The jump of a structure.

Antonio Montalbán. U. of Chicago

Singapore – August 2011

Antonio Montalbán. U. of Chicago The jump of a structure.

General program: Study the complexity of relations within a given structure.

▲ □ ► < □ ►</p>

< ≣⇒

æ

General program: Study the complexity of relations within a given structure.

In this talk:

- Propose a framework for this analysis.
- Describe the jump of a relation and of a structure.
- Examples.
- Recent results.

Def: By *structure* we mean a tuple $\mathcal{A} = (A; P_0, P_1, ..., f_0, f_1, ..)$ where $P_i \subseteq A^{n_i}$, and $f_i: A^{m_i} \to A$.

個 と く ヨ と く ヨ と …

æ

Def: By *structure* we mean a tuple $\mathcal{A} = (A; P_0, P_1, ..., f_0, f_1, ...)$ where $P_i \subseteq A^{n_i}$, and $f_i \colon A^{m_i} \to A$. The arity functions n_i and m_i are always computable.

回 と く ヨ と く ヨ と

Def: By *structure* we mean a tuple $\mathcal{A} = (A; P_0, P_1, ..., f_0, f_1, ...)$ where $P_i \subseteq A^{n_i}$, and $f_i \colon A^{m_i} \to A$.

The arity functions n_i and m_i are always computable. We will code the functions as relations, so $\mathcal{A} = (A; P_0, P_1, ..., ...)$. **Def:** By *structure* we mean a tuple $\mathcal{A} = (A; P_0, P_1, ..., f_0, f_1, ...)$ where $P_i \subseteq A^{n_i}$, and $f_i : A^{m_i} \to A$.

The arity functions n_i and m_i are always computable. We will code the functions as relations, so $\mathcal{A} = (A; P_0, P_1, ..., ...)$.

An isomorphic copy of \mathcal{A} where $A \subseteq \mathbb{N}$ is called a *presentation* of \mathcal{A} .

Def: By *structure* we mean a tuple $\mathcal{A} = (A; P_0, P_1, ..., f_0, f_1, ..)$ where $P_i \subseteq A^{n_i}$, and $f_i : A^{m_i} \to A$. The arity functions n_i and m_i are always computable. We will code the functions as relations, so $\mathcal{A} = (A; P_0, P_1, ..., ...)$. An isomorphic copy of \mathcal{A} where $A \subseteq \mathbb{N}$ is called a *presentation* of \mathcal{A} .

Def: The presentation \mathcal{A} is *X*-computable if A and $\bigoplus_i P_i$ are *X*-computable.

Def: By *structure* we mean a tuple $\mathcal{A} = (A; P_0, P_1, ..., f_0, f_1, ..)$ where $P_i \subseteq A^{n_i}$, and $f_i : A^{m_i} \to A$. The arity functions n_i and m_i are always computable. We will code the functions as relations, so $\mathcal{A} = (A; P_0, P_1, ..., ...)$. An isomorphic copy of \mathcal{A} where $A \subset \mathbb{N}$ is called a *presentation* of \mathcal{A} .

Def: The presentation \mathcal{A} is *X*-computable if A and $\bigoplus_i P_i$ are *X*-computable.

Def: X is *computable in* the presentation \mathcal{A} if $X \leq A \oplus \bigoplus_i P_i$.

回 と く ヨ と く ヨ と

Def: By *structure* we mean a tuple $\mathcal{A} = (A; P_0, P_1, ..., f_0, f_1, ..)$ where $P_i \subseteq A^{n_i}$, and $f_i : A^{m_i} \to A$. The arity functions n_i and m_i are always computable. We will code the functions as relations, so $\mathcal{A} = (A; P_0, P_1, ..., ...)$. An isomorphic copy of \mathcal{A} where $A \subset \mathbb{N}$ is called a *presentation* of \mathcal{A} .

Def: The presentation \mathcal{A} is *X*-computable if A and $\bigoplus_i P_i$ are *X*-computable.

Def: X is *computable in* the presentation \mathcal{A} if $X \leq A \oplus \bigoplus_i P_i$.

Def: The *spectrum* of the isomorphism type of \mathcal{A} : $Sp(\mathcal{A}) = \{X \subseteq \mathbb{N} : X \text{ computes a copy of } \mathcal{A}\}.$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Def: $R \subseteq A^n$ is *r.i.c.e.* (relatively intrinsically computably enumerable) if for every presentation $(\mathcal{B}, R^{\mathcal{B}})$ of (\mathcal{A}, R) , $R^{\mathcal{B}}$ is c.e. in \mathcal{B} .

