Decidability results Our results

Extensions of Embeddings in the Δ_2^0 Turing Degrees.

Antonio Montalbán. U. of Chicago

> Nanjing, May 2008

Joint work with Rod Downey, Noam Greenberg and Andy Lewis.

Antonio Montalbán. U. of Chicago Extensions of Embeddings in the Δ_2^0 Turing Degrees.

Basic definitions

We let $\mathbf{D}_{(\leq 0')}$ be the set of degrees below 0', and

$$\mathcal{D}_{(\leq 0')} = (\mathbf{D}_{(\leq 0')}, \leq_T, \vee).$$

Question: How does the upper-semi-lattice $\mathcal{D}_{(<0')}$ look like?

Extensions of Embeddings problem

Let \mathcal{L} be a finite language and \mathcal{A} be a \mathcal{L} -structure. Ex: $\mathcal{A} = (\mathbf{D}_{(\leq 0')}, \leq_{\mathcal{T}}, \lor).$

Def: The *extensions of embedding problem* for A is:

Given a pair of finite \mathcal{L} -structures $\mathcal{P} \subseteq \mathcal{Q}$, does every embedding $\mathcal{P} \hookrightarrow \mathcal{A}$ have an extension $\mathcal{Q} \hookrightarrow \mathcal{A}$?

Def: Let $\mathbb{E}^{\mathcal{A}} = \{(\mathcal{P}, \mathcal{Q}) : \text{the answer is YES }\}.$

Question: Is $\mathbb{E}^{\mathcal{A}}$ computable?

Extensions of embeddings vs two-quantifier theroy

Suppose A is an upper-semi-lattice (*usl*).

Lemma: The $\exists - Th(\mathcal{A})$ is decidable \iff The *substructure problem* is decidable i.e. the set of finite usl \mathcal{P} which embed into \mathcal{A} is computable.

Lemma: The $\forall \exists - Th(A)$ is decidable \iff the *multi-extensions of embeddings problem* is decidable

i.e. given usls $(\mathcal{P}, \mathcal{Q}_1, ..., \mathcal{Q}_m)$, it is decidable whether every embedding $\mathcal{P} \hookrightarrow \mathcal{A}$ has an extension $\mathcal{Q}_i \hookrightarrow \mathcal{A}$ for some *i*

Decidability results	Extensions of embeddings
Our results	History

Question: How does the upper-semi-lattice $\mathcal{D}_{(\leq 0')}$ look like?

- $\mathcal{D}_{(\leq 0')}$ is complicated Th $(\mathbf{D}_{(\leq 0')}, \leq_{\mathcal{T}})$ is undecidable. [Epstein 79][Lerman 83]
- Not that complicated $\exists - \operatorname{Th}(\mathbf{D}_{(\leq 0')}, \leq_{\mathcal{T}})$ is decidable. [Kleene, Post '54]

Question: Which fragments of $Th(D_{(\leq 0')}, \leq_T, \lor)$ are decidable?

This question has been widely studied for $\mathcal{D},$ \mathcal{R} and $\mathcal{D}_{(\leq 0')}$ among other structures.

Decidability results

Our results

Question: Which fragments of $Th(\mathbf{D}, \leq_{\mathcal{T}}, \lor, ', 0)$ are decidable?

Extensions of embeddings

Extensions of Embeddings in the Upper-Semi-Lattice $(\mathbf{D}, \leq_{\mathcal{T}}, \lor)$

Extensions of embeddings

Decidability results

Thm: [Lerman 71] Every finite usl embedds as an initial segment of \mathcal{D} .

Def: Given usls $\mathcal{P} \subseteq \mathcal{Q}$, we say that \mathcal{Q} is an *end extension* of \mathcal{P} if $\forall \mathbf{x}, \mathbf{y} \in \mathcal{Q} \ (\mathbf{x} \leq \mathbf{y} \& \mathbf{y} \in \mathcal{P} \implies \mathbf{x} \in \mathcal{P}).$

Thm: [Jockusch Slaman 93] \mathcal{Q} end extension of $\mathcal{P} \Longrightarrow (\mathcal{P}, \mathcal{Q}) \in \mathbb{E}^{(\mathbf{D}, \leq, \vee)}$. i.e Every embedding $\mathcal{P} \hookrightarrow \mathcal{D}$ extends to $\mathcal{Q} \hookrightarrow \mathcal{D}$.

