From Büchi to Borel Structures.

Antonio Montalbán. U. of Chicago

EMU workshop - CUNY, August 2008

Joint work with Bakh Khoussainov, Greg Hjorth and Andre Nies.

1 Büchi structures

- Definitions
- Lowenheim-Skolem

2 Borel Structures

- Definitions and history
- Results
- Questions

Automata

An automaton M is given by

- a finite *alphabet* Σ
- a finite set of *states* S
- a nonempty subset $F \subseteq S$, the set of *accepting states*
- a start state $s_0 \in S$
- a transition table $\Delta \subseteq S \times \Sigma \times S$.

A run on a string $x \in \Sigma^{<\omega}$ is a string $\rho \in S^{|x|}$ s.t. $\rho(0) = s_0$ and $\forall n$ $(\rho(n), x(n), \rho(n+1)) \in \Delta$.

M accepts x if there exists a run ρ on x that ends in *F*.

L(M) is the set of strings accepted by M.

 $L \subseteq \Sigma^{<\omega}$ is *regular* if L = L(M) for some automata M.

Automatic Structures

An automatic presentation of a (relational) structure \mathcal{A} is (D, R_1, \ldots, R_n) where • the domain $D \subseteq \Sigma^{<\omega}$ is regular and • the relations $R_i \subseteq (\Sigma^{<\omega})^n$ are regular.

such that \mathcal{A} is isomorphic to (D, R_1, \ldots, R_n) .

Note that an *n*-tuple of strings in $\Sigma^{<\omega}$ can be viewed as one sting in $(\Sigma^n)^{<\omega}$ with the use of extra blank symbols.

Examples

Examples:

- (ℕ, +),
- (ℚ, ≤),
- the interval Boolean algebra of ω ,
- every finitely generated abelian group, etc...

FA-presentable structures have nice properties:

- They are decidable.
- They are closed under interpretations with first-order formulas.

Open question: Is $(\mathbb{Q}, +)$ automatic?

Büchi structures

A Büchi presentation of \mathcal{A} is a tuple of relations

$$\mathcal{S} = (D, E, R_1, \ldots, R_n),$$

where $\mathcal{A} \cong \mathcal{S}/\mathcal{E}$ and

- $D \subseteq 2^{\omega}$ is a set (the domain),
- E is an equivalence relation on D,
- R_1, \ldots, R_n are relations compatible with E.
- all, D, E and the R_i are recognizable by Büchi automata.

The presentation S is injective if E is the identity on D.

Büchi languages

An Büchi automaton M is given by

- a finite alphabet Σ
- a finite set of *states S*
- a nonempty subset $F \subseteq S$, the set of *accepting states*
- a start state $s_0 \in S$
- a transition table $\Delta \subseteq S \times \Sigma \times S$.

A run on $x \in \Sigma^{\omega}$ is a map $\rho : \mathbb{N} \to S$ such that $\rho(0) = s_0$ and $\forall n$ $(\rho(n), x(n), \rho(n+1)) \in \Delta.$

M accepts $x \in \Sigma^{\omega}$ if \exists run ρ on x s.t. $\exists^{\infty} n \ \rho(n) \in F$.

L(M) is the set of strings accepted by M. $L \subseteq \Sigma^{\omega}$ is *Büchi* if L = L(M) for some Büchi automata M.

Examples - Properties

Examples:

- $(\mathbb{R}, +, \leq)$,
- $(2^{\omega}, \leq_{lex}),$
- Monadic second order logic $(\mathbb{N}, \mathcal{P}(\mathbb{N}); Succ, \in)$,
- $(\mathcal{P}(\mathbb{N})/\equiv^*,\subseteq^*,\cup,\cap,\neg)$ using equivalence

Büchi-presentable structures also have decidable theories.

- Do we have a Lowenheim-Skolem theorem?
- Does $(\mathcal{P}(\mathbb{N})/\equiv^*,\subseteq^*)$ have an injective presentation? (open)
- Does every Büchi structure have an injective presentation?
- Given to isomorphic Büchi structures,

how complicated can the isomorphism be? (open)

- How hard is it to tell if two Büchi structures are isomorphic?

(Open)

Loops

Definition (KHMN)

- A Σ -loop is a tuple $G = (V, v_0, E, I)$, where V is a finite set,
- $v_0 \in V$ is the *initial vertex*,
- E is the edge function $E: V \rightarrow V$, and
- *I* is the labeling function $I: V \to \Sigma$.

