Non-hyp is a spectrum.

Antonio Montalbán. U. of Chicago

(with Noam Greenberg and Theodore A. Slaman) Notre Dame, November 2010 How do we measure

the complexity and information content of a set $X \subseteq \mathbb{N}$? For complexity: we may use deg(X), the Turing degree of X. For information: we may use deg(X), the Turing degree of X.

How do we measure the complexity and information content of a structure \mathcal{A} ? For complexity: we may use $Spec(\mathcal{A}) = \{\mathbf{x} : \mathbf{x} \text{ can enumerate a copy of } \mathcal{A}\}.$ or we may use Σ -definability, or structure-degrees,..) For information: even less clear. one approach: $co-Spec(\mathcal{A}) = \{X: \text{ every copy of } \mathcal{A} \text{ can enumerate } X\}$ $= \{X: X \leq_e \Sigma_1 - tp_{\mathcal{A}}(\bar{a}), \bar{a} \in \mathcal{A}^{<\omega}\}[Knight].$

for $X, Y, Z \subseteq \mathbb{N}$

Flower Graph: Let G_Y be the graph that contains a cycle of length n just for $n \in Y$, and all the cycles intersect at a vertex.

Obs: Z computes a copy of $G_Y \iff Y$ is c.e. in Z. Z computes a copy of $G_{X \oplus \overline{X}} \iff X \leq_T Z$.

def: A has *Turing degree* X if $Spec(A) = \{z : X \leq_T z\}$

def: A has *enumeration degree* Y if $Spec(A) = \{z : Y \text{ is c.e. in } z\}$

Obs: Every stucture \mathcal{A} can enumerate the family of its Σ_1 -types, but not in a given order.

Def: X ⊆ ω can enumerate a family of sets S if there is V c.e. in X with {V^[i] : i ∈ ω} = S.
A codes S ⊆ P(ω) if every copy of A can enumerate S.
(Note that the order among the sets of S does not matter.)

Ex: For $S \subseteq \mathcal{P}(\omega)$, let G_S be the disjoint union of G_Y for $Y \in S$. Then

$$Spec(G_{\mathcal{S}}) = \{ z : z \text{ can enumerate } \mathcal{S} \}.$$

Thm[Slaman-Wehner, 98]: There is a structure \mathcal{A} with $Spec(\mathcal{A}) = \{\mathbf{x} : \mathbf{x} \text{ non-computable}\}.$

Pf: Let $\mathcal{A} = G_{\mathcal{S}_0}$ where \mathcal{S}_0 is the family of finite sets:

$$\mathcal{S}_0 = \{\{n\} \oplus F : n \in \omega, F \subseteq_{finite} \omega, F \neq W_n\}.$$

Open Question: Can a linear ordering have this property?

Def: [Kalimullin] \mathcal{A} is almost computable if $\lambda(Spec(\mathcal{A})) = 1$.

Obs: There are countably many almost computable structures. Because for each such \mathcal{A} , there is an *e* with $\lambda\{X : \{e\}^X \cong \mathcal{A}\} > \frac{3}{4}$, and different structures use different *e*.

Cor: There are sets that compute all almost comp. structures. Furthermore, there are measure 1 many such sets.

Q: [Kalimullin 07] How complex are these sets?

Another indirect way of coding information

Example:

Lemma: (a) If $C \cong \omega$ or $C \cong \omega^*$, it takes 0' to decide which. (b) If $S \leq_T 0'$, then there is a computable sequence $\{C_n\}_{n \in \omega}$ such that $C_n \cong \begin{cases} \omega & \text{if } n \in S \\ \omega^* & \text{if } n \notin S. \end{cases}$ [Ash, Knight 90]

Def: For a graph G = (V, E), and linear order \mathcal{L} , let $\mathcal{L} \cdot G$ be the structure obtained by attaching, to each pair $v, w \in V$,

a linear ordering $\mathcal{L}_{v,w} \cong \begin{cases} \mathcal{L} & \text{ if } (v,w) \in E \\ \mathcal{L}^* & \text{ if } (v,w) \notin E. \end{cases}$

Cor: $Spec(\omega \cdot G) = \{\mathbf{x} : \mathbf{x}' \in Spec(G)\}.$ The information in *G* is coded by the jump of the information in $\omega \cdot G$.