Corollary: $\exists \forall - Th(\mathbf{D}, \leq_T, \lor)$ is decidable. **Proof:** Given $\mathcal{P}, \mathcal{Q}_1, ..., \mathcal{Q}_k$ such that $\mathcal{P} \subseteq \mathcal{Q}_j$, we have that every embedding $\mathcal{P} \hookrightarrow \mathcal{D}$ extends to $\mathcal{Q}_i \hookrightarrow \mathcal{D}$ for some $i \iff$ for some i, \mathcal{Q}_i is an end extension of \mathcal{P} .

Decidability Results in ${\cal R}$

Question: Which fragments of $\operatorname{Th}(\mathcal{R},\leq_{\mathcal{T}},\vee,\wedge)$ are decidable?

 \wedge is the partial function that give the Greatest Lower Bound.

Thm: [Slaman Soare 01] The extension of embeddings problem for $(\mathcal{R}, \leq_{\mathcal{T}})$ is decidable.

Question: Which fragments of $Th(D_{(\leq 0')}, \leq_{\mathcal{T}}, \lor, \land)$ are decidable?

Extensions of Embeddings in the Partial Ordering $(\mathbf{D}_{(\leq 0')}, \leq \tau, 0')$

Decidability results

Thm [Lerman 83]: Every finite poset is an initial segment of $\mathcal{D}_{(\leq 0')}$.

 $\begin{array}{l} \text{Def: Given partial orderings with top element } (\mathcal{P},\leq,1)\subseteq(\mathcal{Q},\leq,1) \\ \text{we say that } \mathcal{Q} \text{ is an } extension \text{ of } \mathcal{P} \text{ if} \\ \forall \textbf{x},\textbf{y}\in\mathcal{Q}(\textbf{x}\leq\textbf{y} \And \textbf{y}\in\mathcal{P}\setminus\textbf{1} \implies \textbf{x}\in\mathcal{P}). \end{array}$

Thm[Lerman Shore 88]: Q end extension of $\mathcal{P} \implies (\mathcal{P}, Q) \in \mathbb{E}^{(\mathbf{D}_{(\leq 0')}, \leq)}$.

Corollary: The $\exists \forall - Th(\mathbf{D}_{(\leq 0')}, \leq_T, 0')$ is decidable.

Extensions of embeddings

Extensions of embeddings below c.e. degrees

Def: Let $\mathbb{E}^{jump} = \{(\mathcal{P}, \mathcal{Q}) \text{ usls: every embedding } h : \mathcal{P} \hookrightarrow \mathcal{D}$ with $h(\mathbf{1}) \equiv_{\mathcal{T}} h(\mathbf{0})'$, has an extension to $\mathcal{Q} \hookrightarrow \mathcal{D} \}$. (\mathcal{P} and \mathcal{Q} have top element $\mathbf{1}$ and bottom element $\mathbf{0}$).

Def: Let $\mathbb{E}^{c.e.} = \{(\mathcal{P}, \mathcal{Q}) \text{ usls: every embedding } h : \mathcal{P} \hookrightarrow \mathcal{D}$ where $h(\mathbf{1})$ is c.e. in $h(\mathbf{0})$, has an extension to $\mathcal{Q} \hookrightarrow \mathcal{D} \}$.

Given \mathcal{P} , let \mathcal{P}^* be $\mathcal{P} \cup \{\mathbf{0}_{P^*}\}$ where $\mathbf{0}_{P^*} < \mathbf{0}_{\mathcal{P}}$.

It looks likely that, if decidable and proofs are relativizable, $(\mathcal{P}, \mathcal{Q}) \in \mathbb{E}^{c.e.} \iff (\mathcal{P}^*, \mathcal{Q}^*) \in \mathbb{E}^{jump} \iff (\mathcal{P}^*, \mathcal{Q}^*) \in \mathbb{E}^{(\mathcal{D}_{(\leq 0')})}.$

End extensions

Thm: [Lerman 83] Every finite usl is an initial segment below any c.e. degree.

