The jump of a structure.

Antonio Montalbán. U. of Chicago

Sofia – June 2011

Antonio Montalbán. U. of Chicago The jump of a structure.

For $A, B \subseteq \mathbb{N}$, A is *B*-computable $(A \leq_T B)$ if there is a computable procedure that answers " $n \in A$?", using *B* as an oracle.

We impose **no** restriction on time or space.

A is Turing-equivalent to $B(A \equiv_T B)$ if $A \leq_T B$ and $B \leq_T A$.

Def: A is *B*-computably enumerable (*B*-c.e.) if there is a *B*-computable procedure that lists the elements of *A*.

Obs: A is B-computable \iff A and $(\mathbb{N} \setminus A)$ are both B-c.e.

For $A, B \subseteq \mathbb{N}$, let $A \oplus B = \{2n : n \in A\} \cup \{2n+1 : n \in B\}$.

For $A_0, A_1, A_2, ... \subseteq \mathbb{N}$, let $\bigoplus_{n \in \mathbb{N}} A_n = \{ \langle n, i \rangle : n \in \mathbb{N}, i \in A_n \} \subseteq \mathbb{N}^2$.

Via an effective bijection $\mathbb{N} \leftrightarrow \mathbb{N}^2$, we view $\bigoplus_n A_n$ as $\subseteq \mathbb{N}$.

The Turing Jump

We define the *jump* of a set *A*: $A' = \{ \ulcorner p \urcorner : p \text{ is a program that halts with oracle } A \}$ $\equiv_T \{ \ulcorner \varphi \urcorner : \varphi \text{ is a quantifier-free formula s.t. } (\mathbb{N}, A) \models \exists x \varphi(x) \}$ $\equiv_T \bigoplus_e W_e^A$. (where W_0^A, W_1^A, \dots is an effective list of al *A*-c.e. sets) A' is *A*-c.e.-complete.

Properties: For all $A \subseteq \mathbb{N}$,

- $A \leq_T B$ then $A' \leq_T B'$,
- $A \leq_T A'$, but $A' \not\equiv_T A$.

Thm: (Jump inversion theorem, [Friedberg 57]) If $A \ge_T 0'$, then there exists B such that $B' \equiv_T A$. Study

- I how effective are constructions in mathematics?
- I how complex is it to represent mathematical structures?
- I how complex are the relations within a structure?

Various areas have been studied,

- Combinatorics,
- Algebra,
- In Analysis,
- Model Theory

In many cases one needs to develop a better understanding of the mathematical structures to be able to get the computable analysis.

Theorem: Every Q-vector space has a basis.

Note: A countable \mathbb{Q} -vector space $\mathcal{V} = (V, 0, +_v, \cdot_v)$ can be encoded by three sets: $V \subseteq \mathbb{N}$, $+_v \subseteq \mathbb{N}^3$ and $\cdot_v \subseteq \mathbb{Q} \times \mathbb{N}^2$.

We say that \mathcal{V} is *computable* if V, $+_{v}$ and \cdot_{v} are computable.

Theorem:

Not every computable \mathbb{Q} -vector space has a computable basis. However, basis can be found computable in \mathbf{O}' . Moreover, \exists comp. vector sp., all whose basis compute \mathbf{O}' . **Def:** By *structure* we mean a tuple $\mathcal{A} = (A; P_0, P_1, ..., f_0, f_1, ..)$ where $P_i \subseteq A^{n_i}$, and $f_i : A^{m_i} \to A$. The arity functions n_i and m_i are always computable. We will code the functions as relations, so $\mathcal{A} = (A; P_0, P_1, ..., ...)$. An isomorphic copy of \mathcal{A} where $A \subset \mathbb{N}$ is called a *presentation* of \mathcal{A} .

Def: The presentation \mathcal{A} is *X*-computable if A and $\bigoplus_i P_i$ are *X*-computable.

Def: X is *computable in* the presentation \mathcal{A} if $X \leq A \oplus \bigoplus_i P_i$.

Def: The *spectrum* of the isomorphism type of \mathcal{A} : $Sp(\mathcal{A}) = \{X \subseteq \mathbb{N} : X \text{ computes a copy of } \mathcal{A}\}.$ Let ${\mathcal A}$ be a structure.

