The jump of a structure.

Antonio Montalbán. U. of Chicago

Sofia – June 2011

Antonio Montalbán. U. of Chicago [The jump of a structure.](#page-0-0)

For $A, B \subseteq \mathbb{N}$, A is B-computable $(A \leq_T B)$ if there is a computable procedure that answers " $n \in A$?", using B as an oracle.

We impose no restriction on time or space.

A is Turing-equivalent to B $(A \equiv_T B)$ if $A \leq_T B$ and $B \leq_T A$.

Def: A is *B*-computably enumerable (*B*-c.e.) if there is a B-computable procedure that lists the elements of A.

Obs: A is B-computable \iff A and $(\mathbb{N} \setminus A)$ are both B-c.e.

For $A, B \subseteq \mathbb{N}$, let $A \oplus B = \{2n : n \in A\} \cup \{2n + 1 : n \in B\}.$

For $A_0, A_1, A_2, ... \subseteq \mathbb{N}$, let $\bigoplus_{n \in \mathbb{N}} A_n = \{ \langle n, i \rangle : n \in \mathbb{N}, i \in A_n \} \subseteq \mathbb{N}^2$.

Via an effective bijection $\mathbb{N} \hookrightarrow \mathbb{N}^2$, we view $\bigoplus_n A_n$ as $\subseteq \mathbb{N}.$

The Turing Jump

We define the $jump$ of a set A : $A' = \{ \ulcorner p \urcorner : p \text{ is a program that halts with oracle } A \}$ $\equiv_{\tau} {\{\ulcorner \varphi \urcorner : \varphi \text{ is a quantifier-free formula s.t. } (\mathbb{N}, A) \models \exists x \varphi(x) \}}$ \equiv $_{\mathcal{T}}$ \bigoplus_{e} W_{e}^{A} . (where $W_{0}^{A}, W_{1}^{A}, ...$ is an effective list of al A-c.e. sets) A' is A-c.e.-complete.

Properties: For all $A \subseteq \mathbb{N}$,

- $A \leq_T B$ then $A' \leq_T B'$,
- $A \leq_{\mathcal{T}} A'$, but $A' \not\equiv_{\mathcal{T}} A$.

Thm: (Jump inversion theorem, [Friedberg 57]) If $A \geq_T 0'$, then there exists B such that $B' \equiv_T A$. Study

- **1** how effective are constructions in mathematics?
- **2** how complex is it to represent mathematical structures?
- **3** how complex are the relations within a structure?

Various areas have been studied,

- **4** Combinatorics.
- **2** Algebra,
- **3** Analysis,
- **4** Model Theory

In many cases one needs to develop a better understanding of the mathematical structures to be able to get the computable analysis. **Theorem:** Every Q-vector space has a basis.

Note: A countable Q-vector space $V = (V, 0, +_v, \cdot_v)$ can be encoded by three sets: $V \subseteq \mathbb{N}$, $+_v \subseteq \mathbb{N}^3$ and $\cdot_v \subseteq \mathbb{Q} \times \mathbb{N}^2$.

We say that V is computable if V_+ , V_+ and V_+ are computable.

Theorem:

Not every computable Q-vector space has a computable basis. However, basis can be found computable in O' . Moreover, \exists comp. vector sp., all whose basis compute O' .

Def: By structure we mean a tuple $A = (A; P_0, P_1, ..., f_0, f_1, ...)$ where $P_i \subseteq A^{n_i}$, and $f_i: A^{m_i} \rightarrow A$. The arity functions n_i and m_i are always computable. We will code the functions as relations, so $A = (A; P_0, P_1, \ldots, \ldots)$. An isomorphic copy of A where $A \subseteq \mathbb{N}$ is called a *presentation* of A.

Def: The presentation A is X -computable if A and $\bigoplus_i P_i$ are X-computable.

Def: X is computable in the presentation \mathcal{A} if $X \leq A \oplus \bigoplus_i P_i$.

Def: The *spectrum* of the isomorphism type of \mathcal{A} : $Sp(\mathcal{A}) = \{X \subseteq \mathbb{N} : X \text{ computes a copy of } \mathcal{A}\}.$ Let A be a structure.

