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Linearizations

Definition:
e A linear ordering is a poset (partial ordered set)
(L,<p) such thatVe,ye L (x <pyVy<pzx).

e A linearization of a poset P = (P,<p) is a
linear ordering (P, <) such that
Vz,y € P(x <py =z <ry).

Theorem: (RCA(p)
Every poset has a linearization.

(The non-effective version is due to [Szpilrajn 30].)

Proof: Given P = ({po,p1,p2,-.--},<p), we define <p by
stages. At stage s+ 1 we define <p,+1 on {po,...,ps}
extending <p and <r,. Everything works out fine.

We ask about linearizations that preserve cer-
tain properties of the poset, as for example
well-foundedness.



Well-founded linearizations

Lemma 1 Every well-founded poset has
a well-ordered linearization.

Proof:(ATRg) Consider P = ({po,p1,p2, ...}, <p) a well-
founded poset and the rank function rank: P — «, where
a = rank(P).
Define <; as follows:
pi <cpj < rank(p;) < rank(p;)
or rank(p;) = rank(p;) & i < j.
(P, <) is well-founded cause it’s a subordering of a X w.

Theorem: [Rosenstein, Kierstead] Every computable
well-founded poset has a computable well-founded
linearization.

Theorem: [Rosenstein, Statman] T here is a com-
putable poset without computable descending
sequences which has no computable lineariza-
tion without computable descending sequences.

Corollary: RCAp doesn’t prove Lemma 1.

T heorem: (Downey, Hirschfeldt, Lempp, Solomon [DHLS'03])
Over RCAg: WKLy € Lemmal C ACAg.



Extendability

Definition: A linear ordering L is extendible
if every poset which does not embed £ has
a linearization which does not embed L either.

Example: w*, w, Z, QQ, and w® are extendible.
14+ 1, and w + w* are not extendible.

Pierre Jullien gave a characterization of the
countable extendible linear orderings in 1969.

Question:[Downey, Remmel '00] What is the proof-
theoretic strength of Jullien’'s Thm?



Extendability of Z and Q.

Theorem:[DHLS’'03] The extendibility of Z is
equivalent to ATRg over RCA,.

Theorem:(Becker [DHLS'03])
The extendibility of Q follows from Mi-CAg,
and is not provable in WKL.

Theorem:(J. Miler) The extendibility of Q
implies WKL over RCAq, and
implies ATRg over >1-Choiceg.

Theorem: The extendibility of Q follows from
ATRo+X1-IND.

Corollary: The extendibility of QQ is equivalent
to ATRq over X1-Choiceg + ={-IND.



Definitions.

Let £ be a linear ordering.

e L is scattered if Q A L.

e L is indecomposable to the right if for every
non-trivial cut £ = A+ B, we have £ < B.

e L is indecomposable to the left if for every
non-trivial cut £ = A+ B, we have £ < A.

Examples: w and w¥ are indecomposable to the right.
w* IS indecomposable to the left.

e A finite decomposition of L is a tuple (Ag, ..., Ag)

such that £ = Ag + ... + A, and
each A; is either indecomposable or 1.

e L has signature o € {1,+,—}<% if £ has a de-
composition of minimal length, £ =37\, A;
such that

- ifo(i) =1, then A4, =1,
- if 0(i) =<, then A; is indec. to the left,
- if 0(1) =—, then A; is indec. to the right.

Examples:
o w?+4 w*+ w+1 has signature (—,+,—,1).
e 7 has signature («,—).



Jullien’s theorem

Theorem:[Jul69] Every scattered linear order-
ing £ has a unique signature o and
it is extendible iff for no 7 we have

either 0(i) = o0(i1 + 1) =1,

or (i) =— and (i + 1) =«

Proving that every scattered linear ordering has a Sig-
nature is already too hard.

Theorem: The following are equivalent over
RCAQ.

e Every scattered [.0. has a signature.

e Every scattered |.0. has a unique signature.
e Fraissé’'s Conjecture.

So, in weak systems, this version of Jullien’s
theorem does not work as a characterization
of the extendible linear orderings.



Fraissé’s Conjecture

Theorem: [Fraisé’s Conjecture '48; Laver '71]
FRA: The countable linear orderings form a

WQO with respect to embeddablity.
< i.e., there are no infinite descending)
sequences and no infinite antichains.

