The jump of a structure.

Antonio Montalbán.
U. of Chicago

Singapore – August 2011
General program:
Study the complexity of relations within a given structure.
Goal

General program:
Study the complexity of relations within a given structure.

In this talk:

- Propose a framework for this analysis.
- Describe the jump of a relation and of a structure.
- Examples.
- Recent results.
Def: By *structure* we mean a tuple $\mathcal{A} = (A; P_0, P_1, \ldots, f_0, f_1, \ldots)$ where $P_i \subseteq A^{n_i}$, and $f_i: A^{m_i} \rightarrow A$.

The jump of a structure.
Def: By \textit{structure} we mean a tuple $A = (A; P_0, P_1, \ldots, f_0, f_1, \ldots)$ where $P_i \subseteq A^{n_i}$, and $f_i: A^{m_i} \rightarrow A$. The arity functions n_i and m_i are always computable.
Def: By *structure* we mean a tuple $\mathcal{A} = (A; P_0, P_1, ..., f_0, f_1, ..)$
where $P_i \subseteq A^{n_i}$, and $f_i: A^{m_i} \rightarrow A$.

The arity functions n_i and m_i are always computable.
We will code the functions as relations, so $\mathcal{A} = (A; P_0, P_1, ...,)$.
Def: By \textit{structure} we mean a tuple $\mathcal{A} = (A; P_0, P_1, ..., f_0, f_1, ..)$ where $P_i \subseteq A^{n_i}$, and $f_i: A^{m_i} \to A$.

The arity functions n_i and m_i are always computable.

We will code the functions as relations, so $\mathcal{A} = (A; P_0, P_1, ..., ...)$. An isomorphic copy of \mathcal{A} where $A \subseteq \mathbb{N}$ is called a \textit{presentation} of \mathcal{A}.
Def: By *structure* we mean a tuple $\mathcal{A} = (A; P_0, P_1, ..., f_0, f_1, ..)$ where $P_i \subseteq A^{n_i}$, and $f_i : A^{m_i} \rightarrow A$.

The arity functions n_i and m_i are always computable.

We will code the functions as relations, so $\mathcal{A} = (A; P_0, P_1, ..., ...)$. An isomorphic copy of \mathcal{A} where $A \subseteq \mathbb{N}$ is called a *presentation* of \mathcal{A}.

Def: The presentation \mathcal{A} is *X-computable* if

A and $\bigoplus_i P_i$ are X-computable.
Def: By *structure* we mean a tuple $\mathcal{A} = (A; P_0, P_1, ..., f_0, f_1, ..)$ where $P_i \subseteq A^{n_i}$, and $f_i: A^{m_i} \rightarrow A$.

The arity functions n_i and m_i are always computable.

We will code the functions as relations, so $\mathcal{A} = (A; P_0, P_1, ...,)$.

An isomorphic copy of \mathcal{A} where $A \subseteq \mathbb{N}$ is called a *presentation* of \mathcal{A}.

Def: The presentation \mathcal{A} is *X-computable* if A and $\bigoplus_i P_i$ are X-computable.

Def: X is *computable in* the presentation \mathcal{A} if $X \leq A \oplus \bigoplus_i P_i$.
Def: By *structure* we mean a tuple $\mathcal{A} = (A; P_0, P_1, ..., f_0, f_1, ..)$ where $P_i \subseteq A^{n_i}$, and $f_i: A^{m_i} \rightarrow A$.

The arity functions n_i and m_i are always computable.

We will code the functions as relations, so $\mathcal{A} = (A; P_0, P_1, ..., ...)$.

An isomorphic copy of \mathcal{A} where $A \subseteq \mathbb{N}$ is called a *presentation* of \mathcal{A}.

Def: The presentation \mathcal{A} is *X-computable* if

A and $\bigoplus P_i$ are X-computable.

Def: X is *computable in* the presentation \mathcal{A} if $X \leq A \oplus \bigoplus P_i$.

Def: The *spectrum* of the isomorphism type of \mathcal{A}:

$Sp(\mathcal{A}) = \{ X \subseteq \mathbb{N} : X \text{ computes a copy of } \mathcal{A} \}$.
Let \(\mathcal{A} \) be a structure.

Def: \(R \subseteq A^n \) is *r.i.c.e.* *(relatively intrinsically computably enumerable)* if for every presentation \((B, R^B)\) of \((\mathcal{A}, R)\), \(R^B \) is c.e. in \(B \).

Example: Let \(\mathcal{L} \) be a linear ordering. Then \(\neg \text{succ} = \{ (x, y) \in \mathcal{L}^2 : \exists z (x < z < y) \} \) is r.i.c.e.

Example: Let \(\mathcal{V} \) be a vector space. Then \(\text{LD}_3 = \{ (u, v, w) \in \mathcal{V}^3 : u, v \text{ and } w \text{ are not L.I.} \} \) is r.i.c.e.
Let \mathcal{A} be a structure.

Def: $R \subseteq A^n$ is *r.i.c.e. (relatively intrinsically computably enumerable)* if for every presentation (B, R^B) of (\mathcal{A}, R), R^B is c.e. in B.

Example: Let \mathcal{L} is a linear ordering. Then
$\neg succ = \{(x, y) \in L^2 : \exists z (x < z < y)\}$ is r.i.c.e.
R.I.C.E. Relations

Let \mathcal{A} be a structure.

Def: $R \subseteq A^n$ is *r.i.c.e. (relatively intrinsically computably enumerable)* if for every presentation $(\mathcal{B}, R^\mathcal{B})$ of (\mathcal{A}, R), $R^\mathcal{B}$ is c.e. in \mathcal{B}.

Example: Let \mathcal{L} is a linear ordering. Then $\neg \text{succ} = \{(x, y) \in L^2 : \exists z (x < z < y)\}$ is r.i.c.e.

Example: Let \mathcal{V} be a vector space. Then $LD_3 = \{(u, v, w) \in V^3 : u, v \text{ and } w \text{ are not L.I.}\}$ is r.i.c.e.
Let \(\mathcal{A} \) be a structure.

Def: \(R \subseteq A^n \) is \textit{r.i.c.e.} (relatively intrinsically computably enumerable) if for every presentation \((\mathcal{B}, R^\mathcal{B})\) of \((\mathcal{A}, R)\), \(R^\mathcal{B} \) is c.e. in \(\mathcal{B} \).

Example: Let \(\mathcal{L} \) is a linear ordering. Then
\[\neg\text{succ} = \{(x, y) \in L^2 : \exists z (x < z < y)\} \] is r.i.c.e.

Example: Let \(\mathcal{V} \) be a vector space. Then
\[LD_3 = \{(u, v, w) \in V^3 : u, v \text{ and } w \text{ are not L.I.}\} \] is r.i.c.e.

Def: \(R \subseteq A^n \) is \textit{r.i.computable} (relatively intrinsically computable) if \(R \) and \((A^n \setminus R)\) are both r.i.c.e.
Thm: [Ash, Knight, Manasse, Slaman; Chisholm]

\(R \subseteq A^n \). The following are equivalent:

- \(R \) is r.i.c.e.
R.I.C.E. – a frequently re-discovered concept

Thm: [Ash, Knight, Manasse, Slaman; Chisholm]

$R \subseteq A^n$. The following are equivalent:

- R is r.i.c.e.
- R is defined by a c.e. disjunction of \exists-formulas, i.e. by a *computably infinitary Σ_1-formula* (à la Ash)

We now want a complete r.i.c.e. relation.
Thm: [Ash, Knight, Manasse, Slaman; Chisholm] [Vaĭtsenavichyus]
\(R \subseteq A^n \). The following are equivalent:

- \(R \) is r.i.c.e.