Def: $R \subseteq A^n$ is *r.i.c.e.* (relatively intrinsically computably enumerable) if for every presentation $(\mathcal{B}, R^{\mathcal{B}})$ of (\mathcal{A}, R) , $R^{\mathcal{B}}$ is c.e. in \mathcal{B} .

Example: Let \mathcal{L} is a linear ordering. Then $\neg succ = \{(x, y) \in L^2 : \exists z (x < z < y)\}$ is r.i.c.e.

Def: $R \subseteq A^n$ is *r.i.c.e.* (relatively intrinsically computably enumerable) if for every presentation $(\mathcal{B}, R^{\mathcal{B}})$ of (\mathcal{A}, R) , $R^{\mathcal{B}}$ is c.e. in \mathcal{B} .

Example: Let \mathcal{L} is a linear ordering. Then $\neg succ = \{(x, y) \in L^2 : \exists z (x < z < y)\}$ is r.i.c.e.

Example: Let \mathcal{V} be a vector space. Then $LD_3 = \{(u, v, w) \in V^3 : u, v \text{ and } w \text{ are not } L.l.\}$ is r.i.c.e.

Def: $R \subseteq A^n$ is *r.i.c.e.* (relatively intrinsically computably enumerable) if for every presentation $(\mathcal{B}, R^{\mathcal{B}})$ of (\mathcal{A}, R) , $R^{\mathcal{B}}$ is c.e. in \mathcal{B} .

Example: Let \mathcal{L} is a linear ordering. Then $\neg succ = \{(x, y) \in L^2 : \exists z (x < z < y)\}$ is r.i.c.e.

Example: Let \mathcal{V} be a vector space. Then $LD_3 = \{(u, v, w) \in V^3 : u, v \text{ and } w \text{ are not } L.I.\}$ is r.i.c.e.

Def: $R \subseteq A^n$ is *r.i.computable* (relatively intrinsically computable) if *R* and $(A^n \setminus R)$ are both r.i.c.e.

▲御▶ ▲唐▶ ▲唐▶

- **Thm:** [Ash, Knight, Manasse, Slaman; Chisholm] $R \subseteq A^n$. The following are equivalent:
 - R is r.i.c.e.

白 ト く ヨ ト く ヨ ト

Thm: [Ash, Knight, Manasse, Slaman; Chisholm] $R \subseteq A^n$. The following are equivalent:

- *R* is r.i.c.e.
- *R* is defined by a c.e. disjunction of ∃-formulas,
 i.e. by a *computably infinitary* Σ₁-formula

(à la Ash)

伺 ト イヨト イヨト

Thm: [Ash, Knight, Manasse, Slaman; Chisholm] [Vaĭtsenavichyus] $R \subseteq A^n$. The following are equivalent:

- *R* is r.i.c.e.
- R is defined by a c.e. disjunction of \exists -formulas,

i.e. by a *computably infinitary* Σ_1 -formula (à la Ash) And, when the language is finite:

R is defined by an ∃-formula in HIF(A). (à la Ershov) (HIF(A) is the hereditarily finite extension of A)

個 と く ヨ と く ヨ と …

Thm: [Ash, Knight, Manasse, Slaman; Chisholm] [Vaĭtsenavichyus] [Gordon] $R \subseteq A^n$. The following are equivalent:

- *R* is r.i.c.e.
- R is defined by a c.e. disjunction of \exists -formulas,

i.e. by a *computably infinitary* Σ_1 -*formula* (à la Ash) And, when the language is finite:

- *R* is defined by an ∃-formula in HIF(A). (à la Ershov) (HIF(A) is the hereditarily finite extension of A)
- *R* is semi-search computable.

(à la Moschovakis).

・ 回 と ・ ヨ と ・ モ と …

Thm: [Ash, Knight, Manasse, Slaman; Chisholm] [Vaĭtsenavichyus] [Gordon] $R \subseteq A^n$. The following are equivalent:

- *R* is r.i.c.e.
- R is defined by a c.e. disjunction of \exists -formulas,

i.e. by a *computably infinitary* Σ_1 -*formula* (à la Ash) And, when the language is finite:

- *R* is defined by an ∃-formula in HIF(A). (à la Ershov) (HIF(A) is the hereditarily finite extension of A)
- *R* is semi-search computable.

(à la Moschovakis).

・日・ ・ ヨ・ ・ ヨ・

r.i.c.e. relations on \mathcal{A} are the analog of c.e. subsets of \mathbb{N} .

We now want a *complete* r.i.c.e. relation.

