Up to equimorphism, hyperarithmetic is computable.

Antonio Montalbán. Cornell University.

 $\verb|www.math.cornell.edu/\sim| antonio|$

Spector's Theorem.

Theorem:[Spector '55] Every hyperarithmetic well ordering is isomorphic to a computable one.

Definition:

- The *Turing degree* of a linear ordering $\mathcal{X}=\langle X,\leq_X \rangle$, with $X\subseteq \omega$, is
 - $\deg(X) \oplus \deg(\leq_X)$
- A computable (hyperarithmetic) linear ordering is a linear ordering of computable (hyperarithmetic) degree.
- A computable (hyperarithmetic) well ordering is a well ordering $\langle X, \leq_X \rangle$ that is computable (hyperarithmetic) as a linear ordering.
- The order type of a computable well ordering is a computable ordinal.
- ullet ω_1^{CK} is the least non-computable ordinal.

Hyperarithmetic sets.

Proposition: [Suslin-Kleene, Ash]

For a set $X \subseteq \omega$, the following are equivalent:

- $X \text{ is } \Delta_1^1 = \Sigma_1^1 \cap \Pi_1^1$.
- X is computable in ${\tt O}^{(\alpha)}$ for some $\alpha < \omega_1^{CK}$. $({\tt O}^{(\alpha)}$ is the α th Turing jump of 0.)
- $X = \{x : \varphi(x)\}$, where φ is a computable infinitary formula.

(Computable infinitary formulas are 1st order formulas which may contain infinite computable disjunctions or conjunctions.)

A set satisfying the conditions above is said to be *hyperarithmetic*.

In particular, every computable, Δ_2^0 , and arithmetic set is hyperarithmetic.

Theorem:[Spector 1955] Every hyperarithmetic well ordering is isomorphic to a computable one.

Spector's theorem.

Spector's theorem doesn't directly extend to linear orderings:

Not every hyperarithmetic linear ordering is isomorphic to a computable one.

Theorem: There is a linear ordering of Turing degree a which does not have a computable copy if

- $\mathbf{a}'' >_T 0''$; [Lerman '81]
- a is c.e. and $a \not\equiv_T 0$; [Jockusch, Soare '91]
- $0 <_T a < 0'$; [Downey '98][Seetapun]
- $\mathbf{a} \not\equiv_T \mathbf{0}$. [Knight '2000]

But this is not the only way we could extend Spector's theorem to linear orderings.

Theorem:[Spector 1955] Every hyperarithmetic well ordering is isomorphic to a computable one.

Our main result

Definition:

- Given linear orderings \mathcal{A} and \mathcal{B} , we say that \mathcal{A} embeds in \mathcal{B} if there is a strictly increasing map $f: \mathcal{A} \hookrightarrow \mathcal{B}$. We write $\mathcal{A} \preccurlyeq \mathcal{B}$.
- \mathcal{A} and \mathcal{B} are *equimorphic* if $\mathcal{A} \preccurlyeq \mathcal{B}$ and $\mathcal{B} \preccurlyeq \mathcal{A}$. We write $\mathcal{A} \sim \mathcal{B}$.

Example:

$$\omega + \omega^* + \omega + \omega^* + \cdots \sim \omega^* + \omega + \omega^* + \omega + \cdots$$

Observation: If α is an ordinal and $\mathcal{L} \sim \alpha$, then \mathcal{L} is isomorphic to α .

Proof: $\mathcal{L} \preccurlyeq \alpha \implies \mathcal{L}$ is an ordinal and $\mathcal{L} \leq \alpha$. $\alpha \preccurlyeq \mathcal{L} \implies \alpha \leq \mathcal{L}$ and hence $\mathcal{L} \cong \alpha$.

Theorem: Every hyperarithmetic linear ordering is equimorphic to a recursive one.

Hausdorff rank

Definition:

- Given a l.o. \mathcal{L} , we define another l.o. \mathcal{L}' by identifying the elements of \mathcal{L} which have finitely many elements in between.
- Then we define $\mathcal{L}^0 = \mathcal{L}$, $\mathcal{L}^{\alpha+1} = (\mathcal{L}^{\alpha})'$, and take direct limits when α is a limit ordinal.
- $rk(\mathcal{L})$, the *Hausdorff rank* of \mathcal{L} , is the least α such that \mathcal{L}^{α} is finite.

Observation: If $A \leq B$, then $rk(A) \leq rk(B)$. Therefore, $A \sim B \implies rk(A) = rk(B)$

Proposition: [Cantor, Hausdorff] For a countable l.o. \mathcal{L} , the following are equivalent

- $\mathbb{Q} \not\preceq \mathcal{L}$,
- \mathcal{L} is not equimorphic to \mathbb{Q} ,
- $rk(\mathcal{L}) < \omega_1$.