Def: $R \subseteq A^n$ is r.i.c.e. (relatively intrinsically computably enumerable) if for every presentation $(\mathcal{B},\mathcal{R}^\mathcal{B})$ of $(\mathcal{A},\mathcal{R}),\ \mathcal{R}^\mathcal{B}$ is c.e. in $\mathcal{B}.$

Example: Let \mathcal{L} is a linear ordering. Then ¬succ = { $(x, y) \in L^2$: $\exists z(x < z < y)$ } is r.i.c.e.

Example: Let V be a vector space. Then $LD_3 = \{(u,v,w) \in V^3 : u, v \text{ and } w \text{ are not } L.l.\}$ is r.i.c.e.

Def: $R \subseteq A^n$ is r.i.computable (relatively intrinsically computable) if R and $(A^n \setminus R)$ are both r.i.c.e.

R.I.C.E. – a frequently re-discovered concept

Thm: [Ash, Knight, Manasse, Slaman; Chishholm][Vaĭtsenavichyus][Gordon] $R \subseteq A^n$. The following are equivalent:

- \bullet R is r.i.c.e.
- R is defined by a c.e. disjunction of \exists -formulas. (à la Ash)
- R is defined by an \exists -formula in $\mathbb{HF}(\mathcal{A})$. (à la Ershov) ($\mathbb{HF}(\mathcal{A})$ is the hereditarily finite extension of \mathcal{A})
- \bullet R is semi-search computable. (\bullet la Moschovakis).

r.i.c.e. relations on $\mathcal A$ are the analog of c.e. subsets of $\mathbb N$.

We now want a *complete* r.i.c.e. relation.

Sequences of relations

We consider infinite sequences of relations $\vec{R} = (R_0, R_1, \ldots)$, (where $R_i \subseteq A^{a_i}$, and the arity function is always primitive computable)

Def: \vec{R} is r.i.c.e. in A if for every presentation $(\mathcal{B}, \vec{R}^{\mathcal{B}})$ of (\mathcal{A}, \vec{R}) , $\vec{R}^{\mathcal{B}}$ is uniformly c.e. in \mathcal{B} .

Example: Let V be a Q-vector space. Then $\overrightarrow{LD} = (LD_1, LD_2, ...)$, given by $LD_i = \{ (v_1, ..., v_i) : v_1, ..., v_i \}$ are lin. dependent}, is r.i.c.e.

Example: Given $X \subseteq \mathbb{N}$, let $\vec{X} = (X_0, X_1, ...)$ where $X_i = \begin{cases} A & \text{if } i \in X_i, \ A & \text{if } i \in X_i, \end{cases}$ \emptyset if $i \not\in X$ Then, if X is c.e. $\implies \vec{X}$ is r.i.c.e. in A. **Example:** In particular 0^i is r.i.c.e. in A.

Let \vec{R} and \vec{Q} be sequences of relations in A.

Def: Let $\vec{R} \leq^{\mathcal{A}}_{s} \vec{Q} \iff \vec{R}$ is r.i.computable in (\mathcal{A},\vec{Q}) .

Def: Let $\vec{R} \oplus \vec{Q}$ be the sequence $(R_0, Q_0, R_1, Q_1, \ldots)$.

Recall: Given $X \subseteq \mathbb{N}$, let $\vec{X} = (X_0, X_1, ...)$ where $X_i = \begin{cases} A & \text{if } i \in X_i, \ A & \text{if } i < X_i \end{cases}$ \emptyset if $i \not\in X$ **Obs:** $X \leq_T Y \Longrightarrow \vec{X} \leq_s^{\mathcal{A}} \vec{Y}$.

The jump of a relation

Let $\varphi_0, \varphi_1, \dots$ be an effective listing of all c.e.-disjunctions of \exists -formulas about \mathcal{A} .