白 ト イヨト イヨト

Def: \vec{R} is *r.i.c.e.* in \mathcal{A} if for every presentation $(\mathcal{B}, \vec{R}^{\mathcal{B}})$ of (\mathcal{A}, \vec{R}) , $\vec{R}^{\mathcal{B}}$ is uniformly c.e. in \mathcal{B} .

Def: \vec{R} is *r.i.c.e.* in \mathcal{A} if for every presentation $(\mathcal{B}, \vec{R}^{\mathcal{B}})$ of (\mathcal{A}, \vec{R}) , $\vec{R}^{\mathcal{B}}$ is uniformly c.e. in \mathcal{B} .

Ex: Let \mathcal{V} be a \mathbb{Q} -vector space. Then $\vec{LD} = (LD_1, LD_2, ...)$, given by $LD_i = \{(v_1, ..., v_i) : v_1, ..., v_i \text{ are linearly dependent}\}$, is r.i.c.e.

Def: \vec{R} is *r.i.c.e.* in \mathcal{A} if for every presentation $(\mathcal{B}, \vec{R}^{\mathcal{B}})$ of (\mathcal{A}, \vec{R}) , $\vec{R}^{\mathcal{B}}$ is uniformly c.e. in \mathcal{B} .

Ex: Let \mathcal{V} be a \mathbb{Q} -vector space. Then $\vec{LD} = (LD_1, LD_2, ...)$, given by $LD_i = \{(v_1, ..., v_i) : v_1, ..., v_i \text{ are linearly dependent}\}$, is r.i.c.e.

Example: Let \mathcal{A} be a ring. Then $\vec{R} = (R_1, R_2, ...)$, given by $R_i = \{(a_0, ..., a_i) : a_i x^i + ... + a_1 x + a_0 \text{ is reducible polynomial}\}$, is r.i.c.e.

(日) (日) (日)

Def: Let $S\mathcal{R}(\mathcal{A})$ be the set of all sequences of relations in \mathcal{A} with primitive recursive arity functions. Let $\vec{R}, \vec{Q} \in S\mathcal{R}(\mathcal{A})$. **Def:** Let $S\mathcal{R}(\mathcal{A})$ be the set of all sequences of relations in \mathcal{A} with primitive recursive arity functions. Let $\vec{R}, \vec{Q} \in S\mathcal{R}(\mathcal{A})$.

Def: Let $\vec{R} \leq_s^A \vec{Q} \iff \vec{R}$ is r.i.computable in (\mathcal{A}, \vec{Q}) .

Def: Let SR(A) be the set of all sequences of relations in A with primitive recursive arity functions. Let $\vec{R}, \vec{Q} \in SR(A)$.

Def: Let
$$\vec{R} \leq_{s}^{\mathcal{A}} \vec{Q} \iff \vec{R}$$
 is r.i.computable in (\mathcal{A}, \vec{Q}) .

Def: Let $\vec{R} \oplus \vec{Q}$ be the sequence $(R_0, Q_0, R_1, Q_1, ...)$.

Let $\varphi_0, \varphi_1, \dots$ be an effective listing of all c.e.-disjunctions of \exists -formulas about \mathcal{A} ,

白 ト く ヨ ト く ヨ ト

æ

Let $\varphi_0, \varphi_1, ...$ be an effective listing of all c.e.-disjunctions of \exists -formulas about \mathcal{A} , i.e. of all *computably infinitary* Σ_1 -formulas.

Let $\varphi_0, \varphi_1, ...$ be an effective listing of all c.e.-disjunctions of \exists -formulas about \mathcal{A} , i.e. of all *computably infinitary* Σ_1 -formulas.

Definition

Let
$$ec{\mathcal{K}}^{\mathcal{A}}=(\mathcal{K}_0,\mathcal{K}_1,...)$$
 be such that $\mathcal{A}\models ar{x}\in\mathcal{K}_i\iff arphi_i(ar{x}).$

Let $\varphi_0, \varphi_1, ...$ be an effective listing of all c.e.-disjunctions of \exists -formulas about \mathcal{A} , i.e. of all *computably infinitary* Σ_1 -formulas.

Definition Let $\vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$ be such that $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Obs: \vec{K}^{A} is complete among r.i.c.e. sequences of relations in A.

回 と く ヨ と く ヨ と

Let $\varphi_0, \varphi_1, ...$ be an effective listing of all c.e.-disjunctions of \exists -formulas about \mathcal{A} , i.e. of all *computably infinitary* Σ_1 -formulas.

