On the back-and-forth relation on Boolean Algebras.

Antonio Montalbán. U. of Chicago

AMS - NZMS joint meeting, December 2007

Joint work with Kenneth Harris (University of Michigan).

Antonio Montalbán. U. of Chicago On the back-and-forth relation on Boolean Algebras.

Boolean Algebras

Definition A *Boolean algebra, BA*, is a structure $\mathcal{B} = (B, \leq, 0, 1, \lor, \land, \neg)$, where

- (B, \leq) is a partial ordering,
- 0 is the least element and 1 the greatest,
- $x \lor y$ is the least upper bound of x and y,
- $x \wedge y$ is the greatest lower bound of x and y,

•
$$\neg x \lor x = 1$$
 and $\neg x \land x = 0$

Example: $(\mathcal{P}(X), \subseteq, \emptyset, X, \cup, \cap, X \setminus \cdot)$

We will only consider countable BAs and assume $B \subseteq \omega$.

A BA \mathcal{B} is *X*-computable if

X can compute B and all the operations in \mathcal{B} .

Theorem: [Downey, Jockusch 94] Every low Boolean Algebra has a computable copy. i.e. If X is low and B is X-computable, then there is a computable BA isomorphic to B.

Theorem: [Thurber 95] Every low₂ Boolean Algebra has a computable copy.

Theorem: [Knight, Stob 00] Every low₄ Boolean Algebra has a computable copy.

Open Question:

Does every low_n Boolean Algebra have a computable copy?

Boolean Algebra Predicates

- 1-predicates
 - atom(x)
- 2-predicates
 - atomless(x)
 - infinite(x)
- 3-predicates
 - atomic(x)
 - 1-atom(x)
 - atominf(x)
- 4-predicates
 - \sim -inf(x)
 - $I(\omega + \eta)(x)$
 - infatomicless(x)
 - 1-atomless(x)
 - nomaxatomless(x)

n-predicates have n alternations of quantifiers

For n = 0, 1, 2, 3, 4, a BA \mathcal{B} is *n*-approximable if $0^{(n)}$ can compute \mathcal{B} and all its *m*-predicates for $m \leq n$.

Note: \mathcal{B} is 0-approximable $\iff \mathcal{B}$ is computable.

Note: \mathcal{B} is low_{*n*} $\implies \mathcal{B}$ is *n*-approximable.

Lemma: [Downey, Jockusch 94; Thurber 95; Knight, Stob 00] For n = 0, 1, 2, 3, every (n + 1)-approximable BA has an *n*-approximable copy.

So: $\mathcal{B} \text{ low}_4 \implies 4\text{-approx} \implies 3\text{-approx copy} \implies 2\text{-approx copy}$ $\implies 1\text{-approx copy} \implies 0\text{-approx copy} \implies \text{computable copy.}$ \mathcal{A} and \mathcal{B} are *n*-equivalent iff $0^{(n)}$ cannot distinguish them.

Def: Let $\mathcal{A} \leq_n \mathcal{B} \iff$ given \mathcal{C} that's isomorphic to either \mathcal{A} or \mathcal{B} , deciding whether $\mathcal{C} \cong \mathcal{A}$ is Σ_n^0 -hard.

We will write $\mathcal{A} \equiv_n \mathcal{B}$ iff both $\mathcal{A} \leq_n \mathcal{B}$ and $\mathcal{B} \leq_n \mathcal{A}$.

Notation: $a_1, ..., a_k$ is a partition of a BA \mathcal{B} if $a_0 \lor ... \lor a_k = 1$ and $\forall i \neq j \ (a_i \land a_j = 0)$. We write $\mathcal{B} \upharpoonright a$ for the BA whose domain is $\{x \in \mathcal{B} : x \leq a\}$.

Theorem[Ash, Knight] TFAE

- **2** All the infinitary Σ_n sentences true in \mathcal{B} are true in \mathcal{A} .
- for every partition $(b_i)_{i \leq k}$ of \mathcal{B} , there is a partition $(a_i)_{i \leq k}$ of \mathcal{A} such that $\forall i \leq k$ $\mathcal{B} \upharpoonright b_i \leq_{n-1} \mathcal{A} \upharpoonright a_i$.