- \(R \) is defined by a c.e. disjunction of \(\exists \)-formulas, i.e. by a *computably infinitary \(\Sigma_1 \)-formula*
 (à la Ash)

And, when the language is finite:

- \(R \) is defined by an \(\exists \)-formula in \(\mathbb{HF}(A) \).
 (à la Ershov)

 (\(\mathbb{HF}(A) \) is the hereditarily finite extension of \(A \))
R.I.C.E. – a frequently re-discovered concept

Thm: [Ash, Knight, Manasse, Slaman; Chisholm] [Vaĭtsenavichyus] [Gordon]

$R \subseteq A^n$. The following are equivalent:

- R is r.i.c.e.
- R is defined by a c.e. disjunction of \exists-formulas,
 i.e. by a *computably infinitary Σ_1-formula* (à la Ash)

And, when the language is finite:

- R is defined by an \exists-formula in $\mathbb{HF}(A)$. (à la Ershov)

 ($\mathbb{HF}(A)$ is the hereditarily finite extension of A)
- R is semi-search computable. (à la Moschovakis).
Thm: [Ash, Knight, Manasse, Slaman; Chisholm] [Vaĭtsenavichyus] [Gordon]

$R \subseteq A^n$. The following are equivalent:

- R is r.i.c.e.
- R is defined by a c.e. disjunction of \exists-formulas, i.e. by a *computably infinitary Σ_1-formula* (à la Ash)

And, when the language is finite:

- R is defined by an \exists-formula in $\mathbb{HF}(A)$. (à la Ershov)
 ($\mathbb{HF}(A)$ is the hereditarily finite extension of A)
- R is semi-search computable. (à la Moschovakis).

r.i.c.e. relations on A are the analog of c.e. subsets of \mathbb{N}.

We now want a *complete* r.i.c.e. relation.
We consider infinite sequences of relations $\bar{R} = (R_0, R_1, ...)$, (where $R_i \subseteq A^{a_i}$, and the arity function is always primitive computable)
Sequences of relations

We consider infinite sequences of relations $\vec{R} = (R_0, R_1, ...)$,
(where $R_i \subseteq A^{a_i}$, and the arity function is always primitive computable)

Def: \vec{R} is *r.i.c.e.* in A if
for every presentation $(\mathcal{B}, \vec{R}^\mathcal{B})$ of (A, \vec{R}), $\vec{R}^\mathcal{B}$ is uniformly c.e. in \mathcal{B}.
Sequences of relations

We consider infinite sequences of relations \(\vec{R} = (R_0, R_1, \ldots) \),
(where \(R_i \subseteq A^{a_i} \), and the arity function is always primitive computable)

Def: \(\vec{R} \) is **r.i.c.e.** in \(A \) if
for every presentation \((B, \vec{R}^B)\) of \((A, \vec{R})\), \(\vec{R}^B \) is uniformly c.e. in \(B \).

Ex: Let \(\mathcal{V} \) be a \(\mathbb{Q} \)-vector space. Then \(LD = (LD_1, LD_2, \ldots) \), given by \(LD_i = \{ (v_1, \ldots, v_i) : v_1, \ldots, v_i \text{ are linearly dependent} \} \), is r.i.c.e.
We consider infinite sequences of relations $\vec{R} = (R_0, R_1, ...)$, (where $R_i \subseteq A^{a_i}$, and the arity function is always primitive computable)

Def: \vec{R} is r.i.c.e. in A if for every presentation (B, \vec{R}_B) of (A, \vec{R}), \vec{R}_B is uniformly c.e. in B.

Ex: Let V be a \mathbb{Q}-vector space. Then $\vec{LD} = (LD_1, LD_2, ...)$, given by $LD_i = \{ (v_1, ..., v_i) : v_1, ..., v_i \text{ are linearly dependent} \}$, is r.i.c.e.

Example: Let A be a ring. Then $\vec{R} = (R_1, R_2,)$, given by $R_i = \{ (a_0, ..., a_i) : a_i x^i + ... + a_1 x + a_0 \text{ is reducible polynomial} \}$, is r.i.c.e.
Def: Let $\mathcal{SR}(A)$ be the set of all sequences of relations in A with primitive recursive arity functions.

Let $\vec{R}, \vec{Q} \in \mathcal{SR}(A)$.
The upper-semi lattice of sequences of relations – à la Soskov’s structure-degrees

Def: Let $\mathcal{SR}(\mathcal{A})$ be the set of all *sequences of relations* in \mathcal{A} with primitive recursive arity functions. Let $\bar{R}, \bar{Q} \in \mathcal{SR}(\mathcal{A})$.

Def: Let $\bar{R} \leq_{\mathcal{A}} \bar{Q} \iff \bar{R}$ is r.i.-computable in (\mathcal{A}, \bar{Q}).
Def: Let $\mathcal{SR}(\mathcal{A})$ be the set of all sequences of relations in \mathcal{A} with primitive recursive arity functions.

Let $\vec{R}, \vec{Q} \in \mathcal{SR}(\mathcal{A})$.

Def: Let $\vec{R} \leq^A \vec{Q} \iff \vec{R}$ is r.i.computable in (\mathcal{A}, \vec{Q}).

Def: Let $\vec{R} \oplus \vec{Q}$ be the sequence $(R_0, Q_0, R_1, Q_1, \ldots)$.
Let $\varphi_0, \varphi_1, \ldots$ be an effective listing of all c.e.-disjunctions of \exists-formulas about A, ...
Let $\varphi_0, \varphi_1, \ldots$ be an effective listing of all c.e.-disjunctions of \exists-formulas about A, i.e. of all *computably infinitary Σ_1-formulas*.

Definition

Let $\vec{K}_A = (K_0, K_1, \ldots)$ be such that $A|\bar{x} \iff \varphi_i(\bar{x})$.

Obs: \vec{K}_A is complete among r.i.c.e. sequences of relations in A. I.e. If \vec{Q} is r.i.c.e., there is $\bar{a} \in A^{<\omega}$ and a computable $f: \mathbb{N} \to \mathbb{N}$ s.t. $\forall \bar{b} \forall i (\bar{b} \in Q_i \iff (\bar{a}, \bar{b}) \in K_f(i))$.

Definition

Given \vec{Q}, let the jump of \vec{Q} in A be $\vec{K}((A, \vec{Q}))$. We denote it by \vec{Q}'_A.

Note: $\vec{K}_A = \emptyset'_{\vec{A}}$.

Note: We can also define \vec{Q}''_A as $\vec{K}((A, \vec{Q}'_A))$.

Antonio Montalbán. U. of Chicago.

The jump of a structure.
The jump of a relation

Let $\varphi_0, \varphi_1, \ldots$ be an effective listing of all c.e.-disjunctions of \exists-formulas about \mathcal{A}, i.e. of all computably infinitary Σ_1-formulas.

Definition

Let $\vec{K}^\mathcal{A} = (K_0, K_1, \ldots)$ be such that $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Note: $\vec{K}^\mathcal{A} = \emptyset'\mathcal{A}$.