Corollary: $(\mathcal{P}, \mathcal{Q}) \in \mathbb{E}^{c.e.} \implies \mathcal{Q}$ end extension of \mathcal{P} .

A degree unlike 0'

Thm:[Slaman Steel 89] There exists c.e. degrees $0 <_T \mathbf{a} <_T \mathbf{b}$ such that $\exists \mathbf{x} <_T \mathbf{b} (\mathbf{x} \lor \mathbf{a} \equiv_T \mathbf{b})$.

Contiguous degrees

Thm: [Downey 87] For every c.e. **b**, there exists c.e. **a** such that $\forall \mathbf{x} \ (\mathbf{x} \lor \mathbf{a} \ge_{wtt} \mathbf{b} \implies \mathbf{x} \ge_{wtt} \mathbf{b}).$

Thm: [Downey 87] There exists a c.e. **b** such that $\forall \mathbf{x} \ (\mathbf{x} \equiv_T \mathbf{b} \implies \mathbf{x} \equiv_{wtt} \mathbf{b}).$

Such degrees **b** are called *strongly contiguous degrees*.

Cor: There exists c.e. degrees $0 <_{\mathcal{T}} a <_{\mathcal{T}} b$ such that

These results extend previous results of [Ladner Sasso 75] for c.e. degrees

Contiguous pairs

Theorem

There exists a c.e. $\mathbf{b} <_T \mathbf{c}$ such that $\forall \mathbf{y} \ (\mathbf{b} \leq_T \mathbf{y} \leq_T \mathbf{c} \implies \mathbf{b} \leq_{wtt} \mathbf{y}).$

Cor: There exists c.e. degrees $0 <_T a <_T b <_T c$ such that

Contiguous pair

Theorem

- For every c.e. **b**, there exists c.e. $\mathbf{a}_0, \mathbf{a}_1$ such that $\forall \mathbf{x} \ (\mathbf{x} \lor \mathbf{a}_0 \ge_{wtt} \mathbf{b} \& \mathbf{x} \lor \mathbf{a}_1 \ge_{wtt} \mathbf{b} \implies \mathbf{x} \ge_{wtt} \mathbf{b}).$
- $\begin{array}{ll} \mbox{Cor:} \mbox{There exists c.e. degrees } 0 <_{\mathcal{T}} \mbox{a} <_{\mathcal{T}} \mbox{b} <_{\mathcal{T}} \mbox{c such that} \\ \ensuremath{\mathbb{A}} \mbox{x} \leq_{\mathcal{T}} \mbox{c} (\mbox{x} \lor \mbox{a}_0 \geq_{\mathcal{T}} \mbox{b} \& \mbox{x} \lor \mbox{a}_1 \geq_{\mathcal{T}} \mbox{b} \& \mbox{x} \swarrow \mbox{z}_{\mathcal{T}} \mbox{b}). \end{array}$

 $\forall \mathbf{a} \in \mathcal{P}, \mathbf{a} \leq \mathbf{b} \ (\mathbf{x} \lor \mathbf{a} \geq \mathbf{b} \implies \mathbf{d} \lor \mathbf{a} \geq \mathbf{b}).$

Theorem

$$(\mathcal{P}, \mathcal{P}[\mathbf{x}]) \in \mathbb{E}^{c.e.} \implies (\mathcal{P}, \mathcal{P}[\mathbf{x}]) \models anti-cupping \ condition.$$

Decidability results Our results Necessary condition Sufficient conditions

The A, B, C, D, E theorem

Theorem

There exist c.e. sets $\mathbf{a}, \mathbf{b}, \mathbf{d}, \mathbf{e}$ all incomparable and $\leq_T \mathbf{c}$ c.e., such that $\forall \mathbf{x} \leq \mathbf{c} \ (\mathbf{x} \lor \mathbf{a} \geq \mathbf{b} \Longrightarrow \mathbf{x} \lor \mathbf{e} \geq \mathbf{d})$.

Multi-1-generic

Theorem

Let \mathcal{P} be any usl. Let $\mathcal{Q} = \mathcal{P}[\mathbf{x}]$ be such that $\forall \mathbf{a}, \mathbf{b} \in \mathcal{P} \ (\mathbf{x} \lor \mathbf{a} \ge \mathbf{b} \iff \mathbf{a} \ge \mathbf{b})$. Then $(\mathcal{P}, \mathcal{Q}) \in \mathbb{E}^{c.e.}$.