Definition

Let $\vec{K}^{\mathcal{A}} = (K_0, K_1, \ldots)$ be such that $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Obs: $\vec{K}^{\mathcal{A}}$ is complete among r.i.c.e. sequences of relations in A. I.e. If \vec{Q} is r.i.c.e., there is $\bar{a}\in A^{<\omega}$ and a computable $f\colon\mathbb{N}\to\mathbb{N}$ s.t. $\forall \bar{b} \forall i \ (\bar{b} \in Q_i \iff (\bar{a}, \bar{b}) \in K_{f(i)})$

Definition

Given \vec{Q} , let ${\vec{Q}'}^{\mathcal{A}}$ be $\vec{K}^{(\mathcal{A},\vec{Q})}.$

Note: $\vec{K}^{\mathcal{A}} = \emptyset^{\prime^{\mathcal{A}}}$. **Note:** We can also define $\vec{Q}''^{\mathcal{A}}$ as $\vec{K}^{(\mathcal{A},\vec{Q}^{_{\mathcal{A}}\mathcal{A}})}.$

Examples of Jump of Structure

Recall: $\emptyset^{A^{\mathcal{A}}} = \vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$ where $\mathcal{A} \models \bar{x} \in K_i(\bar{x}) \iff \varphi_i(\bar{x})$. Recall that $\overrightarrow{0}$ is the seq. of rel. that codes $0' \subseteq N$, and NOT \emptyset^A .

Ex: Let A be a Q-vector space. Then $\oint^A \equiv_s^A \vec{LD} \oplus \vec{0}'$.

Ex: Let A be a linear ordering. Then $\emptyset^{r^A} \equiv_s^A succ(x, y) \oplus \overline{0}^r.$

Ex: Let A be a *linear ordering* with endpoints. Then $\emptyset^{n^A} \equiv_s^A$ limleft(x) ⊕ limright(x) ⊕ $\bigoplus_n D_n(x, y) \oplus \overline{0^n}$ where $D_n(x, y) \equiv$ "exists *n*-string of succ in between x and y."

Ex: Let $\mathcal{A} = (A, \equiv)$ where \equiv is an *equivalence relation*. Then $\emptyset^{r^A} \equiv_s^{\mathcal{A}} (E_k(x) : k \in \mathbb{N}) \oplus \overrightarrow{R} \oplus \overrightarrow{0},$ where $E_k(x) \iff$ there are $\geq k$ elements equivalent to x, and $R = \{ \langle n, k \rangle \in \mathbb{N}^2 : \text{there are } \geq n \text{ equivalence classes with } \geq k \text{ elements} \}$.

Jump of a structure

Recall:
$$
\emptyset^{\prime^A} = \vec{K}^{\mathcal{A}} = (K_0, K_1, \ldots)
$$
 where $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Definition

Let A' be the structure $(A, \vec{K}^{\mathcal{A}})$.

(i.e. add infinitely many relations to the language interpreting the K_i 's)

There were various independent definitions of the jump of a structure \mathcal{A}' :

- **•** Baleva.
	- domain: Moschovakis extension of $A \times \mathbb{N}$.
	- relation: add a universal computably infinitary Σ_1 relation.
- **o** I. Soskov.
	- \bullet domain: Moschovakis extension of \mathcal{A} .
	- **•** relation: add a predicate for forcing Π_1 formulas.
- Stukachev. considered arbitrary cardinality, and Σ -reducibility
	- domain: Hereditarily finite extension of A , $\mathbb{HF}(\mathcal{A})$.
	- relation: add a universal finitary Σ_1 relation.
- Montalbán. The definition above.

Computational-reductions between structures

Let A and B be structures.

Recall: $Sp(A) = \{X \subseteq \mathbb{N} : X$ computes a copy of $A\}$.

 $\mathbf{Def:}$ A is Muchnik-reducible to \mathcal{B}^{\dagger} $A \leq_{\sf w} B \iff Sp(A) \supseteq Sp(B).$

Def: $\mathcal A$ is effectively interpretable in $\mathcal B$: $A \leq B \iff$ there is an interpretation of A in B, where the domain of A is interpreted in B by an *n*-ary r.i.c.e. relation, and equality and the predicates of $\mathcal A$ by r.i.computable relations.

Def: $\mathcal A$ is Σ -reducible to $\mathcal B$: [Khisamiev, Stukachev] $A \leq_{\Sigma} B \iff A \leq_{I} \mathbb{H} \mathbb{F}(\mathcal{B}).$

Obs: $A \leq B \implies A \leq_{\mathcal{F}} B \implies A \leq_{\mathcal{W}} B$.

- 1st Jump inversion theorem.
- 2nd Jump inversion theorem.
- Fixed point theorem.