Loops represent infinite eventually periodic words.

Let $M = (\Sigma, S, F, s_0, \Delta)$ be an automata as definition before.

A *run* of **M** on a
$$\Sigma$$
-loop *G* is a sequence $\mathbf{r} = (v_0, s_0), (v_1, s_1), ..., (v_k, s_k) \in (V \times S)^{<\omega}$,

$$v_{i+1} = E(v_i)$$
 and $(s_i, l(v_i), s_{i+1}) \in \Delta$,

and there is a unique *i* so that $(v_i, s_i) = (v_k, s_k)$.

M accepts $x \in \Sigma^{\omega}$ if \exists run ρ on x s.t. $\exists n \ (i \leq n \leq k \& \rho(n) \in F)$.

L(M) is the set of strings accepted by M. $L \subseteq \Sigma^{\omega}$ is *Loop automatic* if L = L(M) for some Loop automata M.

Definitions Lowenheim-Skolem

Loop-automatic structures

Examples:

- all automatic structures,
- $(\mathbb{Q},+,\leq)$, not known to be automatic
- the atomless Boolean algebra, known to be NOT automatic

Loop automatic structures also have nice properties:

- They are decidable.
- They are closed under interpretations with first-order formulas.

Lowenheim-Skolem

Theorem (KHMN: Löwenheim-Skolem for Büchi structures)

Every Büchi presentable structure has a loop-automatic elementary substructure.

Idea of Pf: The set of eventually periodic words of a Büchi structure is an elementary substructure. This uses the fact that every non-empty Büchi set contains an eventually periodic word.

The class of *Borel subsets of* \mathbb{R}^n is the smallest σ -algebra containing all the open sets.

i.e., it is the class sets is generated from the open sets using countable unions, countable intersections and complements.

Borel structures

A Borel presentation of \mathcal{A} is a tuple of relations

$$\mathcal{S} = (D, E, R_1, \ldots, R_n),$$

where $\mathcal{A} \cong \mathcal{S}/\mathcal{E}$ and

- $D \subseteq 2^{\omega}$ is a set (the domain),
- E is an equivalence relation on D,
- R_1, \ldots, R_n are relations compatible with E.
- all, D, E and the R_i are Borel.

The presentation S is injective if E is the identity on D.

Borel strucutres

Examples:

- All Büchi structures.
- $(\mathbb{R}, +, \times, exp, \leq), (\mathbb{C}, +, \times)$
- The Torus $S^1 imes S^1$ with its two rotations,
- Second order arithmetic $(\mathbb{N}, \mathcal{P}(\mathbb{N}); +, \times, \leq, \in)$,
- The Boolean algebra (P(N)/ ≡*, ⊆*, ∪, ∩, ¬) using equivalence

In contrast,

 (ω_1, \leq) is not Borel presentable.

The first one who studied Borel Structures was H. Friedman 1978

Theorem [F78]: Every countable theory with infinite models has an uncountable injective Borel model.

He also looked at the language extended with quantifiers

- For all but countably many x ...
- For every x in a co-meager set ...
- For every x in a full-meassure set ...

and studied axiomatizations, completeness, decidability, etc... (See papers by Steinhorn.)

Borel Linear orderings

Write $\mathcal{A} \preccurlyeq \mathcal{B}$ if the LO \mathcal{A} embeds in \mathcal{B} .

Theorem [Harrington Shelah]: For every Borel LO \mathcal{A} , there exists $\xi < \omega_1$ such that $\mathcal{A} \preccurlyeq 2^{\xi}$. **Corollary:** No Borel LO contains a copy of ω_1 nor of ω_1^* .

Theorem [Louveau 89; Marker]: For every Borel LO \mathcal{A} and $\xi < \omega_1$ either $\mathcal{A} \preccurlyeq 2^{\omega \cdot \xi}$ or $2^{\omega \cdot \xi+1} \preccurlyeq \mathcal{A}$.

Theorem [Louveau Saint-Raymond 90]: (hyperproj. determinancy) The Borel suborderings of \mathbb{R}^{ω} are well-quasi-ordered under \preccurlyeq .

There is also work done on Borel partial orderings [Harrington, Marker, Shelah 88] [Kanovei 98], etc... Büchi structures Borel Structures Questions

The Basic Lemma

Lemma (Basic Lemma)

Let $\mathcal{B} = (\mathcal{P}(\mathbb{N}), \subseteq)$. Each isomorphism between two Borel presentations of \mathcal{B} has a Borel graph.