Def: $R \subseteq A^n$ is *r.i.c.e.* (relatively intrinsically computably enumerable) if for every presentation $(\mathcal{B}, R^{\mathcal{B}})$ of (\mathcal{A}, R) , $R^{\mathcal{B}}$ is c.e. in \mathcal{B} .

Example: Let \mathcal{L} is a linear ordering. Then $\neg succ = \{(x, y) \in L^2 : \exists z (x < z < y)\}$ is r.i.c.e.

Example: Let \mathcal{V} be a vector space. Then $LD_3 = \{(u, v, w) \in V^3 : u, v \text{ and } w \text{ are not } L.l.\}$ is r.i.c.e.

Def: $R \subseteq A^n$ is *r.i.computable* (relatively intrinsically computable) if *R* and $(A^n \setminus R)$ are both r.i.c.e.

R.I.C.E. – a frequently re-discovered concept

Thm: [Ash, Knight, Manasse, Slaman; Chishholm][Vaĭtsenavichyus][Gordon] $R \subseteq A^n$. The following are equivalent:

- *R* is r.i.c.e.
- R is defined by a c.e. disjunction of \exists -formulas. (à la Ash)
- *R* is defined by an ∃-formula in HF(A). (à la Ershov)
 (HF(A) is the hereditarily finite extension of A)
- *R* is semi-search computable. (à la Moschovakis).

r.i.c.e. relations on $\mathcal A$ are the analog of c.e. subsets of $\mathbb N.$

We now want a *complete* r.i.c.e. relation.

Sequences of relations

We consider infinite sequences of relations $\vec{R} = (R_0, R_1, ...)$, (where $R_i \subseteq A^{a_i}$, and the arity function is always primitive computable)

Def: \vec{R} is *r.i.c.e.* in \mathcal{A} if for every presentation $(\mathcal{B}, \vec{R}^{\mathcal{B}})$ of (\mathcal{A}, \vec{R}) , $\vec{R}^{\mathcal{B}}$ is uniformly c.e. in \mathcal{B} .

Example: Let \mathcal{V} be a \mathbb{Q} -vector space. Then $\vec{LD} = (LD_1, LD_2, ...)$, given by $LD_i = \{(v_1, ..., v_i) : v_1, ..., v_i \text{ are lin. dependent}\}$, is r.i.c.e.

Example: Given $X \subseteq \mathbb{N}$, let $\vec{X} = (X_0, X_1, ...)$ where $X_i = \begin{cases} A & \text{if } i \in X \\ \emptyset & \text{if } i \notin X \end{cases}$ Then, if X is c.e. $\implies \vec{X}$ is r.i.c.e. in \mathcal{A} . **Example:** In particular $\vec{0'}$ is r.i.c.e. in \mathcal{A} . Let \vec{R} and \vec{Q} be sequences of relations in \mathcal{A} .

Def: Let $\vec{R} \leq_s^{\mathcal{A}} \vec{Q} \iff \vec{R}$ is r.i.computable in (\mathcal{A}, \vec{Q}) .

Def: Let $\vec{R} \oplus \vec{Q}$ be the sequence $(R_0, Q_0, R_1, Q_1, ...)$.

Recall: Given $X \subseteq \mathbb{N}$, let $\vec{X} = (X_0, X_1, ...)$ where $X_i = \begin{cases} A & \text{if } i \in X \\ \emptyset & \text{if } i \notin X \end{cases}$ **Obs:** $X \leq_T Y \Longrightarrow \vec{X} \leq_s^A \vec{Y}$.

The jump of a relation

Let $\varphi_0, \varphi_1, ...$ be an effective listing of all c.e.-disjunctions of \exists -formulas about \mathcal{A} .

Definition

Let $\vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$ be such that $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Obs: $\vec{K}^{\mathcal{A}}$ is complete among r.i.c.e. sequences of relations in \mathcal{A} . I.e. If \vec{Q} is r.i.c.e., there is $\bar{a} \in A^{<\omega}$ and a computable $f: \mathbb{N} \to \mathbb{N}$ s.t. $\forall \bar{b} \forall i \ (\bar{b} \in Q_i \iff (\bar{a}, \bar{b}) \in K_{f(i)})$

Definition

Given \vec{Q} , let $\vec{Q'}^{A}$ be $\vec{K}^{(A,\vec{Q})}$.