Hausdorff rank

A l.o. \mathcal{L} such that $\mathbb{Q} \not\preccurlyeq \mathcal{L}$ is said to be *scattered*.

Lemma: If \mathcal{L} is a hyperarithmetic scattered linear ordering, then $\mathrm{rk}(\mathcal{L}) < \omega_1^{CK}$.

Proof: A standard overspill argument.

Theorem: If \mathcal{L} is scattered then

 $\operatorname{rk}(\mathcal{L}) < \omega_1^{CK} \iff \mathcal{L} \text{ is equimorphic to a computable linear ordering.}$

Proof of ←: Use the lemma and the observation above.

Proof of our main theorem using the theorem above:

Let \mathcal{L} be a hyperarithmetic linear ordering. If $\mathbb{Q} \preccurlyeq \mathcal{L}$, then $\mathcal{L} \sim \mathbb{Q}$. Otherwise, $\mathrm{rk}(\mathcal{L}) < \omega_1^{CK}$, and hence \mathcal{L} is equimorphic to a computable linear ordering.

Equimorphism types

Definition: Let \mathbb{L} be the partial ordering of equimorphism types of countable linear orderings, ordered by embeddablity.

Theorem: [Fraïsé's Conjecture '48; Laver '71] \mathbb{L} is a *well partial ordering*. (i.e., \mathbb{L} has no infinite descending sequences and no infinite antichains.) Also, for every scattered $x \in \mathbb{L}$, $\{y \in \mathbb{L} : y \preccurlyeq x\}$ is countable.

Definition: Let \mathbb{L}_{α} be the restriction of \mathbb{L} to the linear orderings of rank $\leq \alpha$.

Theorem: For every ordinal α , $\alpha < \omega_1^{CK} \iff \mathbb{L}_{\alpha}$ is computably presentable.

Very General Idea of the proof

Definition: Given a countable subset $S = \{\mathcal{L}_0, \mathcal{L}_1, ...\} \subseteq \mathbb{L}$ let

$$F(+,S) = \mathcal{L}_0 + (\mathcal{L}_0 + \mathcal{L}_1) + (\mathcal{L}_0 + \mathcal{L}_1 + \mathcal{L}_2) + \cdots$$
 and

$$F(-,S) = \cdots + (\mathcal{L}_2 + \mathcal{L}_1 + \mathcal{L}_0) + (\mathcal{L}_1 + \mathcal{L}_0) + \mathcal{L}_0.$$
 (F is well defined on sets of equimorphism types.)

Definition: By transfinite recursion on α we define $\mathbb{H}_{\alpha} \subset \mathbb{L}$:

$$- \mathbb{H}_0 = \{1\},$$

$$- \mathbb{H}_{\alpha} = \{ F(+,S), F(-,S) : S \subseteq \bigcup_{\beta < \alpha} \mathbb{H}_{\beta} \} \cup \{ \mathbf{1} \}.$$

We let $\mathbb{H} = \bigcup \mathbb{H}_{\alpha}$ be the class of *h*-indecomposables. Observe that $\mathbb{H}_{\alpha} = \mathbb{H} \cap \mathbb{L}_{\alpha}$.

Theorem:[Laver '71] Every scattered countable linear ordering is equimorphic to a finite sum of h-indecomposables.

(So, it is enough to prove that if \mathcal{L} is h-indec. and $\mathrm{rk}(\mathcal{L}) < \omega_1^{CK}$, then \mathcal{L} is equimorphic to a computable l.o.)

Very General Idea of the proof

By computable transfinite recursion we build:

- $\langle H_{\alpha}, \leq_{\alpha} \rangle$, a computable presentation of \mathbb{H}_{α} ;
- a computable family $\{\mathcal{L}^x : x \in H_\alpha\}$, such that \mathcal{L}^x is a computable linear ordering in the equimorphism type corresponding to x.

Key points:

• If I is the downward closure of $S \subset \mathbb{L}$, then $F(+,S) \sim F(+,I)$.

(downward closed subset of \mathbb{H} are called *ideals*)

F induces a bijection between

$$\{+,-\} \times \{I : I \text{ ideal of } \mathbb{H}_{\beta}\}, \text{ and } \mathbb{H}_{\beta+1}.$$

• Every ideal I of \mathbb{H}_{β} is determined by the set of minimal elements of $\mathbb{H}_{\beta} \smallsetminus I$, which is an antichain, and hence is <u>finite</u> because \mathbb{H}_{β} is a well partial ordering.

Problem: Recognize \mathbb{H}_{β} inside $\mathbb{H}_{\beta+1}$.

Solution: Deeper understanding of the struc-

ture of \mathbb{H}_{β} ; Signed Trees.