Obs: \equiv_n is an equivalence relation on the class of BAs.

We call the equivalence classes *n-bf-types*.

We study the following family of ordered monoids

 $(\mathit{BAs}/\equiv_n\ ,\ \leq_n\ ,\ \oplus)$

where $\mathcal{A} \oplus \mathcal{B}$ is the product BA with coordinatewise operations, together with the projections $(\cdot)_{n-1} : BAs / \equiv_n \rightarrow BAs / \equiv_{n-1}$.

For each *n* we define a set **INV**_{*n*} of finite objects, and an invariant map $T_n: BAs \to INV_n$ such that $\mathcal{A} \equiv_n \mathcal{B} \iff T_n(\mathcal{A}) = T_n(\mathcal{B})$

Moreover, on **INV**_n we define \leq_n and + so that

$$(BAs/\equiv_n,\leq_n,\oplus)\cong(INV_n,\leq_n,+),$$

A BA \mathcal{A} is *n*-indecomposable if for every partition $a_1, ..., a_k$ of \mathcal{A} , there is an $i \leq k$ such that $\mathcal{A} \equiv_n \mathcal{A} \upharpoonright a_i$.

Theorem

- Every BA is a finite product of n-indecomposable BAs.
- 2 There are finitely many ≡_n-equivalence classes among the n-indecomposable BAs.

Let $\mathbf{BF}_n = \{ T_n(\mathcal{B}) : \mathcal{B} \text{ is } n \text{-indecomposable} \} \subset \mathbf{INV}_n.$

 BF_n is a finite generator of $(INV_n, \leq_n, +)$.

n	1	2	3	4	5	6	
$ \mathbf{BF}_n $	2	3	5	9	27	1578	

For each
$$\alpha \in \mathbf{BF}_n$$
 we define a relation $\mathbf{R}_{\alpha}(\cdot)$ on \mathcal{B} :
 $\mathbf{R}_{\alpha}(x) \iff \mathcal{T}_n(\mathcal{B} \upharpoonright x) \ge_n \alpha.$

Observation For n = 0, 1, 2, 3, 4, the $(\leq n)$ -predicates are boolean combinations of the R_{α} for $\alpha \in BF_{\leq n}$, and vice versa.

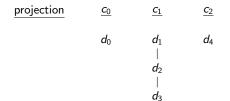
Lemma

The relations R_{α} for $\alpha \in \mathbf{BF}_n$ can be defined by computable infinitary Π_n formulas of BAs.

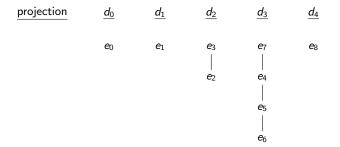
Picture - Levels 1, 2 and 3

bf-relations for 1- and 2-indecomposable bf-types

bf-relations for 3-indecomposable bf-types

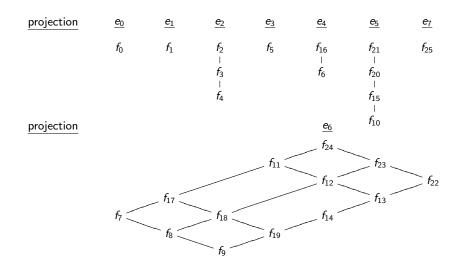


bf-relations for 4-indecomposable bf-types



Picture - Level 5

bf-relations for 5-indecomposable bf-types



Theorem

Every infinitary Σ_{n+1} formula is equivalent to an infinitary Σ_1 formula over the predicates R_α for $\alpha \in BF_n$.

Quantifier Elimination.