Note: $\vec{K}^{\mathcal{A}} = \emptyset^{\prime^{\mathcal{A}}}$. Note: We can also define $\vec{Q}^{\prime\prime^{\mathcal{A}}}$ as $\vec{K}^{(\mathcal{A},\vec{Q}^{\prime^{\mathcal{A}}})}$.

Examples of Jump of Structure

Recall: ${\emptyset'}^{\mathcal{A}} = \vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$ where $\mathcal{A} \models \bar{x} \in K_i(\bar{x}) \iff \varphi_i(\bar{x})$. **Recall** that $\overrightarrow{0'}$ is the seq. of rel. that codes $0' \subseteq \mathbb{N}$, and NOT ${\emptyset'}^{\mathcal{A}}$.

Ex: Let \mathcal{A} be a \mathbb{Q} -vector space. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} L \vec{D} \oplus \overrightarrow{0'}$.

Ex: Let \mathcal{A} be a *linear ordering*. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} succ(x, y) \oplus \overrightarrow{0'}$.

Ex: Let \mathcal{A} be a *linear ordering* with endpoints. Then $\emptyset''^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} limleft(x) \oplus limright(x) \oplus \bigoplus_{n} D_{n}(x, y) \oplus \overrightarrow{0''}$ where $D_{n}(x, y) \equiv$ "exists *n*-string of succ in between x and y."

Ex: Let $\mathcal{A} = (A, \equiv)$ where \equiv is an *equivalence relation*. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} (E_{k}(x) : k \in \mathbb{N}) \oplus \overrightarrow{R} \oplus \overrightarrow{0'},$ where $E_{k}(x) \iff$ there are $\geq k$ elements equivalent to x, and $R = \{\langle n, k \rangle \in \mathbb{N}^{2} : \text{there are } \geq n \text{ equivalence classes with } \geq k \text{ elements} \}.$

Jump of a structure

Recall:
$${\emptyset'}^{\mathcal{A}} = \vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$$
 where $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Definition

Let \mathcal{A}' be the structure $(\mathcal{A}, \vec{K}^{\mathcal{A}})$.

(i.e. add infinitely many relations to the language interpreting the K_i 's)

There were various independent definitions of the jump of a structure \mathcal{A}' :

- Baleva.
 - domain: Moschovakis extension of $\mathcal{A} \times \mathbb{N}$.
 - $\bullet\,$ relation: add a universal computably infinitary Σ_1 relation.
- I. Soskov.
 - domain: Moschovakis extension of \mathcal{A} .
 - relation: add a predicate for forcing Π_1 formulas.
- $\bullet\,$ Stukachev. considered arbitrary cardinality, and $\Sigma\text{-reducibility}$
 - domain: Hereditarily finite extension of \mathcal{A} , $\mathbb{HF}(\mathcal{A})$.
 - $\bullet\,$ relation: add a universal finitary Σ_1 relation.
- Montalbán. The definition above.

Computational-reductions between structures

Let \mathcal{A} and \mathcal{B} be structures.

Recall: $Sp(\mathcal{A}) = \{X \subseteq \mathbb{N} : X \text{ computes a copy of } \mathcal{A}\}.$

Def: \mathcal{A} is *Muchnik-reducible* to \mathcal{B} : $\mathcal{A} \leq_{w} \mathcal{B} \iff Sp(\mathcal{A}) \supseteq Sp(\mathcal{B}).$

Def: \mathcal{A} is effectively interpretable in \mathcal{B} : $\mathcal{A} \leq_I \mathcal{B} \iff$ there is an interpretation of \mathcal{A} in \mathcal{B} , where the domain of \mathcal{A} is interpreted in \mathcal{B} by an *n*-ary r.i.c.e. relation, and equality and the predicates of \mathcal{A} by r.i.computable relations.