Proof.

- Suppose Φ : $(\mathcal{P}(\mathbb{N}), \subseteq) \cong (A, E, \leq)/E$.
- Let $[a_n]_E = \Phi(\{n\}).$
- Then $\Phi(X) = [b]_E \Leftrightarrow \forall n (n \in X \leftrightarrow a_n \leq b).$
- This is a ctble intersection of Borel relations, hence Borel too.

Theorem

There is a Büchi structure A with no injective Borel presentation.

Proof. The signature consists of binary predicates \leq , R and unary predicate U.

Recall that $\mathcal{B} = (\mathcal{P}(\mathbb{N}), \subseteq)$ and $\mathcal{B}^* = (\mathcal{P}(\mathbb{N})/=^*, \leq)$. Let \mathcal{A} be the disjoint sum of \mathcal{B} and \mathcal{B}^* as partial orders. Let $U^{\mathcal{A}}$ the left side and let $\mathcal{R}^{\mathcal{A}}$ be the projection $\mathcal{B} \mapsto \mathcal{B}^*$.

The Büchi presentation is $(\mathcal{B}_0 \sqcup \mathcal{B}_1, E, \leq, \mathcal{B}_0, S)$, where

- *E* is identity on the left and $=^*$ on the right,
- S is the natural bijection between the two copies of \mathcal{B} .

To see that ${\cal A}$ has no injective Borel representation, we need a fact from descriptive set theory.

Fact: There is no Borel function $F: 2^{\omega} \to \mathbb{R}$ such that for each $X, Y \subseteq \omega$

$$X =^* Y \Leftrightarrow F(X) = F(Y).$$

Now assume that $S = (D, \leq', U', R')$ is an injective Borel presentation of A. Let Φ be an isomorphism and G be the restriction of Φ to \mathcal{B}_0 , which is Borel by the Basic Lemma. Then,

$$R'(G(X)) = R'(G(Y)) \quad \Leftrightarrow \quad \Phi(R^{\mathcal{A}}(X)) = \Phi(R^{\mathcal{A}}(Y))$$
$$\Leftrightarrow \quad R^{\mathcal{A}}(X) = R^{\mathcal{A}}(Y)$$
$$\Leftrightarrow \quad X =^* Y.$$

contrary to the fact from descriptive set theory.

Borel categoricity

A Borel structure is *Borel categorical* if any two Borel presentations of it are Borel isomorphic.

Example

- The Boolean algebra $(\mathcal{P}(\mathbb{N}),\subseteq)$
- The linear ordering (\mathbb{R},\leq).

Theorem

There are two Büchi presentations of $(\mathbb{R}, +)$ that are not Borel isomorphic.

Borel Categoricity

Theorem

There are two Büchi presentations of $(\mathbb{R}, +)$ that are not Borel isomorphic.

Proof: Consider $(\mathbb{R}, +)$ and $(\mathbb{R}, +) \times (\mathbb{R}, +)$.

They are isomorphic because they are both \mathbb{Q} -vector spaces of dimension 2^{\aleph_0} . They are NOT Borel isomorphic because any Borel isomorphism between Polish groups must be a homeomorphism.

Corollary

The isomorphism problem for Büchi structures is not a provably in ZF Σ_2^1 relation on numbers

proof: $(\mathbb{R}, +)$ and $(\mathbb{R}, +) \times (\mathbb{R}, +)$ are isomorphic in any model of ZFC. But they're NOT isom. in Shelah generic extension with sets all measurable. Provably Σ_2^1 relations are absolute for these types of models.

Uncountable Languages

Theorem

There is an (unctble) Borel theory with no Borel completion.

Idea of the Pf: The language has a constant c_A for each $A \subseteq \omega$, and a unary predicate U.

The axioms say that the set

$$\{A \subseteq \omega : U(c_A) \text{ holds}\}$$

is a non-principal ultrafilter in ω .

We know there are no Borel non-pricipal ultrafilters.

Büchi structures Borel Structures Questions

Uncountable Languages

Theorem

There is a complete (unctble) Borel theory with no Borel model.

Does $(\mathcal{P}(\mathbb{N})/\equiv^*,\subseteq^*)$ have an injective Borel presentation?

What are the possible Borel dimensions?

The Borel dimension of a Borel structure is the number of non-Borel-isomorphic Borel presentations of the structure.

What is the complexity of the isomorphism problem for Büchi and for Borel structures?