion than wqo.
Remark: The set of ideals of a BQO is also a BQO.

So, the ideals of Hα form, in particular, a WQO.
Hence, there exists a finite set of minimal ideals of Hα of rank α.

If we found them we could tell whether an ideal has rank α by
comparing it with these finitely many ideals.

Antonio Montalbán. Equimorphism invariants for scattered linear orderings.



Minimal equimorphism types

Theorem: [Hausdorff] Let κ be a regular cardinal and L a
scattered linear ordering. Then

κ 6 |L| ⇔ either κ 4 L or κ∗ 4 L.

Equivalently: κ and κ∗ are the minimal linear orderings of rank
> κ.

For each α we want to find the minimal linear ord. of rank α.

(From these we can get the minimal ideals of Hα+1 of rank α.)
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Minimal linear orderings of rank β = ωδ

Consider an ordinal β of the form ωδ,
and let {βξ : ξ < λ} be an increasing sequence cofinal in β.

Note that ωβ =
∑
ξ∈λ

ωβξ .

Def: Given ε0, ε1 ∈ {+.−}, let ω〈β,ε0,ε1〉 =
∑

ξ∈λε1

(ωβξ)ε0 .

Examples: ω〈ω,+,+〉 ∼ 1 + ω + ω2 + ... = ωω

and ω〈ω,+,−〉 ∼ ... + ω2 + ω + 1.

(Up to equimorphism, ω〈β,ε0,ε1〉 doesn’t depend on the cofinal sequence.)

Theorem

Let L ∈ S and β = ωδ. Then
rk(L) > β ⇔ (∃ε0, ε1 ∈ {+,−}) ω〈β,ε0,ε1〉 4 L

So Fβ = {ω〈β,+,+〉, ω〈β,+,−〉, ω〈β,−,+〉, ω〈β,−,−〉} is the set of
minimal equimorphism types of rank β.

Antonio Montalbán. Equimorphism invariants for scattered linear orderings.



Minimal linear orderings of rank α

Theorem

Let L ∈ S and α have Cantor Normal Form ωα0 + ... + ωαn . Then
rk(L) > α IFF there exist ε0, ..., ε2n+1 ∈ {+,−} such that

ω〈ωα0 ,ε0,ε1〉 · ω〈ωα1 ,ε2,ε3〉 · ... · ω〈ωαn ,ε2n,ε2n+1〉 4 L.

So Fα = {ω〈ωα0 ,ε0,ε1〉 · ... · ω〈ωαn ,ε2n,ε2n+1〉 : ε0, ..., ε2n+1 ∈ {+,−}}
is the set of minimal equimorphism types of rank α.
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Computing representatives for members of I

We say that L is finitely alternating if it is of the form
ω〈ωα0 ,ε0,ε1〉 · ... · ω〈ωαn ,ε2n,ε2n+1〉.

Theorem

We find:

1 The set of minimal elements of Hα \ IL, for each finitely
alternating L, which is a set of finitely alternating linear
orderings.

2 The invariant T(L) for each finitely alternating L.

3 The set of minimal ideals of Hα of rank α, for each α. which
is a set of finitely alternating linear orderings.

Corollary: We can decide whether an ideal in Trα has rank α via
a finite algorithm that compares ordinals and their cofinalities.

(To decide whether a tree T ∈ Tr we still need to be able to compute

cofinalities of ideals of Trα.)
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An application

Corollary

For every computable ordinal α, (Inα,4) is computable.

Corollary

For every α < ωCK
1 ,

there exists a computable transformation lin that assigns a linear
ordering lin(a) to each a ∈ Iα, such that inv(lin(a)) = a.

Theorem

Every linear ordering of Hausdorff rank < ωCK
1 is equimorphic to a

computable one.

Corollary

Every hyperarithmetic linear ordering is equimorphic to a
computable one.

Antonio Montalbán. Equimorphism invariants for scattered linear orderings.



Open Questions

Question: Given a tree with labels in On × {+,−}, is it possible
to decide if it belongs to Tr via a finite manipulation of the
symbols in the tree, using some basic operations on ordinals?

Question: What about computing the invariant of the product of
two linear orderings?

Definition: We say that L is σ-scatteered if it is a countable
union of scattered linear orderings.
Versions of all of Laver’s results were proved for this class, including

Fräıssé’s conjecture.

Question: Can we define invariants of this sort for the class of
σ-scattered linear ordering?

Question: Is it consistent that the class of σ-scattered linear
ordering is the well-founded part of the whole class of linear
orderings?
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