Def: \mathcal{A} is Σ -reducible to \mathcal{B} : [Khisamiev, Stukachev] $\mathcal{A} \leq_{\Sigma} \mathcal{B} \iff \mathcal{A} \leq_{I} \mathbb{HF}(\mathcal{B}).$

Obs: $\mathcal{A} \leq_I \mathcal{B} \implies \mathcal{A} \leq_{\Sigma} \mathcal{B} \implies \mathcal{A} \leq_{w} \mathcal{B}.$

- 1st Jump inversion theorem.
- 2nd Jump inversion theorem.
- Fixed point theorem.

Theorem (1st Jump inversion Theorem)

If $\overrightarrow{0'}$ is r.i.computable in \mathcal{A} , there exists a structure \mathcal{B} such that $\mathcal{B'}$ is equivalent to \mathcal{A} .

for \equiv_w . [Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon]

for \equiv_w . [A. Soskova] independently, different proof, and relative to any structure.

for \equiv_{Σ} . [Stukachev] for arbitrary size structures.

Question:

Which structures are \equiv_I -equivalent to the jump of a structure?

Theorem (1st Jump inversion Theorem - α -iteration)

If $\overrightarrow{0^{(\alpha)}}$ is r.i.computable in \mathcal{A} , there exists a structure \mathcal{B} such that $\mathcal{B}^{(\alpha)}$ is equivalent to \mathcal{A} .

[Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon] used it to build a structure that is Δ_{α} -categorical but not relatively so.

 $\left[\mathsf{Greenberg},\,\mathsf{M},\,\mathsf{Slaman}\right]$ used to build a structure whose spectrum is non-HYP

Theorem (2nd Jump Inversion Theorem)

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.

First proved by [I. Soskov], and then, independently, by [Montalbán], using their respective notions of jump, but similar proofs.

Theorem (2nd Jump Inversion Theorem)

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.

- **Cor:** $Sp(\mathcal{A}') = \{x' : x \in Sp(\mathcal{A})\}$
- **Cor:** [Frolov] If 0' computes a copy of $(\mathcal{L}, succ)$, \mathcal{L} has a low copy.

Cor: If R is r.i. Σ_2^0 in A, then R is r.i.c.e. in A'. It follows that r.i. Σ_n^0 relations are Σ_n^c -definable. [Ash, Knight, Manasse, Slaman; Chisholm]

Cor:[M] Given \mathcal{A} , the following are equivalent:

- Low property: If $X \in Sp(\mathcal{A})$ and $X' \equiv_T Y'$ then $Y \in Sp(\mathcal{A})$.
- Strong jump inversion: If $X' \in Sp(\mathcal{A}')$ then $X \in Sp(\mathcal{A})$.

Fixed point theorem

Recall: For $A \subseteq \mathbb{N}$, $A \not\equiv_T A'$.

Theorem ([M])

The existence of A with Sp(A) = Sp(A'), is not provable in full nth-order arithmetic for any n.

Note: Almost all of classical mathematics can be proved in nth-order arithmetic for some n, (except for set theory or model theory).

Theorem ([M] using $0^{\#}$; [S.Friedman, Welch] in ZFC)

There is a structure \mathcal{A} such that $\mathcal{A} \equiv_{I} \mathcal{A}'$.

Idea of proof: Build \mathcal{A} as a non-well-founded ω -model of V = L such that for some $\alpha \in \mathcal{A}$, $\mathcal{A} \cong L^{\mathcal{A}}_{\alpha}$.

Definition (M.)

 $P_0, ..., P_k, ...$ are a *complete set of* Σ_n^c *relations on* \mathcal{A} if they are uniformly Σ_n^c and $\bigoplus_k P_k \oplus \overline{0^{(n)}} \equiv_s^{\mathcal{A}} \emptyset^{(n)^{\mathcal{A}}}$.

Question:

For which \mathcal{A} and n, is there a finite complete sets of Σ_n^c relations?

Question:

For which \mathcal{A} and n, is there a nice complete sets of Σ_n^c relations?