Obs If G_1 is the Slaman-Wehner graph relative to 0', then $Spec(\omega \cdot G_1) = \{\mathbf{x} : \mathbf{x} \text{ non-low}\}.$

An even more indirect way of coding information

Lemma: For α a computable ordinal: (a) If $C \cong \mathbb{Z}^{\alpha} \cdot \omega$ or $C \cong \mathbb{Z}^{\alpha} \cdot \omega^*$, it takes $0^{(2\alpha+1)}$ to decide which. (b) If $S \leq_T 0^{(2\alpha+1)}$, then there is a comp. sequence $\{C_n\}_{n \in \omega}$ such that $C_n \cong \begin{cases} \mathbb{Z}^{\alpha} \cdot \omega & \text{if } n \in S \\ \mathbb{Z}^{\alpha} \cdot \omega^* & \text{if } n \notin S. \end{cases}$ [Ash, Knight 90]

Cor: $Spec(\mathbb{Z}^{\alpha} \cdot \omega \cdot G) = \{ \mathbf{x} : \mathbf{x}^{(2\alpha+1)} \in Spec(G) \}.$ [Goncharov, Harizanov, Knight, McCoy, Miller and Solomon, 05]

Obs If G_{α} is the Slaman-Wehner graph relative to $0^{(2\alpha+1)}$, then $Spec(\mathbb{Z}^{\alpha} \cdot \omega \cdot G_{\alpha}) = \text{non-low}_{(2\alpha+1)}.$

Note: if
$$\alpha = \beta \cdot \omega$$
,
 $\{\mathbf{x} : \mathbf{x} \not\leq_{\mathcal{T}} \mathbf{0}^{(\alpha)}\} \subseteq Spec(\mathbb{Z}^{\alpha} \cdot \omega \cdot G_{\alpha}) \subseteq \{\mathbf{x} : \mathbf{x} \not\leq_{\mathcal{T}} \mathbf{0}^{(\beta)}\}.$

Cor:

The bound for almost comp. structures cannot be hyperarithmetic.

Theorem (Greenberg, M., Slaman – Kalimullin, Nies (Independently))

Every Π_1^1 -random can compute all almost comp. structures.

In particular, Kleene's O can compute all almost comp. structures.

Kleene's O is a Π_1^1 -complete set.

Theorem (Greenberg, M., Slaman)

There is a structure \mathcal{A} with

 $Spec(A) = \{x : x \text{ non-hyperarithmetic}\}$.

Notation: Let ω_1^{ck} be the least non-computable ordinal.

Proposition [Suslin-Kleene] For a set $X \subseteq \omega$, T.F.A.E.:

- X is $\Delta^1_1 = \Sigma^1_1 \cap \Pi^1_1$.
- X is computable in $0^{(\alpha)}$ for some $\alpha < \omega_1^{ck}$.

 $(0^{(\alpha)}$ is the α th Turing jump of 0.)

- $X \in L(\omega_1^{ck}).$
- X = {x : φ(x)}, where φ is a computable infinitary formula.
 (Computable infinitary formulas are 1st order formulas which may contain infinite computable disjunctions or conjunctions.)

A set satisfying the conditions above is said to be hyperarithmetic.

Theorem (Greenberg, M., Slaman)

There is a structure A with $Spec(A) = \{x : x \text{ non-hyperarithmetic}\}$.

Recall: For each $\alpha = \beta \cdot \omega < \omega_1^{c_k}$ we have $\{\mathbf{x} : \mathbf{x} \not\leq_T 0^{(\alpha)}\} \subseteq Spec(\mathbb{Z}^{\alpha} \cdot \omega \cdot G_{\alpha}) \subseteq \{\mathbf{x} : \mathbf{x} \not\leq_T 0^{(\beta)}\}.$

Let \mathcal{A} be the disjoint union of

- $\mathbb{Z}^{\alpha} \cdot \omega \cdot G_{\alpha}$ for each $\alpha < \omega_1^{ck}$, and
- infinitely many copies of $\mathbb{Z}^{\omega_1^{ck}} \cdot \mathbb{Q} \cdot G$, where G is any graph.

Note: If $\mathcal{H} \cong \omega_1^{ck} + \omega_1^{ck} \cdot \mathbb{Q}$ is a Harrison linear order, (i.e. \mathcal{H} computable and every Π_1^1 subset has a least element.) then $\mathbb{Z}^{\mathcal{H}} \cdot \omega = \mathbb{Z}^{\omega_1^{ck} + \omega_1^{ck} \cdot \mathbb{Q}} \cdot \omega = \mathbb{Z}^{\omega_1^{ck}} \cdot \mathbb{Z}^{\omega_1^{ck} \cdot \mathbb{Q}} \cdot \omega = \mathbb{Z}^{\omega_1^{ck}} \cdot \mathbb{Q}$.

Theorem (Greenberg, M., Slaman)

There is a linear order A with $Spec(A) = \{x : x \text{ non-hyp}\}.$

Key lemma [Frolov, Harizanov, Kalimullin, Kudinov, Miller 09] There is a linear order \mathcal{L} such that $Spec(\mathcal{L}) = \{\mathbf{x} : \mathbf{x} \text{ is non-low}_2\}$

Then, in the previous construction,

replace the Slaman-Wehner graph G by \mathcal{L} .