Definition

Let
$$\vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$$
 be such that $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Obs: $\vec{K}^{\mathcal{A}}$ is *complete among r.i.c.e. sequences* of relations in \mathcal{A} . I.e. If \vec{Q} is r.i.c.e., there is $\bar{a} \in A^{<\omega}$ and a computable $f : \mathbb{N} \to \mathbb{N}$ s.t. $\forall \bar{b} \forall i \ (\bar{b} \in Q_i \iff (\bar{a}, \bar{b}) \in K_{f(i)})$

Let $\varphi_0, \varphi_1, ...$ be an effective listing of all c.e.-disjunctions of \exists -formulas about \mathcal{A} , i.e. of all *computably infinitary* Σ_1 -formulas.

Definition

Let
$$\vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$$
 be such that $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Obs: $\vec{K}^{\mathcal{A}}$ is *complete among r.i.c.e. sequences* of relations in \mathcal{A} . I.e. If \vec{Q} is r.i.c.e., there is $\bar{a} \in A^{<\omega}$ and a computable $f : \mathbb{N} \to \mathbb{N}$ s.t. $\forall \bar{b} \forall i \ (\bar{b} \in Q_i \iff (\bar{a}, \bar{b}) \in K_{f(i)})$

Definition

Given \vec{Q} , let the jump of \vec{Q} in \mathcal{A} be $\vec{K}^{(\mathcal{A},\vec{Q})}$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Let $\varphi_0, \varphi_1, ...$ be an effective listing of all c.e.-disjunctions of \exists -formulas about \mathcal{A} , i.e. of all *computably infinitary* Σ_1 -formulas.

Definition

Let
$$\vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$$
 be such that $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Obs: $\vec{K}^{\mathcal{A}}$ is *complete among r.i.c.e. sequences* of relations in \mathcal{A} . I.e. If \vec{Q} is r.i.c.e., there is $\bar{a} \in A^{<\omega}$ and a computable $f : \mathbb{N} \to \mathbb{N}$ s.t. $\forall \bar{b} \forall i \ (\bar{b} \in Q_i \iff (\bar{a}, \bar{b}) \in K_{f(i)})$

Definition

Given \vec{Q} , let the jump of \vec{Q} in \mathcal{A} be $\vec{K}^{(\mathcal{A},\vec{Q})}$. We denote it by \vec{Q}^{\prime^A} .

・ 同・ ・ ヨ・ ・ ヨ・

Let $\varphi_0, \varphi_1, ...$ be an effective listing of all c.e.-disjunctions of \exists -formulas about \mathcal{A} , i.e. of all *computably infinitary* Σ_1 -formulas.

Definition

Let
$$\vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$$
 be such that $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Obs: $\vec{K}^{\mathcal{A}}$ is *complete among r.i.c.e. sequences* of relations in \mathcal{A} . I.e. If \vec{Q} is r.i.c.e., there is $\bar{a} \in A^{<\omega}$ and a computable $f : \mathbb{N} \to \mathbb{N}$ s.t. $\forall \bar{b} \forall i \ (\bar{b} \in Q_i \iff (\bar{a}, \bar{b}) \in K_{f(i)})$

Definition

Given \vec{Q} , let the jump of \vec{Q} in \mathcal{A} be $\vec{K}^{(\mathcal{A},\vec{Q})}$. We denote it by \vec{Q}^{\prime^A} .

Note: $\vec{K}^{\mathcal{A}} = \emptyset'^{\mathcal{A}}$.

・日・ ・ ヨ・ ・ ヨ・

Let $\varphi_0, \varphi_1, ...$ be an effective listing of all c.e.-disjunctions of \exists -formulas about \mathcal{A} , i.e. of all *computably infinitary* Σ_1 -formulas.

Definition

Let
$$\vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$$
 be such that $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Obs: $\vec{K}^{\mathcal{A}}$ is complete among r.i.c.e. sequences of relations in \mathcal{A} . I.e. If \vec{Q} is r.i.c.e., there is $\bar{a} \in A^{<\omega}$ and a computable $f: \mathbb{N} \to \mathbb{N}$ s.t. $\forall \bar{b} \forall i \ (\bar{b} \in Q_i \iff (\bar{a}, \bar{b}) \in K_{f(i)})$

Definition

Given \vec{Q} , let the jump of \vec{Q} in \mathcal{A} be $\vec{K}^{(\mathcal{A},\vec{Q})}$. We denote it by \vec{Q}^{\prime^A} .

Note: $\vec{K}^{\mathcal{A}} = \emptyset'^{\mathcal{A}}$. Note: We can also define $\vec{Q}''^{\mathcal{A}}$ as $\vec{K}^{(\mathcal{A},\vec{Q}'^{\mathcal{A}})}$.

