Embedding Jump Upper Semilattices into the Turing Degrees.

Antonio Montalbán. Cornell University. **Definition:** A *partial jump upper semilattice* (PJUSL) is a structure

$$\mathcal{J}=\langle J,\leq_{\mathcal{J}},\cup,\mathfrak{j}\rangle$$

- $\langle J, \leq_{\mathcal{J}} \rangle$ is a partial ordering.
- $x \cup y$ is the least upper bound of x and y.
- $x <_{\mathcal{J}} \mathfrak{j}(x)$.
- $x \leq_{\mathcal{J}} y \implies \mathfrak{j}(x) \leq_{\mathcal{J}} \mathfrak{j}(y).$

A jump upper semilattice (JUSL) is a PJUSL where j and \cup are total operations. A jump partial ordering (JPO) is a PJUSL

Example: The structure of Turing Degrees.

where j is total but \cup is undefined.

$$\mathcal{D} = \langle \mathbf{D}, \leq_T, \vee, ' \rangle.$$

Question: Which PJUSLs can be embedded in \mathcal{D} ?

Theorem[Kleene-Post, 54]: Every finite upper semilattice can be embedded in \mathcal{D} .

Theorem[Sacks, 61]: Every partial ordering, of size \aleph_1 with the countable predecessor property can be embedded in \mathcal{D} .

Theorem[Abraham-Shore, 86]: Every upper semilattice of size \aleph_1 , with the countable predecessor property, can be embedded in \mathcal{D} as an initial segment.

Theorem[Hinman-Slaman, 91]: Every countable JPO, $\langle P, \leq, \mathfrak{j} \rangle$, can be embedded in \mathcal{D} . Known Results.

Question: Which fragments of $Th(\mathbf{D}, \leq_T, \lor, \prime)$ are decidable?

- ► [Shmerl] $\exists \forall \exists - Th(\mathbf{D}, \leq_T)$ is undecidable.
- ► [Hinman-Slaman, 91] $\exists - Th(\mathbf{D}, \leq_T, ')$ is decidable.

Theorem: Every countable PJUSL, $\langle J, \leq_{\mathcal{J}}, \lor, \mathfrak{j} \rangle$, can be embedded into \mathcal{D} .

Corollary: $\exists - Th(\mathbf{D}, \leq_T, \lor, \prime)$ is decidable.

Proof: Essentially, for an \exists -formula φ ,

 $\langle \mathbf{D}, \leq_T, \vee, ' \rangle \models \varphi \iff \varphi$ is not obviously false.

i.e. It does not contradict the axioms of PJUSL.

Theorem[Shore-Slaman, to appear]: $\forall \exists - Th(\mathbf{D}, \leq_T, \lor, \prime)$ is undecidable.

Every countable PJUSL, $\mathcal{J} = \langle J, \leq_{\mathcal{J}}, \lor, \mathfrak{j} \rangle$, is embeddable in \mathcal{D} . Outline of the proof:

Definition: A Jump Hierarchy (JH) over \mathcal{J} is a map $H: J \to \omega^{\omega}$ s.t., for all $x, y \in P$,

- $\mathcal{J} \leq_T H(x);$
- if $x <_{\mathcal{J}} y$ then $H(x)' \leq_T H(y)$.
- $\bigoplus_{x \leq \mathcal{J}^y} H(x) \leq_T H(y);$

Theorem: Every countable PJUSL which supports a JH can be embedded in \mathcal{D} .

Proof: Forcing Construction.

Every countable PJUSL, $\mathcal{J} = \langle J, \leq_{\mathcal{J}}, \lor, \mathfrak{j} \rangle$, is embeddable in \mathcal{D} . Outline of the proof:

Example: [Harrison, 68] There is a recursive linear ordering

$$\mathcal{L} \cong \omega_1^{CK} \cdot (1+\eta),$$

which supports a JH, $H_{\mathcal{L}} \colon \mathcal{L} \to \omega^{\omega}$.

Observation: If there is a strictly monotone map lev: $\mathcal{J} \to \mathcal{L}$, s.t. the pair $\langle \mathcal{J}, \text{lev} \rangle$ is HYP, then \mathcal{J} supports a JH.