Note: We can also define $\vec{Q}''^\mathcal{A}$ as $\vec{K}^\mathcal{A}(\mathcal{A}, \vec{Q}'^\mathcal{A})$.

Antonio Montalbán. U. of Chicago

The jump of a structure.
Let $\varphi_0, \varphi_1, \ldots$ be an effective listing of all c.e.-disjunctions of \exists-formulas about \mathcal{A}, i.e. of all computably infinitary Σ_1-formulas.

Definition

Let $\vec{K}^\mathcal{A} = (K_0, K_1, \ldots)$ be such that $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Obs: $\vec{K}^\mathcal{A}$ is complete among r.i.c.e. sequences of relations in \mathcal{A}.
Let $\varphi_0, \varphi_1, \ldots$ be an effective listing of all c.e.-disjunctions of \exists-formulas about A, i.e. of all \textit{computably infinitary} Σ_1-formulas.

Definition

Let $\vec{K}^A = (K_0, K_1, \ldots)$ be such that $A \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Obs: \vec{K}^A is \textit{complete among r.i.c.e. sequences} of relations in A. I.e. If \vec{Q} is r.i.c.e., there is $\bar{a} \in A^{<\omega}$ and a computable $f : \mathbb{N} \to \mathbb{N}$ s.t.

$$\forall \bar{b} \forall i \ (\bar{b} \in Q_i \iff (\bar{a}, \bar{b}) \in K_{f(i)})$$
The jump of a relation

Let $\varphi_0, \varphi_1, \ldots$ be an effective listing of all c.e.-disjunctions of \exists-formulas about A, i.e. of all *computably infinitary* Σ_1-formulas.

Definition

Let $\vec{K}^A = (K_0, K_1, \ldots)$ be such that $A \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Obs: \vec{K}^A is complete among r.i.c.e. sequences of relations in A. I.e. If \vec{Q} is r.i.c.e., there is $\bar{a} \in A^{<\omega}$ and a computable $f : \mathbb{N} \to \mathbb{N}$ s.t.

$$\forall \bar{b} \forall i \ (\bar{b} \in Q_i \iff (\bar{a}, \bar{b}) \in K_{f(i)})$$

Definition

Given \vec{Q}, let *the jump of \vec{Q} in A* be $\vec{K}^{(A, \vec{Q})}$.
Let \(\varphi_0, \varphi_1, \ldots \) be an effective listing of all c.e.-disjunctions of \(\exists \)-formulas about \(\mathcal{A} \), i.e. of all computably infinitary \(\Sigma_1 \)-formulas.

Definition

Let \(\vec{K}^\mathcal{A} = (K_0, K_1, \ldots) \) be such that \(\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x}) \).

Obs: \(\vec{K}^\mathcal{A} \) is complete among r.i.c.e. sequences of relations in \(\mathcal{A} \). I.e. If \(\vec{Q} \) is r.i.c.e., there is \(\bar{a} \in A^{<\omega} \) and a computable \(f: \mathbb{N} \rightarrow \mathbb{N} \) s.t.

\[
\forall \bar{b} \forall i \ (\bar{b} \in Q_i \iff (\bar{a}, \bar{b}) \in K_{f(i)})
\]

Definition

Given \(\vec{Q} \), let the jump of \(\vec{Q} \) in \(\mathcal{A} \) be \(\vec{K}^{(\mathcal{A}, \vec{Q})} \). We denote it by \(\vec{Q}'^\mathcal{A} \).
The jump of a relation

Let $\varphi_0, \varphi_1, \ldots$ be an effective listing of all c.e.-disjunctions of \exists-formulas about A, i.e. of all computably infinitary Σ_1-formulas.

Definition

Let $\vec{K}^A = (K_0, K_1, \ldots)$ be such that $A \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Obs: \vec{K}^A is complete among r.i.c.e. sequences of relations in A. I.e. If \vec{Q} is r.i.c.e., there is $\bar{a} \in A^{<\omega}$ and a computable $f : \mathbb{N} \rightarrow \mathbb{N}$ s.t.

$$\forall \bar{b} \forall i \ (\bar{b} \in Q_i \iff (\bar{a}, \bar{b}) \in K_{f(i)})$$

Definition

Given \vec{Q}, let the jump of \vec{Q} in A be $\vec{K}^{(A, \vec{Q})}$. We denote it by \vec{Q}'^A.

Note: $\vec{K}^A = \emptyset^A$.
Let \(\varphi_0, \varphi_1, \ldots \) be an effective listing of all c.e.-disjunctions of \(\exists \)-formulas about \(A \), i.e. of all computably infinitary \(\Sigma_1 \)-formulas.

Definition

Let \(\vec{K}^A = (K_0, K_1, \ldots) \) be such that \(A \models \bar{x} \in K_i \iff \varphi_i(\bar{x}) \).

Obs: \(\vec{K}^A \) is complete among r.i.c.e. sequences of relations in \(A \). I.e. If \(\vec{Q} \) is r.i.c.e., there is \(\bar{a} \in A^{<\omega} \) and a computable \(f : \mathbb{N} \to \mathbb{N} \) s.t.

\[
\forall \bar{b} \forall i \ (\bar{b} \in Q_i \iff (\bar{a}, \bar{b}) \in K_{f(i)})
\]

Definition

Given \(\vec{Q} \), let the jump of \(\vec{Q} \) in \(A \) be \(\vec{K}^{(A, \vec{Q})} \). We denote it by \(\vec{Q}'^A \).

Note: \(\vec{K}^A = \emptyset^A \).

Note: We can also define \(\vec{Q}''^A \) as \(\vec{K}^{(A, \vec{Q}'^A)} \).
Def: Given $X \subseteq \mathbb{N}$, let $\vec{X} = (X_0, X_1, \ldots)$ where $X_i = \begin{cases} A & \text{if } i \in X \\ \emptyset & \text{if } i \notin X \end{cases}$
Def: Given $X \subseteq \mathbb{N}$, let $\vec{X} = (X_0, X_1, \ldots)$ where $X_i = \begin{cases} A & \text{if } i \in X \\ \emptyset & \text{if } i \notin X \end{cases}$

Obs: Then, if X is c.e. $\Rightarrow \vec{X}$ is r.i.c.e. in \mathcal{A}.
Def: Given $X \subseteq \mathbb{N}$, let $\vec{X} = (X_0, X_1, ..)$ where $X_i = \begin{cases} A & \text{if } i \in X \\ \emptyset & \text{if } i \notin X \end{cases}$

Obs: Then, if X is c.e. $\implies \vec{X}$ is r.i.c.e. in A.

Obs: $X \leq_T Y \implies \vec{X} \leq_s A \vec{Y}$.
Def: Given $X \subseteq \mathbb{N}$, let $\vec{X} = (X_0, X_1, ..)$ where $X_i = \begin{cases} A & \text{if } i \in X \\ \emptyset & \text{if } i \not\in X \end{cases}$

Obs: Then, if X is c.e. $\implies \vec{X}$ is r.i.c.e. in A.

Obs: $X \leq_T Y \implies \vec{X} \leq_s \vec{Y}$.

Recall: $\emptyset^A = \vec{K}^A = (K_0, K_1, ...)$ where $A \models \bar{x} \in K_i(\bar{x}) \iff \varphi_i(\bar{x})$.