Notation: Given
$$\bar{\alpha} = \langle \alpha_1, ..., \alpha_m \rangle$$
 and $\bar{\beta} = \langle \beta_1, ..., \beta_k \rangle \in \mathbf{BF}_n^{<\omega}$ let
 $R_{\bar{\alpha}, \bar{\beta}}(x) \iff \exists y_1 \diamond ... \diamond y_m = x (R_{\alpha_1}(y_1) \& ... \& R_{\alpha_m}(y_m)) \&$
 $\exists z_1 \diamond ... \diamond z_k = \neg x (R_{\beta_1}(z_1) \& ... \& R_{\beta_k}(z_k))$

where $\exists y_1 \diamond \ldots \diamond y_m = x$ is short for "there is a partition y_1, \ldots, y_m of x such that..."

Theorem

Let \mathcal{B} be a BA, and $R \subseteq B$. TFAE

If
$$\mathcal{A} \cong \mathcal{B}$$
 and $(\mathcal{A}, Q) \cong (\mathcal{B}, R)$ then Q is $\Sigma_{n+1}^{0, \mathcal{A}}$.

2 R can be defined in \mathcal{B} by a comp infinitary $\sum_{n=1}^{c}$ formula.

3 There is a
$$0^{(n)}$$
-comp seq $\{(\bar{\alpha}_i, \bar{\beta}_i)\}_{i \in \omega} \subseteq \mathsf{BF}_n^{<\omega}$ such that $x \in R \iff \bigvee_{i \in \omega} \mathrm{R}_{\bar{\alpha}_i, \bar{\beta}_i}(x)$

The equivalence between (1) and (2) is due to Ash, Knight, Manasse, Slaman; Chisholm.

Theorem

Let \mathcal{B} be a presentation of a Boolean algebra. TFAE.

- The \sum_{n+1}^{c} -diagram of \mathcal{B} is \sum_{n+1}^{0} ;
- 2 The relations $R_{\alpha}(\mathcal{B})$ for $\alpha \in \mathbf{BF}_n$ are computable in $0^{(n)}$.

Definition

If a BA satisfies these conditions, we say it's *n-approximable*.

Question: Does every n + 1-approximable BA have an *n*-approximable copy?

 $\alpha \in \mathbf{BF}_n$ is a *isomorphism type* if whenever $T_n(\mathcal{A}) = T_n(\mathcal{B}) = \alpha$, $\mathcal{A} \cong \mathcal{B}$. $\alpha \in \mathbf{BF}_n$ is an *exclusive type* if whenever $T_n(\mathcal{A}) = \alpha$ and $a \in \mathcal{A}$ either $\mathcal{A} \upharpoonright a \equiv_n \mathcal{A}$ or $\mathcal{A} \upharpoonright (\neg a) \equiv_n \mathcal{A}$, but not both.

Observation: For $n \leq 4$, and $\alpha \in \mathbf{BF}_n$, α is an exclusive type $\implies \alpha$ is an isomorphism type.

This is not true for n = 5.

Picture - Levels 1 and 2

bf-relations for 1- and 2-indecomposable bf-types

projection	<u>a</u> 0	$\underline{b_0}$	$\underline{b_1}$
	b_0	<i>C</i> ₀	C ₂ C1

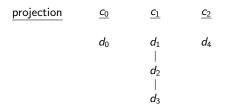
1-indecomposable bf-types

Name	Ru	Example
b_0	atom	atom
b_1	non-zero	infinite

2-indecomposable bf-types

Name	$(\cdot)_1$	R_u	Example
<i>C</i> 0	b_0	atom	atom
<i>C</i> ₁	b_1	infinite	inf-atoms
<i>C</i> ₂	b_1	atomless	atomless

bf-relations for 3-indecomposable bf-types



Name	$(\cdot)_{2}$	R _u	Example	
d_0	<i>C</i> ₀	atom	atom	
<i>d</i> ₁	<i>C</i> 1	1-atom	1-atom	
<i>d</i> ₂	<i>C</i> ₁	atomic & infinite	2-atom, 1-atomless	
<i>d</i> ₃	<i>C</i> 1	atominf	$Int(\omega + \eta)$	
<i>d</i> ₄	<i>C</i> ₂	atomless	atomless	