・ロト ・回ト ・ヨト

Sequences coding information

Def: Given
$$X \subseteq \mathbb{N}$$
, let $\vec{X} = (X_0, X_1, ..)$ where $X_i = \begin{cases} A & \text{if } i \in X \\ \emptyset & \text{if } i \notin X \end{cases}$

▲圖▶ ▲屋▶ ▲屋≯

æ

Sequences coding information

$$\textbf{Def:} \ \text{Given} \ X \subseteq \mathbb{N}, \ \text{let} \ \vec{X} = (X_0, X_1, ..) \ \text{where} \ X_i = \begin{cases} A & \text{if} \ i \in X \\ \emptyset & \text{if} \ i \notin X \end{cases}$$

Obs: Then, if X is c.e. $\implies \vec{X}$ is r.i.c.e. in \mathcal{A} .

(1日) (日) (日)

æ

Sequences coding information

$$\textbf{Def:} \ \text{Given} \ X \subseteq \mathbb{N}, \ \text{let} \ \vec{X} = (X_0, X_1, ..) \ \text{where} \ X_i = \begin{cases} \mathsf{A} & \text{if} \ i \in X \\ \emptyset & \text{if} \ i \notin X \end{cases}$$

Obs: Then, if X is c.e. $\implies \vec{X}$ is r.i.c.e. in \mathcal{A} .

Obs: $X \leq_T Y \Longrightarrow \vec{X} \leq_s^{\mathcal{A}} \vec{Y}$.

▲御★ ▲注★ ▲注★

æ

$$\textbf{Def:} \ \text{Given} \ X \subseteq \mathbb{N}, \ \text{let} \ \vec{X} = (X_0, X_1, ..) \ \text{where} \ X_i = \begin{cases} \mathsf{A} & \text{if} \ i \in X \\ \emptyset & \text{if} \ i \notin X \end{cases}$$

Obs: Then, if X is c.e. $\implies \vec{X}$ is r.i.c.e. in \mathcal{A} .

Obs: $X \leq_T Y \Longrightarrow \vec{X} \leq_s^{\mathcal{A}} \vec{Y}$.

Recall: $\emptyset'^{\mathcal{A}} = \vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$ where $\mathcal{A} \models \bar{x} \in K_i(\bar{x}) \iff \varphi_i(\bar{x})$. **Notice:** $\overrightarrow{0'}$ is the sequence of trivial relations that codes $0' \subseteq \mathbb{N}$.

白 ト イヨト イヨト

$$\textbf{Def:} \ \text{Given} \ X \subseteq \mathbb{N}, \ \text{let} \ \vec{X} = (X_0, X_1, ..) \ \text{where} \ X_i = \begin{cases} \mathsf{A} & \text{if} \ i \in X \\ \emptyset & \text{if} \ i \notin X \end{cases}$$

Obs: Then, if X is c.e. $\implies \vec{X}$ is r.i.c.e. in \mathcal{A} .

Obs: $X \leq_T Y \Longrightarrow \vec{X} \leq_s^{\mathcal{A}} \vec{Y}$.

Recall: $\emptyset'^{\mathcal{A}} = \vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$ where $\mathcal{A} \models \bar{x} \in K_i(\bar{x}) \iff \varphi_i(\bar{x})$. **Notice:** $\overrightarrow{0'}$ is the sequence of trivial relations that codes $0' \subseteq \mathbb{N}$.

Obs:
$$\overrightarrow{0'} \leq_{s}^{\mathcal{A}} \emptyset'^{\mathcal{A}}$$

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Ex: Let \mathcal{A} be a \mathbb{Q} -vector space. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} L \vec{D} \oplus \overrightarrow{0'}$.

・日・ ・ ヨ・ ・ ヨ・

æ

Ex: Let \mathcal{A} be a \mathbb{Q} -vector space. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} L \vec{D} \oplus \overrightarrow{0'}$.

Ex: Let \mathcal{A} be a *linear ordering*. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} succ(x, y) \oplus \overrightarrow{0'}$.

白 ト く ヨ ト く ヨ ト

Ex: Let \mathcal{A} be a \mathbb{Q} -vector space. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} L \vec{D} \oplus \overrightarrow{0'}$.

Ex: Let \mathcal{A} be a *linear ordering*. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} succ(x, y) \oplus \overrightarrow{0'}$.

Ex: Let \mathcal{A} be a *linear ordering* with endpoints. Then $\emptyset''^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} limleft(x) \oplus limright(x) \oplus \bigoplus_{n} D_{n}(x, y) \oplus \overrightarrow{0''}$ where $D_{n}(x, y) \equiv$ "exists *n*-string of succ in between x and y."