Notice: $0'$ is the sequence of trivial relations that codes $0' \subseteq \mathbb{N}$.

Antonio Montalbán. U. of Chicago

The jump of a structure.
Def: Given $X \subseteq \mathbb{N}$, let $\vec{X} = (X_0, X_1, ..)$ where $X_i = \begin{cases} A & \text{if } i \in X \\ \emptyset & \text{if } i \notin X \end{cases}$

Obs: Then, if X is c.e. $\implies \vec{X}$ is r.i.c.e. in A.

Obs: $X \leq_T Y \implies \vec{X} \leq^A \vec{Y}$.

Recall: $\emptyset'^A = \vec{K}^A = (K_0, K_1, ...)$ where $\mathcal{A} \models \bar{x} \in K_i(\bar{x}) \iff \varphi_i(\bar{x})$.

Notice: $0'$ is the sequence of trivial relations that codes $0' \subseteq \mathbb{N}$.

Obs: $0' \leq^A \emptyset'$.
Examples of Jump of Structure

Ex: Let \mathcal{A} be a \mathbb{Q}-vector space. Then

$$\emptyset^\mathcal{A} \equiv^s \mathcal{A} \overset{L\overline{D}}{\oplus} 0'.$$
Examples of Jump of Structure

Ex: Let \(\mathcal{A} \) be a \(\mathbb{Q} \)-vector space. Then
\[
\emptyset'_{\mathcal{A}} \equiv_{s}^{\mathcal{A}} L \hat{D} \oplus \vec{0}'.
\]

Ex: Let \(\mathcal{A} \) be a linear ordering. Then
\[
\emptyset'_{\mathcal{A}} \equiv_{s}^{\mathcal{A}} \text{succ}(x, y) \oplus \vec{0}'.
\]
Examples of Jump of Structure

Ex: Let \mathcal{A} be a \mathbb{Q}-vector space. Then
\[\emptyset'_{\mathcal{A}} \equiv^A_s \vec{L} \hat{D} \oplus 0'. \]

Ex: Let \mathcal{A} be a linear ordering. Then
\[\emptyset'_{\mathcal{A}} \equiv^A_s \text{succ}(x, y) \oplus 0'. \]

Ex: Let \mathcal{A} be a linear ordering with endpoints. Then
\[\emptyset''_{\mathcal{A}} \equiv^A_s \text{limleft}(x) \oplus \text{limright}(x) \oplus \bigoplus_n D_n(x, y) \oplus 0'' \]
where $D_n(x, y) \equiv \text{“exists } n\text{-string of succ in between } x \text{ and } y\text{.”}$
Examples of Jump of Structure

Ex: Let \mathcal{A} be a \mathbb{Q}-vector space. Then
$$\emptyset'^A \equiv^s_A LD \oplus 0'.$$

Ex: Let \mathcal{A} be a linear ordering. Then
$$\emptyset'^A \equiv^s_A \text{succ}(x, y) \oplus 0'.
$$

Ex: Let \mathcal{A} be a *linear ordering* with endpoints. Then
$$\emptyset''^A \equiv^s_A \limleft(x) \oplus \limright(x) \oplus \bigoplus_n D_n(x, y) \oplus 0''$$
where $D_n(x, y) \equiv \text{“exists } n\text{-string of succ in between } x \text{ and } y.\text{”}\n$

Ex: Let $\mathcal{A} = (A, \equiv)$ where \equiv is an *equivalence relation*. Then
$$\emptyset'^A \equiv^s_A (E_k(x) : k \in \mathbb{N}) \oplus \overrightarrow{R} \oplus 0',$$
where $E_k(x) \iff \text{there are } \geq k \text{ elements equivalent to } x,$
and $R = \{\langle n, k \rangle \in \mathbb{N}^2 : \text{there are } \geq n \text{ equivalence classes with } \geq k \text{ elements}\}$.
Theorem [Vatev][Stukachev][M] For every \bar{Q}, $\bar{Q} \prec^A_{s} \bar{Q}'^A$.
No fixed point for the jump of relations

Theorem [Vatev][Stukachev][M] For every \(\bar{Q}, \bar{Q}' \), \(\bar{Q} \preceq^A \bar{Q}'^A \).

Proof [M]: *Diagonalization:* Let \(K_{i,j}(\bar{x}) \equiv \psi_{i,j}(\bar{x}) \) where \(\psi_{i,j} \) is the \(i \)th \(\Sigma_1^c \) formula with arity \(j \).

Suppose, toward a contradiction, that \(K \) is co-r.i.c.e.

Let \(R_{e,j}(\bar{x}) \equiv \neg K_{\{e\}(e,j),2j}(\bar{x}, \bar{x}) \).

Since \(R \) is r.i.c.e., there is \(\bar{a} \in A^n \) and computable function \(\{k\} \) s.t.

\[R_{e,j}(\bar{x}) \equiv K_{\{k\}(e,j),n+j}(\bar{a}, \bar{x}). \]

Diagonalize: \(K_{k,2n}(\bar{a}, \bar{a}) \iff \neg K_{k,2n}(\bar{a}, \bar{a}). \)
3 at the price of 1.

Thm: [Ash, Knight, Manasse, Slaman; Chisholm]

Let $\vec{R} = (R_0, R_1, \ldots)$ be a sequences of relations in \mathcal{A}. TFAE:

- \vec{R} is r.i.c.e.

- There is a $\bar{a} \in A^{<\omega}$ and a comp. list $\varphi_0, \varphi_1, \ldots$ of Σ_1^c-formulas such that $\bar{b} \in R_i \iff \varphi_i(\bar{a}, \bar{b})$.

Corollary: [Knight]

Let $X \subseteq \omega$. TFAE:

- X is c.e. in every copy of A.

- X is e-reducible to $\Sigma_1^{\mathcal{A}}(\bar{a})$ for some $\bar{a} \in A^{<\omega}$.

Corollary: [Selman]

Let $A, B \subseteq \omega$. TFAE:

- Every enumeration of B computes an enumeration of A.

- There is a Turing operator that maps enumeration of B into enumerations of A.

Thm: [Ash, Knight, Manasse, Slaman; Chisholm]
Let \(\vec{R} = (R_0, R_1, \ldots) \) be a sequences of relations in \(\mathcal{A} \). TFAE:
- \(\vec{R} \) is r.i.c.e.
- There is a \(\vec{a} \in A^{<\omega} \) and a comp. list \(\varphi_0, \varphi_1, \ldots \) of \(\Sigma_1 \) formulas such that \(\vec{b} \in R_i \iff \varphi_i(\vec{a}, \vec{b}) \).

Corollary:[Knight] Let \(X \subseteq \omega \). TFAE:
- \(X \) is c.e. in every copy of \(\mathcal{A} \).
- \(X \) is e-reducible to \(\Sigma_1\text{-tp}_{\mathcal{A}}(\vec{a}) \) for some \(\vec{a} \in A^{<\omega} \).
THM: [Ash, Knight, Manasse, Slaman; Chisholm]
Let $\vec{R} = (R_0, R_1, ...)$ be a sequences of relations in \mathcal{A}. TFAE:

- \vec{R} is r.i.c.e.
- There is a $\bar{a} \in A^{<\omega}$ and a comp. list $\varphi_0, \varphi_1, ...$ of $\Sigma_1^\mathcal{A}$-formulas such that $\bar{b} \in R_i \iff \varphi_i(\bar{a}, \bar{b})$.