(Essentially, compose lev: $\mathcal{J} \to \mathcal{L}$ with $H_{\mathcal{L}}: \mathcal{L} \to \omega^{\omega}$.)

Definition: A partial jump upper semilattice with levels in \mathcal{L} is a pair $\langle \mathcal{J}, \text{lev} \rangle$ where

- ${\mathcal J}$ is a PJUSL, and
- lev is a map, lev: $\mathcal{J} \rightarrow \mathcal{L}$, s.t.

 $x <_{\mathcal{J}} y \implies \mathsf{lev}(x) < \mathsf{lev}(y).$

Every countable PJUSL, $\mathcal{J} = \langle J, \leq_{\mathcal{J}}, \lor, \mathfrak{j} \rangle$, is embeddable in \mathcal{D} . Outline of the proof:

Suppose that \mathcal{J} is recursive.

Lemma: There is a level map lev: $\mathcal{J} \to \mathcal{L}$, an ordinal $\alpha < \omega_1^{CK}$, and a sequence, $\{\langle \mathcal{J}_n, l_n \rangle\}_n$, of finitely generated PJUSL w/ levels in \mathcal{L} , s.t. $\langle \mathcal{J}_1, l_1 \rangle \subseteq \langle \mathcal{J}_2, l_2 \rangle \subseteq \langle \mathcal{J}_3, l_3 \rangle \subseteq \cdots \subset \langle \mathcal{J}, \text{lev} \rangle$, $\langle \mathcal{J}, \text{lev} \rangle = \bigcup_n \langle \mathcal{J}_n, l_n \rangle$, and each $\langle \mathcal{J}_n, l_n \rangle$ is arithmetic in $0^{(\alpha)}$.

Definition: Let

 $\mathcal{K}_{\alpha} = \left\{ \langle \mathcal{F}, l \rangle : \begin{array}{l} \langle \mathcal{F}, l \rangle \text{ is a fin. generated PJUSL w/} \\ \text{levels in } \mathcal{L}, \text{ which is arithmetic in } 0^{(\alpha)} \end{array} \right\}$ Let $\mathcal{P}_{\alpha} = \langle \mathcal{Q}_{\alpha}, l_{\alpha} \rangle$, be the Fraïssé limit of \mathcal{K}_{α} .

Properties: • \mathcal{J} can be embedded in \mathcal{Q}_{α} . • \mathcal{P}_{α} has a presentation recursive in $O^{(\alpha+\omega)}$. Therefore, \mathcal{Q}_{α} supports a JH, and hence it can be embedded in \mathcal{D} .

Other results.

Definition: A *partial jump upper semilattice with 0* (PJUSL w/0) is a structure

$$\mathcal{J} = \langle J, \leq_{\mathcal{J}}, \cup, \mathfrak{j}, 0 \rangle$$

such that • $\langle J, \leq_{\mathcal{J}}, \cup, \mathfrak{j} \rangle$ is a PJUSL, and • 0 is the least element of $\langle J, \leq_{\mathcal{J}} \rangle$.

Question: Which PJUSL w/0 can be embedded into \mathcal{D} ?

Question: Which quantifier free types of PJUSL w/0 are realized in D?

Note that realizing an q.f. n-type of PJUSL w/0 is equivalent to embedding an n-generated PJUSL w/0.

A negative answer: Not every quantifier free 1-type of JUSL w/0 is realizable in \mathcal{D} .

Proof: There are 2^{\aleph_0} q.f. 1-types, p(x), containing the formula $x \leq 0''$.

Corollary: Not every countable JUSL w/0 can be embedded in \mathcal{D} .

A positive answer: Every quantifier free 1-type of JPO w/0 is realized in \mathcal{D} .

Note: Hinman and Slaman proved this result for types containing a formula of the form $x \leq 0^{(n)}$.

Let κ be a cardinal, $\aleph_0 < \kappa \leq 2^{\aleph_0}$.

Question: Is every PJUSL with the c.p.p. and size κ embeddable in \mathcal{D} ?

Proposition:

If $\kappa = 2^{\aleph_0}$, then the answer is **NO**.

Proposition:

If $MA(\kappa)$ holds, the answer is **YES**.

Corollary: For $\kappa = \aleph_1$, it is independent of ZFC.

Proof: It is FALSE under CH, but TRUE under $MA(\aleph_1)$.