Ex: Let \mathcal{A} be a \mathbb{Q} -vector space. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} L \vec{D} \oplus \overrightarrow{0'}$.

Ex: Let \mathcal{A} be a *linear ordering*. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} succ(x, y) \oplus \overrightarrow{0'}$.

Ex: Let \mathcal{A} be a *linear ordering* with endpoints. Then $\emptyset''^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} limleft(x) \oplus limright(x) \oplus \bigoplus_{n} D_{n}(x, y) \oplus \overrightarrow{0''}$ where $D_{n}(x, y) \equiv$ "exists *n*-string of succ in between x and y."

Ex: Let $\mathcal{A} = (A, \equiv)$ where \equiv is an *equivalence relation*. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} (E_{k}(x) : k \in \mathbb{N}) \oplus \overrightarrow{R} \oplus \overrightarrow{0'},$ where $E_{k}(x) \iff$ there are $\geq k$ elements equivalent to x, and $R = \{\langle n, k \rangle \in \mathbb{N}^{2} : \text{there are } \geq n \text{ equivalence classes with } \geq k \text{ elements} \}.$

白 と く ヨ と く ヨ と …

No fixed point for the jump of relations

Theorem[Vatev][Stukachev][M] For every \vec{Q} , $\vec{Q} <_s^{\mathcal{A}} \vec{Q'}^{\mathcal{A}}$.

æ

Theorem[Vatev][Stukachev][M] For every \vec{Q} , $\vec{Q} <_{s}^{A} \vec{Q'}^{A}$.

Proof [M]: *Diagonalization:*

Let $K_{i,j}(\bar{x}) \equiv \psi_{i,j}(\bar{x})$ where $\psi_{i,j}$ is the *i*th Σ_1^c formula with arity *j*. Suppose, toward a contradiction, that *K* is co-r.i.c.e.

Let $R_{e,j}(\bar{x}) \equiv \neg K_{\{e\}(e,j),2j}(\bar{x},\bar{x}).$

Since *R* is r.i.c.e., there is $\bar{a} \in A^n$ and computable function $\{k\}$ s.t. $R_{e,j}(\bar{x}) \equiv K_{\{k\}(e,j),n+j}(\bar{a},\bar{x}).$

Diagonalize: $K_{k,2n}(\bar{a},\bar{a}) \iff \neg K_{k,2n}(\bar{a},\bar{a}).$

★御★ ★注★ ★注★ 一注

3 at the price of 1.

Thm: [Ash, Knight, Manasse, Slaman; Chisholm] Let $\vec{R} = (R_0, R_1, ...)$ be a sequences of relations in \mathcal{A} . TFAE: • \vec{R} is r.i.c.e.

• There is a $\bar{a} \in A^{<\omega}$ and a comp. list $\varphi_0, \varphi_1, ...$ of Σ_1^c -formulas such that $\bar{b} \in R_i \iff \varphi_i(\bar{a}, \bar{b})$.

白 ト く ヨ ト く ヨ ト

3 at the price of 1.

Thm: [Ash, Knight, Manasse, Slaman; Chisholm] Let $\vec{R} = (R_0, R_1, ...)$ be a sequences of relations in \mathcal{A} . TFAE: • \vec{R} is r.i.c.e.

• There is a $\bar{a} \in A^{<\omega}$ and a comp. list $\varphi_0, \varphi_1, ...$ of Σ_1^c -formulas such that $\bar{b} \in R_i \iff \varphi_i(\bar{a}, \bar{b})$.

Corollary: [Knight] Let $X \subseteq \omega$. TFAE:

- X is c.e. in every copy of A.
- X is e-reducible to Σ_1 -tp_A(\bar{a}) for some $\bar{a} \in A^{<\omega}$.

3 at the price of 1.

Thm: [Ash, Knight, Manasse, Slaman; Chisholm] Let $\vec{R} = (R_0, R_1, ...)$ be a sequences of relations in \mathcal{A} . TFAE: • \vec{R} is r.i.c.e.

• There is a $\bar{a} \in A^{<\omega}$ and a comp. list $\varphi_0, \varphi_1, ...$ of Σ_1^c -formulas such that $\bar{b} \in R_i \iff \varphi_i(\bar{a}, \bar{b})$.

Corollary: [Knight] Let $X \subseteq \omega$. TFAE:

- X is c.e. in every copy of A.
- X is e-reducible to Σ_1 -tp_A(\bar{a}) for some $\bar{a} \in A^{<\omega}$.