COROLLARY: [Knight] Let $X \subseteq \omega$. TFAE:

- X is c.e. in every copy of \mathcal{A}.
- X is e-reducible to $\Sigma_1^{\mathcal{A}}(\bar{a})$ for some $\bar{a} \in A^{<\omega}$.

COROLLARY: [Selman] Let $A, B \subseteq \omega$. TFAE:

- Every enumeration of B computes an enumeration of A.
- There is a Turing operator that maps enumeration of B into enumerations of A.
Recall: \(\overline{A}' = (K_0, K_1, \ldots) \) where \(A| = \overline{x} \in K_i \iff \phi_i(\overline{x}) \).

Definition

Let \(A' \) be the structure \((A, \overrightarrow{K}_A) \).

(i.e. add infinitely many relations to the language interpreting the \(K_i \)’s)

There were various independent definitions of the jump of a structure \(A' \):

- Baleva. domain: Moschovakis extension of \(A \times \mathbb{N} \).
 relation: add a universal computably infinitary \(\Sigma_1 \) relation.

- I. Soskov. domain: Moschovakis extension of \(A \).
 relation: add a predicate for forcing \(\Pi_1 \) formulas.

- Stukachev. considered arbitrary cardinality, and \(\Sigma \)-reducibility
 domain: Hereditarily finite extension of \(A \), \(\text{HF}(A) \).
 relation: add a universal finitary \(\Sigma_1 \) relation.

- Montalbán. The definition above.
Recall: $\emptyset^A = \vec{K}^A = (K_0, K_1, \ldots)$ where $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Definition
Let A' be the structure (A, \vec{K}^A).

(i.e. add infinitely many relations to the language interpreting the K_i's)

There were various independent definitions of the jump of a structure A':

- Baleva. domain: Moschovakis extension of $A \times \mathbb{N}$.
 relation: add a universal computably infinitary Σ_1 relation.

- I. Soskov. domain: Moschovakis extension of A.
 relation: add a predicate for forcing Π_1 formulas.

- Stukachev. considered arbitrary cardinality, and Σ-reducibility
 domain: Hereditarily finite extension of A, $HF(A)$.
 relation: add a universal finitary Σ_1 relation.

- Montalbán. The definition above.
Recall: $\emptyset^A = \vec{K}^A = (K_0, K_1, \ldots)$ where $A \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Definition

Let A' be the structure (A, \vec{K}^A).

(i.e. add infinitely many relations to the language interpreting the K_i’s)
Recall: $\emptyset^A = \vec{K}^A = (K_0, K_1, \ldots)$ where $A \models \vec{x} \in K_i \iff \varphi_i(\vec{x})$.

Definition

Let A' be the structure (A, \vec{K}^A).

(i.e. add infinitely many relations to the language interpreting the K_i's)

There were various independent definitions of the jump of a structure A':

- **Baleva.**
 - domain: Moschovakis extension of $A \times \mathbb{N}$.
 - relation: add a universal computably infinitary Σ_1 relation.

- **I. Soskov.**
 - domain: Moschovakis extension of A.
 - relation: add a predicate for forcing Π_1 formulas.

- **Stukachev.** considered arbitrary cardinality, and Σ-reducibility
 - domain: Hereditarily finite extension of A, $\mathcal{H}(A)$.
 - relation: add a universal finitary Σ_1 relation.

- **Montalbán.** The definition above.
Let \mathcal{A} and \mathcal{B} be structures.

Recall: $Sp(\mathcal{A}) = \{X \subseteq \mathbb{N} : X$ computes a copy of $\mathcal{A}\}$.

Def: \mathcal{A} is *Muchnik-reducible* to \mathcal{B}:

$\mathcal{A} \leq_w \mathcal{B} \iff Sp(\mathcal{A}) \supseteq Sp(\mathcal{B})$.
Let \mathcal{A} and \mathcal{B} be structures.

Recall: $Sp(\mathcal{A}) = \{X \subseteq \mathbb{N} : X$ computes a copy of $\mathcal{A}\}$.

Def: \mathcal{A} is **Muchnik-reducible** to \mathcal{B}:
$\mathcal{A} \leq_w \mathcal{B} \iff Sp(\mathcal{A}) \supseteq Sp(\mathcal{B})$.

Def: \mathcal{A} is **effectively interpretable** in \mathcal{B}:
$\mathcal{A} \leq_I \mathcal{B} \iff$ there is an interpretation of \mathcal{A} in \mathcal{B}, where
the domain of \mathcal{A} is interpreted in \mathcal{B} by an n-ary r.i.c.e. relation,
and equality and the predicates of \mathcal{A} by r.i.computable relations.
Let \mathcal{A} and \mathcal{B} be structures.

Recall: $\text{Sp}(\mathcal{A}) = \{X \subseteq \mathbb{N} : X \text{ computes a copy of } \mathcal{A}\}$.

Def: \mathcal{A} is **Muchnik-reducible** to \mathcal{B}:

$$\mathcal{A} \leq_w \mathcal{B} \iff \text{Sp}(\mathcal{A}) \supseteq \text{Sp}(\mathcal{B}).$$

Def: \mathcal{A} is **effectively interpretable** in \mathcal{B}:

$$\mathcal{A} \leq_I \mathcal{B} \iff \text{there is an interpretation of } \mathcal{A} \text{ in } \mathcal{B}, \text{ where}
\text{the domain of } \mathcal{A} \text{ is interpreted in } \mathcal{B} \text{ by an } n \text{-ary r.i.c.e. relation,}
\text{and equality and the predicates of } \mathcal{A} \text{ by r.i.computable relations.}$$

Def: \mathcal{A} is **Σ-reducible** to \mathcal{B}: [Khisamiev, Stukachev]

$$\mathcal{A} \leq_\Sigma \mathcal{B} \iff \mathcal{A} \leq_I \text{HF}(\mathcal{B}).$$
Let \mathcal{A} and \mathcal{B} be structures.

Recall: $Sp(\mathcal{A}) = \{X \subseteq \mathbb{N} : X$ computes a copy of $\mathcal{A}\}$.

Def: \mathcal{A} is **Muchnik-reducible** to \mathcal{B}:
$\mathcal{A} \leq_w \mathcal{B} \iff Sp(\mathcal{A}) \supseteq Sp(\mathcal{B})$.

Def: \mathcal{A} is **effectively interpretable** in \mathcal{B}:
$\mathcal{A} \leq_I \mathcal{B} \iff$ there is an interpretation of \mathcal{A} in \mathcal{B}, where the domain of \mathcal{A} is interpreted in \mathcal{B} by an n-ary r.i.c.e. relation, and equality and the predicates of \mathcal{A} by r.i.computable relations.

Def: \mathcal{A} is **Σ-reducible** to \mathcal{B}: [Khisamiev, Stukachev]
$\mathcal{A} \leq_{\Sigma} \mathcal{B} \iff \mathcal{A} \leq_I HF(\mathcal{B})$.