Examples of Jump of Structure

Ex: Let \mathcal{A} be a *Boolean algebra*. Then

 ${\emptyset'}^{\mathcal{A}} \equiv^{\mathcal{A}}_{s} atom \oplus \overrightarrow{\mathfrak{0}'}.$

 $\emptyset''^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} atom(x) \oplus atomless(x) \oplus finite(x) \oplus \overline{0''}$

 $\emptyset'''^{\mathcal{A}} \equiv^{\mathcal{A}}_{s} \textit{atom} \oplus \textit{atomless} \oplus \textit{finite} \oplus \textit{atomic} \oplus 1 \textit{-atom} \oplus \textit{atominf} \oplus \overline{0'''}$

 $\emptyset^{(4)^{\mathcal{A}}} \equiv_{s}^{\mathcal{A}} atom \oplus atomless \oplus finite \oplus atomic \oplus 1-atom \oplus atominf \oplus$ $\sim -inf \oplus Int(\omega + \eta) \oplus infatomicless \oplus 1-atomless \oplus nomaxatomless \oplus \overrightarrow{0^{(4)}}$ These relations were used by Thurber [95], Knight and Stob [00].

Theorem (K.Harris – M. 08)

On Boolean algebras, $\forall n \in \mathbb{N}$, there is a finite sequence $P_0, ..., P_{k_n}$, s.t. for all \mathcal{A} $\emptyset^{(n)^{\mathcal{A}}} \equiv_s^{\mathcal{A}} P_0(x) \oplus ... \oplus P_{k_n}(x) \oplus \overrightarrow{0^{(n)}}$.

Examples: Nice complete sets of Σ_n^c relations.

Let \mathcal{L} be a linear ordering.

Ex: Let \mathcal{L} be a *linear ordering*. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{L}} succ(x, y) \oplus \overrightarrow{0'}$.

Ex: [Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev] We don't need infinitely many relations. $\emptyset''^{\mathcal{L}} \equiv_{s}^{\mathcal{L}} limleft(x) \oplus limright(x) \oplus P(x, y, z, w) \oplus \overrightarrow{0''}$ where $P(x, y, z, w) \equiv \exists n (succ^{n}(y) = z \& D_{n+2}(x, w))$

Thm: [M.] There is no relativizable (and hence nice) set of Σ_3^c relations that work for all linear orderings simultaneously.

Let $\mathcal V$ be an infinite dimensional $\mathbb Q\text{-vector space}.$

$$\emptyset^{\prime^{\mathcal{A}}} \equiv_{s}^{\mathcal{A}} \vec{LD} \oplus \vec{0'}$$
where $\vec{LD} = (LD_1, LD_2, ...)$, and $LD_i = \{(v_1, ..., v_i) : v_1, ..., v_i \text{ are lin. dep.} \}$

Thm: [Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev] No finite set of relations is Σ_1^c complete in \mathcal{V} . Let $\mathcal{A} = (\mathcal{A}; \equiv)$ be an equivalence structure.

Ex: $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} (E_{k}(x) : k \in \mathbb{N}) \oplus \overrightarrow{R} \oplus \overrightarrow{0'}$, where $E_{k}(x) \iff$ there are $\geq k$ elements equivalent to x, and $R = \{\langle n, k \rangle \in \mathbb{N}^{2} : \text{there are } \geq n \text{ equivalence classes with } \geq k \text{ elements} \}$.

Suppose that \mathcal{A} has infinitely many classes of each size. **Thm:**[Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev] No finite set of relations is Σ_1^c complete in \mathcal{A} .

Theorem ([M])

Let \mathbb{K} be an axiomatizable class of structures. Exactly one of the following holds:

(relative to any sufficiently large oracle)

① There is a nice characterization of $\mathcal{A}^{(n)}$:

- There is a uniform, rel, countable complete sets of Σ_n^c rels.
- No set can be coded by the (n-1)st jump of any $A \in \mathbb{K}$.
- There are countably many n-back-and-forth equivalence classes
- 2 Every set can be coded in $\mathcal{A}^{(n-1)}$:
 - $\forall X \subseteq \omega$, there is a $\mathcal{A} \in \mathbb{K}$ s.t. X is a r.i.c.e. real in $\mathcal{A}^{(n-1)}$,
 - There is no uniform, rel, countable complete sets of Σ_n^c rels.
 - \exists Continuum many n-back-and-forth equivalence classes