Theorem (1st Jump inversion Theorem)

If −→ $0'$ is r.i.computable in \mathcal{A} , there exists a structure $\mathcal B$ such that $\mathcal B'$ is equivalent to $\mathcal A$.

 $for \equiv_{w}$. [Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon]

for \equiv_{w} . [A. Soskova] independently, different proof, and relative to any structure.

for \equiv \bar{z} . [Stukachev] for arbitrary size structures.

Question:

Which structures are \equiv _I-equivalent to the jump of a structure?

Theorem (1st Jump inversion Theorem - α -iteration)

If −−→ $0^{(\alpha)}$ is r.i.computable in ${\cal A},$ there exists a structure B such that $\mathcal{B}^{(\alpha)}$ is equivalent to A.

[Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon] used it to build a structure that is Δ_{α} -categorical but not relatively so.

[Greenberg, M, Slaman] used to build a structure whose spectrum is non-HYP

Theorem (2nd Jump Inversion Theorem)

If Y can compute a copy of A' , then there exists X that computes a copy of A and $X' \equiv_T Y$.

First proved by [I. Soskov], and then, independently, by [Montalbán], using their respective notions of jump, but similar proofs.

Theorem (2nd Jump Inversion Theorem)

If Y can compute a copy of A' , then there exists X that computes a copy of A and $X' \equiv_T Y$.

- **Cor:** $Sp(\mathcal{A}') = \{x' : x \in Sp(\mathcal{A})\}$
- Cor: [Frolov] If 0' computes a copy of $(L, succ)$, L has a low copy.

Cor: If R is r.i. Σ^0_2 in A, then R is r.i.c.e. in A'. It follows that r.i. Σ_n^0 relations are Σ_n^c -definable. [Ash, Knight, Manasse, Slaman; Chisholm]

Cor:[M] Given A , the following are equivalent:

- Low property: If $X \in Sp(\mathcal{A})$ and $X' \equiv_T Y'$ then $Y \in Sp(\mathcal{A})$.
- Strong jump inversion: If $X' \in Sp(\mathcal{A}')$ then $X \in Sp(\mathcal{A})$.

Fixed point theorem

Recall: For $A \subseteq \mathbb{N}$, $A \not\equiv_T A'$.

Theorem ([M])

The existence of A with $Sp(A) = Sp(A')$, is not provable in full nth-order arithmetic for any n.

Note: Almost all of classical mathematics can be proved in nth-order arithmetic for some n , (except for set theory or model theory).

Theorem ([M] using $0^{\#}$; [S.Friedman, Welch] in ZFC)

There is a structure A such that $A \equiv_I A'$.

Idea of proof: Build A as a non-well-founded ω -model of $V = L$ such that for some $\alpha \in \mathcal{A}, \ \mathcal{A} \cong \mathcal{L}_{\alpha}^{\mathcal{A}}.$

Definition (M.)

 $P_0, ..., P_k, ...$ are a complete set of $\sum_{n=1}^{c}$ relations on $\mathcal A$ if they are uniformly Σ_n^c and $\bigoplus_k P_k \oplus$ $\frac{-n}{\sqrt{2}}$ $0^{(n)} \equiv_{s}^{\mathcal{A}} \emptyset^{(n)}^{\mathcal{A}}$.

Question:

For which $\mathcal A$ and n , is there a finite complete sets of Σ_n^c relations?

Question:

For which A and n, is there a nice complete sets of Σ_n^c relations?

Examples of Jump of Structure

Ex: Let A be a *Boolean algebra*. Then

 $\emptyset'^{\mathcal{A}} \equiv_{\mathsf{s}}^{\mathcal{A}}$ atom \oplus −→ 0^{\prime} .

 $\emptyset^{\prime\prime^{\mathcal{A}}} \equiv^{\mathcal{A}}_{\mathcal{s}}$ atom $(\mathsf{x})\oplus$ atomless $(\mathsf{x})\oplus$ finite $(\mathsf{x})\oplus$ \Rightarrow $0^{\prime\prime}$

 $\emptyset''^{\mathcal{A}}\equiv^{\mathcal{A}}_{\mathcal{S}}$ atom \oplus atomless \oplus finite \oplus atomic \oplus 1-atom \oplus atominf \oplus $\overline{0'''}$

 $\left\{\emptyset^{(4)^{\mathcal A}}\equiv^{\mathcal A}_{\mathcal S}$ atom \oplus atomless \oplus finite \oplus atomic \oplus 1-atom \oplus atominf \oplus \sim -inf \oplus Int $(\omega + \eta) \oplus$ infatomicless \oplus 1-atomless \oplus nomaxatomless \oplus −→ $0^{(4)}$ These relations were used by Thurber [95], Knight and Stob [00].