Theorem:[Shore '93]
FRA implies ATRg over RCAo.

Nni-cAg
Conjecture:[Clote '90] l
[Simpson '99][Marcone] I‘I%—CAO
FRA is equivalent to ATRg
over RCAg. FRA

/

ATR,



Another formulation of Jullien’s theorem.

Definition: e¢ Let L= A+ B+ _C.
B is an essential segment of L if

whenever L <A+ B +C, B=<AHB.
e A linear ordering B is bad if either B=1+1
or B has signature (—,<+).

T heorem:[Jullien '69]
JUL: L is extendible iff
it has no bad essential segments.

Theorem: The following statements are equiv-
alent over RCAg+%1-IND.

(1) JUL
(2) FRA
(3) Every scattered |.0. has a signature.

RCA( alone can prove (1) = (2) < (3).



Hereditarily Indecomposables.

Definition: The class of h-indecomposable lin-
ear orderings is defined inductively:

e 1 is h-indecomposable and
e if Lo,L1,... are h-indecomposable, so are

- Lo+ Lo+ L)+ (Lo+ L1+ L)+ -+ and
-+ (Lo+ L1+ Lo) + (L1 + Lo) + Lo

Two linear orderings are equimorphic if each
can be embedded into the other.

Theorem:[Laver '71] Every scattered countable
linear ordering is equimorphic to a finite sum
of h-indecomposables.

Theorem: Laver’'s thm. is equivalent to FRA
over RCA,.



The second half of Jullien’s theorem.

Statement. JUL (w/signature):
If £ has a minimal decomposition £ = Fo+...+F,,
where each F; is either h-indec. of 1, then
L is extendible iff for every 1 < n,
neither 7, = F;41 =1,
nor (F; + Fi41) is (—, ).

Note that the original version of Jullien’s thm, is equiv-
alent to FRA together with JUL(w/signature).

Theorem: JUL(w/signature) is equivalent to ATRg
over RCAp+31-IND.

The implication = follows from the fact that
the extendibility of Z implies ATRg.

Theorem: (ATRo+X1-IND) If £ is as in the
statement of JUL(w/signature) and £ A P, then
P has a linearization hyperarithmetic in L& P
which does not embed L.



Use of >1l-induction.

Theorem: In ATRg we can prove:

o If L= ,colm and the Ly's are uniformly
extendible, then L is extendible.

e If A+ 1 and 1+ B are extendible, then A +
1+ B is extendible too.

We need Xi-induction to prove:

e Every h-indecomposable is extendible

e If L=F+14+F>+14..4+1+F, where each
F; i1s h-indecomposable, then L is extendible.

Z%—induction wouldn't be enough for our proof
if it wasn't for fact that we can get the lin-
earizations to be hyperarithmetic. This allow
as to simplify the complexity of the formulas
we prove by induction.



Extendibility of Q

We use that ATRo+3>1-IND proves that every
h-indecomposable is extendible to prove:

Theorem:(ATRg+X>1-IND) Q is extendible.

Definition: wf is the linear ordering of formal
sums of the form w'o. nQ —I—wll ‘ni+ ... —I—wlk ‘T
where n;, € IN and lop > 11 > ... > 1, € L.

Obs: (ACA,) L is well ordered iff w£ is scattered.
Fix P such that Q AP

Claim: There is an ordinal a such that w® A P.
Otherwise, we would have
{£:wE <P}={L:Lis a well ordering}.

X1 class K. Mi-complete.

w® is extendible because it is h-indecomposable.
Then P has a linearization (P, <,) which does
not embed w®. But then Q A (P, <,).



Indecomposability.

e L is scattered if Q A L.

e L is indecomposable if whenever £L = A+ B,
either L < A or L <X B.

e L is indecomposable to the right if for every
non-trivial cut £ = A4 B, we have L < B.

e L is indecomposable to the left if for every
non-trivial cut £ = A 4 B, we have L < A.

Theorem: INDEC: Every scattered indecom-
posable linear ordering is indecomposable ei-
ther to the right or to the left.

Theorem: INDEC follows from A1-CAg.

Theorem: Every w-model of RCAg+INDEC
IS closed under hyperarithmetic reduction.