Corollary: [Selman] Let $A, B \subseteq \omega$. TFAE:

- Every enumeration of *B* computes an enumeration of *A*.
- There is a Turing operator that maps enumeration of *B* into enumerations of *A*.

▲御▶ ★ 理≯ ★ 理≯

Antonio Montalbán. U. of Chicago The jump of a structure.

・ロン ・回 と ・ ヨン ・ ヨン

æ

Recall: ${\emptyset'}^{\mathcal{A}} = \vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$ where $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recall:
$${\emptyset'}^{\mathcal{A}} = \vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$$
 where $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Definition

Let \mathcal{A}' be the structure $(\mathcal{A}, \vec{K}^{\mathcal{A}})$.

(i.e. add infinitely many relations to the language interpreting the K_i 's)

- - 4 回 ト - 4 回 ト

Recall:
$${\emptyset'}^{\mathcal{A}} = \vec{K}^{\mathcal{A}} = (K_0, K_1, ...)$$
 where $\mathcal{A} \models \bar{x} \in K_i \iff \varphi_i(\bar{x})$.

Definition

Let \mathcal{A}' be the structure $(\mathcal{A}, \vec{K}^{\mathcal{A}})$.

(i.e. add infinitely many relations to the language interpreting the K_i 's)

There were various independent definitions of the jump of a structure \mathcal{A}' :

- Baleva.
 - domain: Moschovakis extension of $\mathcal{A} \times \mathbb{N}$.
 - $\bullet\,$ relation: add a universal computably infinitary Σ_1 relation.

イロン 不良と 不良と 不良と

- I. Soskov.
 - domain: Moschovakis extension of \mathcal{A} .
 - relation: add a predicate for forcing Π_1 formulas.
- $\bullet\,$ Stukachev. considered arbitrary cardinality, and $\Sigma\text{-reducibility}$
 - domain: Hereditarily finite extension of \mathcal{A} , $\mathbb{HF}(\mathcal{A})$.
 - $\bullet\,$ relation: add a universal finitary Σ_1 relation.
- Montalbán. The definition above.

Let \mathcal{A} and \mathcal{B} be structures.

Recall: $Sp(\mathcal{A}) = \{X \subseteq \mathbb{N} : X \text{ computes a copy of } \mathcal{A}\}.$

Def: \mathcal{A} is *Muchnik-reducible* to \mathcal{B} : $\mathcal{A} \leq_{w} \mathcal{B} \iff Sp(\mathcal{A}) \supseteq Sp(\mathcal{B}).$

白 と く ヨ と く ヨ と …

2

Let \mathcal{A} and \mathcal{B} be structures.

Recall: $Sp(\mathcal{A}) = \{X \subseteq \mathbb{N} : X \text{ computes a copy of } \mathcal{A}\}.$

Def: \mathcal{A} is *Muchnik-reducible* to \mathcal{B} : $\mathcal{A} \leq_{w} \mathcal{B} \iff Sp(\mathcal{A}) \supseteq Sp(\mathcal{B}).$

Def: \mathcal{A} is *effectively interpretable* in \mathcal{B} : $\mathcal{A} \leq_{I} \mathcal{B} \iff$ there is an interpretation of \mathcal{A} in \mathcal{B} , where the domain of \mathcal{A} is interpreted in \mathcal{B} by an *n*-ary r.i.c.e. relation, and equality and the predicates of \mathcal{A} by r.i.computable relations.

白 と く ヨ と く ヨ と …

Let \mathcal{A} and \mathcal{B} be structures.

Recall: $Sp(\mathcal{A}) = \{X \subseteq \mathbb{N} : X \text{ computes a copy of } \mathcal{A}\}.$

Def: \mathcal{A} is *Muchnik-reducible* to \mathcal{B} : $\mathcal{A} \leq_{w} \mathcal{B} \iff Sp(\mathcal{A}) \supseteq Sp(\mathcal{B}).$

Def: \mathcal{A} is effectively interpretable in \mathcal{B} : $\mathcal{A} \leq_I \mathcal{B} \iff$ there is an interpretation of \mathcal{A} in \mathcal{B} , where the domain of \mathcal{A} is interpreted in \mathcal{B} by an *n*-ary r.i.c.e. relation, and equality and the predicates of \mathcal{A} by r.i.computable relations.

Def: \mathcal{A} is Σ -reducible to \mathcal{B} : [Khisamiev, Stukachev] $\mathcal{A} \leq_{\Sigma} \mathcal{B} \iff \mathcal{A} \leq_{I} \mathbb{HF}(\mathcal{B}).$

御 と く き と く き と

Let \mathcal{A} and \mathcal{B} be structures.