Theorem (K.Harris – M. 08)

On Boolean algebras, $\forall n \in \mathbb{N}$, there is a finite sequence $P_0, ..., P_{k_n}$, s.t. for all A $\emptyset^{(n)^{\mathcal{A}}} \equiv^{\mathcal{A}}_{s} P_{0}(x) \oplus ... \oplus P_{k_{n}}(x) \oplus$ −−→ $0^{(n)}$.

Examples: Nice complete sets of Σ_n^c relations.

Let $\mathcal L$ be a linear ordering.

Ex: Let $\mathcal L$ be a *linear ordering*. Then $\emptyset^{\prime^{\mathcal{A}}} \equiv_s^{\mathcal{L}} \mathsf{succ}(x, y) \oplus$ −→ 0^{\prime} .

Ex: $\emptyset''^{\mathcal{L}} \equiv_s^{\mathcal{L}}$ limleft(x) \oplus limright(x) \oplus $\oplus_n D_n(x,y) \oplus \overrightarrow{0''}$ where $D_n(x, y) \equiv$ "exists *n*-string of succ in between x and y."

Ex: [Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev] We don't need infinitely many relations. $\emptyset^{n^2} \equiv_s^{\mathcal{L}}$ limleft(x) ⊕ limright(x) ⊕ P(x, y, z, w) ⊕ $\overline{0}^n$ where $P(x, y, z, w) \equiv \exists n \ (succ^n(y) = z \& D_{n+2}(x, w))$

Thm: [M.] There is no relativizable (and hence nice) set of Σ_3^c relations that work for all linear orderings simultaneously.

Let V be an infinite dimensional $\mathbb Q$ -vector space.

$$
\emptyset^{\mathcal{M}} \equiv_{\mathcal{S}}^{\mathcal{A}} L\vec{D} \oplus \vec{0}^{\mathcal{I}}
$$
\nwhere $L\vec{D} = (LD_1, LD_2, \ldots)$, and $LD_i = \{(v_1, \ldots, v_i) : v_1, \ldots, v_i \text{ are lin. dep.}\}$

Thm:[Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev] No finite set of relations is Σ_1^c complete in $\mathcal V$.

Let $\mathcal{A} = (A; \equiv)$ be an equivalence structure.

Ex: $\emptyset^{A} \equiv_s^{\mathcal{A}} (E_k(x) : k \in \mathbb{N}) \oplus \overrightarrow{R} \oplus \overrightarrow{0'}$ 0^{\prime} , where $E_k(x) \iff$ there are $\geq k$ elements equivalent to x, and $R = \{ \langle n, k \rangle \in \mathbb{N}^2 : \text{there are } \geq n \text{ equivalence classes with } \geq k \text{ elements} \}$.

Suppose that A has infinitely many classes of each size. Thm:[Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev] No finite set of relations is Σ_1^c complete in \mathcal{A} .

$\mathsf{Theorem}\; (\lceil \mathbb{M} \rceil)$

Let K be an axiomatizable class of structures. Exactly one of the following holds:

(relative to any sufficiently large oracle)

 \textbf{D} There is a nice characterization of $\mathcal{A}^{(n)}$:

- There is a uniform, rel, countable complete sets of Σ_n^c rels.
- No set can be coded by the $(n-1)$ st jump of any $A \in \mathbb{K}$.
- There are countably many n-back-and-forth equivalence classes
- **2** Every set can be coded in $A^{(n-1)}$:
	- $\forall X\subseteq\omega$, there is a $\mathcal{A}\in\mathbb{K}$ s.t. X is a r.i.c.e. real in $\mathcal{A}^{(n-1)}$,
	- There is no uniform, rel, countable complete sets of Σ_n^c rels.
	- ∃ Continuum many n-back-and-forth equivalence classes