Obs: $\mathcal{A} \leq_I \mathcal{B} \implies \mathcal{A} \leq_{\Sigma} \mathcal{B} \implies \mathcal{A} \leq_w \mathcal{B}$.
Three main theorems about the jump

1. 1st Jump inversion theorem.
2. 2nd Jump inversion theorem.
3. Fixed point theorem.
First Jump Inversion Theorem

Theorem (1st Jump inversion Theorem)

If $\vec{0}'$ is r.i. computable in A, there exists a structure B such that B' is equivalent to A.

[Antonio Montalbán. U. of Chicago]

The jump of a structure.
First Jump Inversion Theorem

Theorem (1st Jump inversion Theorem)

If $0'$ is r.i. computable in A, there exists a structure B such that B' is equivalent to A.

for \equiv_w. [Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon]
Theorem (1st Jump inversion Theorem)

If $0'$ is r.i. computable in \mathcal{A}, there exists a structure \mathcal{B} such that \mathcal{B}' is equivalent to \mathcal{A}.

for \equiv_w. [Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon]

for \equiv_w. [A. Soskova]

independently, different proof, and relative to any structure.
First Jump Inversion Theorem

Theorem (1st Jump Inversion Theorem)

If \(\vec{0}' \) is r.i.computable in \(A \), there exists a structure \(B \) such that \(B' \) is equivalent to \(A \).

for \(\equiv_w \). [Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon]

for \(\equiv_w \). [A. Soskova]
independently, different proof, and relative to any structure.

for \(\equiv_\Sigma \). [Stukachev]
for arbitrary size structures.
Theorem (1st Jump inversion Theorem)

If $0'$ is r.i. computable in A, there exists a structure B such that B' is equivalent to A.

for \equiv_w. [Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon]

for \equiv_w. [A. Soskova]

independently, different proof, and relative to any structure.

for \equiv_Σ. [Stukachev]

for arbitrary size structures.

Q: Which structures are \equiv_I-equivalent to the jump of a structure?
Theorem (1st Jump inversion Theorem - α-iteration)

If $0^{(\alpha)}$ is r.i. computable in A, there exists a structure B such that $B^{(\alpha)}$ is equivalent to A.
Theorem (1st Jump inversion Theorem - α-iteration)

If $0^{(\alpha)}$ is r.i. computable in \mathcal{A},
there exists a structure \mathcal{B} such that $\mathcal{B}^{(\alpha)}$ is equivalent to \mathcal{A}.

[Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon] used it to build a structure that is Δ_α-categorical but not relatively so.
Theorem (1st Jump inversion Theorem - α-iteration)

If $0^{(\alpha)}$ is r.i. computable in A, there exists a structure B such that $B^{(\alpha)}$ is equivalent to A.

[Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon] used it to build a structure that is Δ_α-categorical but not relatively so.

[Greenberg, M, Slaman] used to build a structure whose spectrum is non-HYP
Theorem (2nd Jump Inversion Theorem)

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.

First proved by [I. Soskov], and then, independently, by [Montalbán], using their respective notions of jump, but similar proofs.
Theorem (2nd Jump Inversion Theorem)

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.

First proved by [I. Soskov], and then, independently, by [Montalbán], using their respective notions of jump, but similar proofs.
Theorem (2nd Jump Inversion Theorem)

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.

First proved by [I. Soskov], and then, independently, by [Montalbán], using their respective notions of jump, but similar proofs.
Theorem (2nd Jump Inversion Theorem)

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.
Theorem (2nd Jump Inversion Theorem)

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.

Cor: $Sp(A') = \{ x' : x \in Sp(A) \}$
Theorem (2nd Jump Inversion Theorem)

If Y can compute a copy of \mathcal{A}', then there exists X that computes a copy of \mathcal{A} and $X' \equiv_T Y$.

Cor: $Sp(\mathcal{A}') = \{ x' : x \in Sp(\mathcal{A}) \}$

Cor: [Frolov] If $0'$ computes a copy of $(\mathcal{L}, \text{succ})$, \mathcal{L} has a low copy.
Theorem (2nd Jump Inversion Theorem)

If \(Y \) can compute a copy of \(\mathcal{A}' \), then there exists \(X \) that computes a copy of \(\mathcal{A} \) and \(X' \equiv_T Y \).

Cor: \(\text{Sp}(\mathcal{A}') = \{ x' : x \in \text{Sp}(\mathcal{A}) \} \)

Cor: [Frolov] If \(0' \) computes a copy of \((\mathcal{L}, \text{succ})\), \(\mathcal{L} \) has a low copy.

Cor: If \(R \) is r.i.\(\Sigma^0_2 \) in \(\mathcal{A} \), then \(R \) is r.i.c.e. in \(\mathcal{A}' \). It follows that r.i.\(\Sigma^0_n \) relations are \(\Sigma^c_n \)-definable.

[Ash, Knight, Manasse, Slaman; Chisholm]
Theorem (2nd Jump Inversion Theorem)

If Y *can compute a copy of* A', *then there exists* X *that computes a copy of* A *and* $X' \equiv_T Y$.

Cor: $Sp(A') = \{ x' : x \in Sp(A) \}$

Cor: [Frolov] If $0'$ computes a copy of $(\mathcal{L}, succ)$, \mathcal{L} has a low copy.

Cor: If R is r.i.Σ^0_2 in A, then R is r.i.c.e. in A'.

It follows that r.i.Σ^0_n relations are Σ^c_n-definable.

[Ash, Knight, Manasse, Slaman; Chisholm]

Cor: [M] Given A, the following are equivalent:

- Low property: If $X \in Sp(A)$ and $X' \equiv_T Y'$ then $Y \in Sp(A)$.
- Strong jump inversion: If $X' \in Sp(A')$ then $X \in Sp(A)$.
Recall: For $A \subseteq \mathbb{N}$, $A \not\equiv_T A'$.
Recall: For $A \subseteq \mathbb{N}$, $A \not\equiv_T A'$.

Theorem ([M])

The existence of A with $\text{Sp}(A) = \text{Sp}(A')$, is not provable in full nth-order arithmetic for any n.

The jump of a structure.
Fixed point theorem

Recall: For $A \subseteq \mathbb{N}$, $A \not\equiv_T A'$.

Theorem ([M])

The existence of A with $\text{Sp}(A) = \text{Sp}(A')$, **is not provable in full nth-order arithmetic for any n**.

Note: Almost all of classical mathematics can be proved in nth-order arithmetic for some n, (except for set theory or model theory).
Recall: For $A \subseteq \mathbb{N}$, $A \not\equiv_T A'$.

Theorem ([M])

The existence of A with $\text{Sp}(A) = \text{Sp}(A')$, is not provable in full nth-order arithmetic for any n.

Note: Almost all of classical mathematics can be proved in nth-order arithmetic for some n, (except for set theory or model theory).

Theorem ([M] using $0\#$; [Puzarenko; S.Friedman, Welch] in ZFC)

There is a structure A such that $A \equiv_I A'$.
Recall: For $A \subseteq \mathbb{N}$, $A \not\equiv_T A'$.

Theorem ([M])

The existence of A with $\text{Sp}(A) = \text{Sp}(A')$, is not provable in full nth-order arithmetic for any n.

Note: Almost all of classical mathematics can be proved in nth-order arithmetic for some n, (except for set theory or model theory).

Theorem ([M] using 0#; [Puzarenko; S.Friedman, Welch] in ZFC)

There is a structure A such that $A \equiv_I A'$.