Lemma

Let C be c.e. and $A_0, ..., A_k <_T C$. There exists $G \leq_T C$ that is 1-generic relative to all A_i .

No-least-join Theorem

Theorem

Let **c** be c.e., $\mathbf{a}, \mathbf{b} <_T \mathbf{c}$ and $\mathbf{a} \not\leq_T \mathbf{b}$. Then, there exists $\mathbf{x} \leq \mathbf{c}$, such that $\mathbf{x} \lor \mathbf{a} \geq \mathbf{b}$ and $\mathbf{x} | \mathbf{b}$.

The difference spectrum

Definition

$$\mathbf{b} - \mathbf{a} = \{ \mathbf{x} \in \mathbf{D} : \mathbf{x} \lor \mathbf{a} \ge_{\mathcal{T}} \mathbf{b} \}.$$

- $\mathbf{b} \mathbf{a}$ is never an upper cone unless $\mathbf{a} = 0$.
- **b a** contains minimal degrees, minimal pairs, 1-generics.

• [JS]
$$\mathbf{b} - \mathbf{a} \subseteq \mathbf{d} - \mathbf{e} \iff \mathbf{e} \ge \mathbf{a} \& \mathbf{d} \ge \mathbf{e} \lor \mathbf{b}$$
 or $\mathbf{e} \ge \mathbf{d}$

Definition

$$\mathbf{b} -_{\mathbf{c}} \mathbf{a} = \{ \mathbf{x} \leq_{\mathcal{T}} \mathbf{c} : \mathbf{x} \lor \mathbf{a} \geq_{\mathcal{T}} \mathbf{b} \}.$$

- $\exists a < b < c$ all c.e. s.t. $b -_c a$ is the upper cone above b.
- If $\mathbf{a}, \mathbf{b} < \mathbf{c}$, \mathbf{c} , c.e. and $\mathbf{a}|\mathbf{b}$, then $\mathbf{b} -_{\mathbf{c}} \mathbf{a}$ is never an upper cone.
- $\exists c \text{ c.e. s.t. } b -_c a \subseteq d -_c e \implies e \ge a \& d \ge e \lor b \text{ or } e \ge d$

Non-low₂ cupping

Thm:[Posner 77] Let $0 <_T \mathbf{a} <_T \mathbf{b}$ where **b** is High. There exists $\mathbf{x} <_T \mathbf{b}$, $\mathbf{x} \lor \mathbf{a} \equiv_T \mathbf{b}$

Theorem

Let $0 <_T \mathbf{a} <_T \mathbf{b}$ where \mathbf{b} is non-low₂. There exists $\mathbf{x} <_T \mathbf{b}$, $\mathbf{x} \lor \mathbf{a} \equiv_T \mathbf{b}$

$\forall \exists$ theory is hard

Let
$$\mathcal{P} = \{0 < \mathbf{a} < \mathbf{b} < \mathbf{c} < \mathbf{0}'\} \subset \mathcal{D}_{(\leq 0')}$$
.
Let $\mathcal{Q}_0 = \mathcal{P} \cup \{\mathbf{x}_0\}$ where $0 < \mathbf{x}_0 < \mathbf{b}$ and $\mathbf{a} \lor \mathbf{x}_0 = \mathbf{b}$.
Let $\mathcal{Q}_1 = \mathcal{P} \cup \{\mathbf{x}_0\}$ where $\mathbf{b} < \mathbf{x}_1 < \mathbf{0}'$ and $\mathbf{a} \lor \mathbf{x}_1 = \mathbf{0}'$.

Obs: $(\mathcal{P}, \mathcal{Q}_0) \notin \mathbb{E}^{jump}$ and $(\mathcal{P}, \mathcal{Q}_1) \notin \mathbb{E}^{jump}$ But, every embedding of \mathcal{P} , either extends to $\mathcal{Q}_0 \hookrightarrow \mathcal{D}$ or to $\mathcal{Q}_1 \hookrightarrow \mathcal{D}$. Because, either **b** is non-low₂, or **0**' is non-low₂ over **b**.