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Spector’'s Theorem.

T heorem:[Spector '55] Every hyperarithmetic well
ordering is isomorphic to a computable one.

Definition:

e The Turing degree of a linear ordering X =
(X, <), with X Cw, is
deg(X) @ deg(<y,)
e A computable (hyperarithmetic) linear or-
dering is a linear ordering of computable (hy-
perarithmetic) degree.

e A computable (hyperarithmetic) well order-
ing is a well ordering (X,<x) that is com-
putable (hyperarithmetic) as a linear ordering.

e The order type of a computable well ordering

IS @ computable ordinal.

e w{H is the least non-computable ordinal.



Hyperarithmetic sets.

Proposition: [Suslin-Kleene, Ash]
For a set X C w, the following are equivalent:

e X is A1 =3X1NMNJ.
e X is computable in 0(®) for some a < w{kK.
(0(®) is the ath Turing jump of 0.)
e X = {z : ¢o(x)}, where ¢ is a computable
infinitary formula.
(Computable infinitary formulas are 1st order formulas

which may contain infinite computable disjunctions or
conjunctions.)

A set satisfying the conditions above is said to
be hyperarithmetic.

In particular, every computable, AO, and arith-
metic set is hyperarithmetic.



Theorem:[Spector 1955] Every hyperarithmetic well or-
dering is isomorphic to a computable one.

Spector’s theorem.

Spector’'s theorem doesn’'t directly extend to
linear orderings:

Not every hyperarithmetic linear ordering is iso-
morphic to a computable one.

Theorem: Thereis a linear ordering of Turing
degree a which does not have a computable
copy if

e 2/ >1 0"; [Lerman '81]
e ais c.e. and a #7 0; [Jockusch, Soare '91]
e O<ra<o0; [Downey '98][Seetapun]
e a£7 0. [Knight '2000]

But this is not the only way we could extend
Spector’s theorem to linear orderings.



Theorem:[Spector 1955] Every hyperarithmetic well or-
dering is isomorphic to a computable one.

Our main result

Definition:
- Given linear orderings A and B, we say
that A embeds in B if there is a strictly
increasing map f: A— B. We write A < B.
- A and B are equimorphic if A < B and
B <A We write A~ B.

Example:
wt+wtwt+w+r ~ Wt wtwttwt-

Observation: If « is an ordinal and £ ~ «a,
then L is isomorphic to o.

Proof: L <a == L is an ordinal and L < a.

a<L — a<L and hence £ £ qa. H

Theorem: Every hyperarithmetic linear order-
Ing is equimorphic to a recursive one.




Hausdorff rank

Definition:

e Given a l.o. L, we define another l.o. [/
by identifying the elements of £ which have
finitely many elements in between.

e Then we define £0= £, cotl= (£%)/, and
take direct limits when « is a limit ordinal.

e rk(L), the Hausdorff rank of L, is the least
a such that £% is finite.

rk(w) =rk(Z) = 1, rk(w®) = a,
‘k(Z+72Z+7Z+---) =2, rk(Q) =

(where Z and Q are the integers and the rationals)

Examples:

Observation: If A < B, then rk(A) < rk(B).
Therefore, A~ B = rk(A) = rk(B)

Proposition:[Cantor, Hausdorff] For a countable
l.o. L, the following are equivalent

e QX L,
e L is not equimorphic to Q,
o rk(L) < wy.



Hausdorff rank

A l.o. Lsuch that Q £ £ is said to be scattered.

Lemma: If £ is a hyperarithmetic scattered
linear ordering, then rk(£) < w{X.
Proof: A standard overspill argument.

Theorem: If L is scattered then
rk(£) < w§{E <= L is equimorphic to a
computable linear ordering.

Proof of «: Use the lemma and the observation above.

Proof of our main theorem using the theorem
above:

Let £ be a hyperarithmetic linear ordering. If Q < C,
then £ ~ Q. Otherwise, rk(£) < w{X, and hence L is

equimorphic to a computable linear ordering.



Equimorphism types

Definition: Let L be the partial ordering of
equimorphism types of countable linear order-
ings, ordered by embeddablity.

Theorem: [Fraisé’s Conjecture '48; Laver '71]

L is a well partial ordering.
( i.e., L has no infinite descending )
sequences and no infinite antichains.

Also, for every scattered x € L,
{yeL:y<x}is countable.

Definition: Let L, be the restriction of L to
the linear orderings of rank < a.

Theorem: For every ordinal «,

a < w?K <— Lo IS computably presentable.



Very General Idea of the proof

Definition: Given a countable subset S =
{Log,L1,..-} CL let

F(+,5) = Lo+ Lo+ L)+ Lo+ L1+ L)+
and

F(—,8) =4+ (Ly+L1+Lo)+(L14+Lo)+ Lp.

(F is well defined on sets of equimorphism types.)

Definition: By transfinite recursion on o we

define H, C L:
- Ho = {1},

B<a

We let H = | H, be the class of h-indecomposables.
Observe that H, = HNL,.

Theorem:[Laver '71] Every scattered countable
linear ordering is equimorphic to a finite sum
of h-indecomposables.

(So, it is enough to prove that if £ is h-indec. and
rk(£) < w§E, then L is equimorphic to a computable 1.0.)



Very General Idea of the proof

By computable transfinite recursion we build:

e (Hy,<,), @a computable presentation of Hy;

e a computable family {£* : z € Hga}, such
that £% is a computable linear ordering in the
equimorphism type corresponding to x.

Key points:
e If I is the downward closure of S C I, then

F(+,5) ~ F(+,1).

(downward closed subset of H are called ideals)
e F' induces a bijection between

{+,—} x{I: 1 ideal of Hg}, and Hg,y.

e Every ideal I of Hﬁ is determined by the set
of minimal elements of Hﬁ ~. I, which is an
antichain, and hence is finite because HB IS a

well partial ordering.

Problem: Recognize Hg inside Hg4 1.
Solution: Deeper understanding of the struc-

ture of Hﬁ; Signed Trees.