Idea of proof: Build A as a non-well-founded ω-model of $V = L$ such that for some $\alpha \in A$, $A \cong L^A_\alpha$.
Question:
For which A and n is there a nice description of $A^{(n)}$?
Complete sets of Σ^c_n relations

Question:
For which \mathcal{A} and n is there a nice description of $\mathcal{A}^{(n)}$?

Definition (M.)

P_0, \ldots, P_k, \ldots are a **complete sequence of Σ^c_n relations on \mathcal{A}** if they are uniformly Σ^c_n and

$$\bigoplus_k P_k \oplus 0^{(n)} \equiv^A \emptyset^{(n)}_A.$$
Question:
For which \mathcal{A} and n is there a nice description of $\mathcal{A}^{(n)}$?

Definition (M.)

P_0, \ldots, P_k, \ldots are a complete sequence of Σ_n^c relations on \mathcal{A} if they are uniformly Σ_n^c and $\bigoplus_k P_k \oplus 0^{(n)} \equiv_s \mathcal{A} \emptyset(n)^A$.

Question:
For which \mathcal{A} and n, is there a finite complete sets of Σ_n^c relations?
Complete sets of Σ_n^c relations

Question:
For which \mathcal{A} and n is there a nice description of $\mathcal{A}^{(n)}$?

Definition (M.)

$P_0, ..., P_k, ...$ are a **complete sequence of Σ_n^c relations on \mathcal{A}** if they are uniformly Σ_n^c and

$$\bigoplus_k P_k \oplus 0^{(n)} \equiv_s^{A} \emptyset(n)^A.$$

Question:
For which \mathcal{A} and n, is there a finite complete sets of Σ_n^c relations?

Question:
For which \mathcal{A} and n, is there a nice complete sets of Σ_n^c relations?
Examples of Jump of Structure

Ex: Let A be a *Boolean algebra*. Then
Examples of Jump of Structure

Ex: Let \mathcal{A} be a *Boolean algebra*. Then

$$\emptyset^\mathcal{A} \equiv^s_\mathcal{A} \text{atom} \oplus 0'.$$

(4)

These relations were used by Thurber [95], Knight and Stob [00].

Theorem (K.Harris – M. 08) On Boolean algebras, $\forall n \in \mathbb{N}$, there is a finite sequence P_0, \ldots, P_k_n of Σ_c formulas such that for all \mathcal{A}

$$\emptyset^\mathcal{A}_n \equiv^s_\mathcal{A} P_0(\mathcal{A}) \oplus \ldots \oplus P_k_n(\mathcal{A}) \oplus -\rightarrow 0.$$
Ex: Let \mathcal{A} be a *Boolean algebra*. Then

\[\emptyset''^\mathcal{A} \equiv _s^\mathcal{A} atom(x) \oplus atomless(x) \oplus finite(x) \oplus 0'' \]
Ex: Let A be a *Boolean algebra*. Then

$$\emptyset^A \equiv^A_s \text{atom} \oplus 0'.$$

$$\emptyset''^A \equiv^A_s \text{atom}(x) \oplus \text{atomless}(x) \oplus \text{finite}(x) \oplus 0''$$

$$\emptyset'''^A \equiv^A_s \text{atom} \oplus \text{atomless} \oplus \text{finite} \oplus \text{atomic} \oplus 1\text{-atom} \oplus \text{atominf} \oplus 0'''$$
Examples of Jump of Structure

Ex: Let \mathcal{A} be a *Boolean algebra*. Then

\[
\emptyset^\mathcal{A} \equiv_s^\mathcal{A} \text{atom} \oplus 0' .
\]

\[
\emptyset''^\mathcal{A} \equiv_s^\mathcal{A} \text{atom}(x) \oplus \text{atomless}(x) \oplus \text{finite}(x) \oplus 0''
\]

\[
\emptyset'''^\mathcal{A} \equiv_s^\mathcal{A} \text{atom} \oplus \text{atomless} \oplus \text{finite} \oplus \text{atomic} \oplus 1\text{-}atom \oplus \text{atominf} \oplus 0'''
\]

\[
\emptyset^{(4)}^\mathcal{A} \equiv_s^\mathcal{A} \text{atom} \oplus \text{atomless} \oplus \text{finite} \oplus \text{atomic} \oplus 1\text{-}atom \oplus \text{atominf} \oplus \\
\sim\text{-}inf \oplus \text{Int}(\omega + \eta) \oplus \text{infatomicless} \oplus 1\text{-}atomless \oplus \text{nomaxatomless} \oplus 0^{(4)}
\]

These relations were used by Thurber [95], Knight and Stob [00].
Examples of Jump of Structure

Ex: Let \mathcal{A} be a *Boolean algebra*. Then

\[\emptyset^A \equiv S^A \text{atom} \oplus 0'. \]

\[\emptyset''^A \equiv S^A \text{atom}(x) \oplus \text{atomless}(x) \oplus \text{finite}(x) \oplus 0''. \]

\[\emptyset'''^A \equiv S^A \text{atom} \oplus \text{atomless} \oplus \text{finite} \oplus \text{atomic} \oplus 1\text{-atom} \oplus \text{atominf} \oplus 0'''. \]

\[\emptyset^{(4)}^A \equiv S^A \text{atom} \oplus \text{atomless} \oplus \text{finite} \oplus \text{atomic} \oplus 1\text{-atom} \oplus \text{atominf} \oplus \sim\text{-inf} \oplus \text{Int}(\omega + \eta) \oplus \text{infatomicless} \oplus 1\text{-atomless} \oplus \text{nomaxatomless} \oplus 0^{(4)}. \]

These relations were used by Thurber [95], Knight and Stob [00].

Theorem (K.Harris – M. 08)

On Boolean algebras, $\forall n \in \mathbb{N}$, there is a *finite* sequence $P_0, ..., P_{k_n}$, of Σ^c_n formulas such that for all \mathcal{A}

\[\emptyset^{(n)}^A \equiv S^A P^A_0(x) \oplus ... \oplus P^A_{k_n}(x) \oplus 0^{(n)}. \]
Examples: Nice complete sets of Σ^c_n relations.

Let \mathcal{L} be a linear ordering.
Examples: Nice complete sets of Σ^c_n relations.

Let \mathcal{L} be a linear ordering.

Ex: Let \mathcal{L} be a *linear ordering*. Then

$\emptyset^L_s \equiv \text{succ}(x, y) \oplus 0^\mathcal{L}$.
Examples: Nice complete sets of Σ^c_n relations.

Let \mathcal{L} be a linear ordering.

Ex: Let \mathcal{L} be a *linear ordering*. Then

$\emptyset^A \equiv^L_s \text{succ}(x, y) \oplus \overrightarrow{0}^t$.

Ex: $\emptyset^L \equiv^L_s \text{limleft}(x) \oplus \text{limright}(x) \oplus \bigoplus_n D_n(x, y) \oplus \overrightarrow{0}''$

where $D_n(x, y) \equiv \text{“exists } n\text{-string of succ in between } x \text{ and } y\text{.”}$
Examples: Nice complete sets of Σ^c_n relations.

Let \mathcal{L} be a linear ordering.

Ex: Let \mathcal{L} be a *linear ordering*. Then

$\emptyset^\mathcal{L} \equiv^s_{\mathcal{L}} \text{succ}(x, y) \oplus \overrightarrow{0}.$

Ex: $\emptyset''^\mathcal{L} \equiv^s_{\mathcal{L}} \text{limleft}(x) \oplus \text{limright}(x) \oplus \bigoplus_n D_n(x, y) \oplus \overrightarrow{0}'$

where $D_n(x, y) \equiv$ “exists n-string of succ in between x and y.”

Ex: [Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev] We don’t need infinitely many relations.
Examples: Nice complete sets of Σ_n^c relations.

Let \mathcal{L} be a linear ordering.

Ex: Let \mathcal{L} be a *linear ordering*. Then

$$\emptyset^{\mathcal{L}} \equiv_s^{\mathcal{L}} \text{succ}(x, y) \oplus \overrightarrow{0}.$$

Ex: $\emptyset''^{\mathcal{L}} \equiv_s^{\mathcal{L}} \text{limleft}(x) \oplus \text{limright}(x) \oplus \bigoplus_n D_n(x, y) \oplus \overrightarrow{0}$

where $D_n(x, y) \equiv \text{exists n-string of succ in between } x \text{ and } y.$

Ex: [Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev]

We don’t need infinitely many relations.

$$\emptyset''^{\mathcal{L}} \equiv_s^{\mathcal{L}} \text{limleft}(x) \oplus \text{limright}(x) \oplus P(x, y, z, w) \oplus \overrightarrow{0}$$

where $P(x, y, z, w) \equiv \bigvee_n (\text{succ}^n(y) = z \& D_{n+2}(x, w))$
Examples: Nice complete sets of Σ^c_n relations.

Let \mathcal{L} be a linear ordering.

Ex: Let \mathcal{L} be a *linear ordering*. Then

$\emptyset^A \equiv^L_s \text{succ}(x, y) \oplus 0^j$.

Ex: $\emptyset''^L \equiv^L_s \limleft(x) \oplus \limright(x) \oplus \bigoplus_n D_n(x, y) \oplus 0''$

where $D_n(x, y) \equiv \text{“exists } n\text{-string of succ in between } x \text{ and } y\text{.”}$

Ex: [Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev] We don’t need infinitely many relations.

$\emptyset''^L \equiv^L_s \limleft(x) \oplus \limright(x) \oplus P(x, y, z, w) \oplus 0''$

where $P(x, y, z, w) \equiv \bigvee_n (\text{succ}^n(y) = z \& D_{n+2}(x, w))$

Thm: [M.] There is no relativizable (and hence nice) set of Σ^c_3 relations that work for all linear orderings simultaneously.
Examples: Nice complete sets of Σ_n^c relations.

Let \mathcal{V} be an infinite dimensional \mathbb{Q}-vector space.
Examples: Nice complete sets of Σ^c_n relations.

Let \mathcal{V} be an infinite dimensional \mathbb{Q}-vector space.

\[\emptyset^A_s \equiv^A LD \oplus 0' \]

where $LD = (LD_1, LD_2, ...)$, and $LD_i = \{(v_1, ..., v_i) : v_1, ..., v_i \text{ are lin. dep.}\}$
Examples: Nice complete sets of Σ_n^c relations.

Let \mathcal{V} be an infinite dimensional \mathbb{Q}-vector space.

$$\emptyset^A \equiv_s^A L\vec{D} \oplus \vec{0}
$$

where $L\vec{D} = (LD_1, LD_2, ...)$, and $LD_i = \{(v_1, ..., v_i) : v_1, ..., v_i \text{ are lin. dep.}\}$

Thm: [Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev]

No finite set of relations is Σ_1^c complete in \mathcal{V}.
Let $\mathcal{A} = (A; \equiv)$ be an equivalence structure.
Examples: Nice complete sets of Σ_n^c relations.

Let $\mathcal{A} = (A; \equiv)$ be an equivalence structure.

Ex: $\emptyset^A \equiv_s^A (E_k(x) : k \in \mathbb{N}) \oplus \vec{R} \oplus 0'$,
where $E_k(x) \iff$ there are $\geq k$ elements equivalent to x,
and $R = \{\langle n, k \rangle \in \mathbb{N}^2 : \text{there are } \geq n \text{ equivalence classes with } \geq k \text{ elements}\}$.
Examples: Nice complete sets of Σ^c_n relations.

Let $\mathcal{A} = (A; \equiv)$ be an equivalence structure.

Ex: $\emptyset^A \equiv^A_s (E_k(x) : k \in \mathbb{N}) \oplus \overrightarrow{R} \oplus \overrightarrow{0}'$, where $E_k(x) \iff \text{there are } \geq k \text{ elements equivalent to } x$, and $R = \{\langle n, k \rangle \in \mathbb{N}^2 : \text{there are } \geq n \text{ equivalence classes with } \geq k \text{ elements}\}$.

Suppose that \mathcal{A} has infinitely many classes of each size.

Thm: [Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev]

No finite set of relations is Σ^c_1 complete in \mathcal{A}.
Examples: Nice complete sets of Σ_n^c relations.

Let $\mathcal{A} = (A; \equiv)$ be an equivalence structure.

Ex: $\emptyset^\mathcal{A}_s \equiv (E_k(x) : k \in \mathbb{N}) \oplus \vec{R} \oplus \vec{0}$,

where $E_k(x) \iff$ there are $\geq k$ elements equivalent to x,

and $R = \{(n, k) \in \mathbb{N}^2 : \text{there are } \geq n \text{ equivalence classes with } \geq k \text{ elements}\}$.

Suppose that \mathcal{A} has infinitely many classes of each size.

Thm: [Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev]

No finite set of relations is Σ_1^c complete in \mathcal{A}.

There is a finite set of relations is Σ_2^c complete in \mathcal{A}.

Antonio Montalbán. U. of Chicago

The jump of a structure.
Theorem ([M])

Let \mathbb{K} be an axiomatizable class of structures.

Exactly one of the following holds:

(relative to any sufficiently large oracle)

1. There is a nice characterization of $\mathcal{A}^{(n)}$:

2. Every set can be coded in $\mathcal{A}^{(n-1)}$:
Theorem ([M])

Let \mathcal{K} be an axiomatizable class of structures.

Exactly one of the following holds:

(relative to any sufficiently large oracle)

1. There is a nice characterization of $\mathcal{A}^{(n)}$:
 - There is a uniform, rel, countable complete sets of Σ^n_c rels.
 - No set can be coded by the $(n-1)^{st}$ jump of any $\mathcal{A} \in \mathcal{K}$.
 - There are countably many n-back-and-forth equivalence classes

2. Every set can be coded in $\mathcal{A}^{(n-1)}$:
Theorem ([M])

Let \mathbb{K} be an axiomatizable class of structures. Exactly one of the following holds:

(relative to any sufficiently large oracle)

1. There is a nice characterization of $A^{(n)}$:
 - There is a uniform, rel, countable complete sets of Σ^c_n rels.
 - No set can be coded by the $(n-1)^{st}$ jump of any $A \in \mathbb{K}$.
 - There are countably many n-back-and-forth equivalence classes

2. Every set can be coded in $A^{(n-1)}$:
 - There is no uniform, rel, countable complete sets of Σ^c_n rels.
 - $\forall X \subseteq \omega$, there is a $A \in \mathbb{K}$ s.t. X is a r.i.c.e. real in $A^{(n-1)}$,
 - \exists Continuum many n-back-and-forth equivalence classes

Antonio Montalbán. U. of Chicago