Recall: $Sp(\mathcal{A}) = \{X \subseteq \mathbb{N} : X \text{ computes a copy of } \mathcal{A}\}.$

Def: \mathcal{A} is *Muchnik-reducible* to \mathcal{B} : $\mathcal{A} \leq_{w} \mathcal{B} \iff Sp(\mathcal{A}) \supseteq Sp(\mathcal{B}).$

Def: \mathcal{A} is effectively interpretable in \mathcal{B} : $\mathcal{A} \leq_{I} \mathcal{B} \iff$ there is an interpretation of \mathcal{A} in \mathcal{B} , where the domain of \mathcal{A} is interpreted in \mathcal{B} by an *n*-ary r.i.c.e. relation, and equality and the predicates of \mathcal{A} by r.i.computable relations.

Def: \mathcal{A} is Σ -reducible to \mathcal{B} : [Khisamiev, Stukachev] $\mathcal{A} \leq_{\Sigma} \mathcal{B} \iff \mathcal{A} \leq_{I} \mathbb{HF}(\mathcal{B}).$

Obs: $\mathcal{A} \leq_I \mathcal{B} \implies \mathcal{A} \leq_{\Sigma} \mathcal{B} \implies \mathcal{A} \leq_{w} \mathcal{B}.$

米部 シネヨシネヨシ 三日

- 1st Jump inversion theorem.
- 2nd Jump inversion theorem.
- Fixed point theorem.

If $\overrightarrow{0'}$ is r.i.computable in \mathcal{A} , there exists a structure \mathcal{B} such that $\mathcal{B'}$ is equivalent to \mathcal{A} .

If $\overrightarrow{0'}$ is r.i.computable in \mathcal{A} , there exists a structure \mathcal{B} such that $\mathcal{B'}$ is equivalent to \mathcal{A} .

for \equiv_w . [Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon]

If $\overrightarrow{0'}$ is r.i.computable in \mathcal{A} , there exists a structure \mathcal{B} such that \mathcal{B}' is equivalent to \mathcal{A} .

for \equiv_w . [Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon]

for \equiv_w . [A. Soskova] independently, different proof, and relative to any structure.

If $\overrightarrow{0'}$ is r.i.computable in \mathcal{A} , there exists a structure \mathcal{B} such that \mathcal{B}' is equivalent to \mathcal{A} .

for \equiv_w . [Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon]

for \equiv_w . [A. Soskova] independently, different proof, and relative to any structure.

for \equiv_{Σ} . [Stukachev] for arbitrary size structures.

If $\overrightarrow{0'}$ is r.i.computable in \mathcal{A} , there exists a structure \mathcal{B} such that \mathcal{B}' is equivalent to \mathcal{A} .

for \equiv_w . [Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon]

for \equiv_w . [A. Soskova] independently, different proof, and relative to any structure.

for \equiv_{Σ} . [Stukachev] for arbitrary size structures.

Q: Which structures are \equiv_I -equivalent to the jump of a structure?

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

Theorem (1st Jump inversion Theorem - α -iteration)

If $\overline{0^{(\alpha)}}$ is r.i.computable in \mathcal{A} , there exists a structure \mathcal{B} such that $\mathcal{B}^{(\alpha)}$ is equivalent to \mathcal{A} .

向下 イヨト イヨト

Theorem (1st Jump inversion Theorem - α -iteration)

If $\overline{0^{(\alpha)}}$ is r.i.computable in \mathcal{A} , there exists a structure \mathcal{B} such that $\mathcal{B}^{(\alpha)}$ is equivalent to \mathcal{A} .

[Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon] used it to build a structure that is Δ_{α} -categorical but not relatively so.

Theorem (1st Jump inversion Theorem - α -iteration)

If $\overrightarrow{0^{(\alpha)}}$ is r.i.computable in \mathcal{A} , there exists a structure \mathcal{B} such that $\mathcal{B}^{(\alpha)}$ is equivalent to \mathcal{A} .

[Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon] used it to build a structure that is Δ_{α} -categorical but not relatively so.

 $\left[\mathsf{Greenberg},\,\mathsf{M},\,\mathsf{Slaman}\right]$ used to build a structure whose spectrum is non-HYP

同 ト イヨ ト イヨ ト

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.

First proved by [I. Soskov], and then, independently, by [Montalbán], using their respective notions of jump, but similar proofs.

個 と く ヨ と く ヨ と

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.

First proved by [I. Soskov], and then, independently, by [Montalbán], using their respective notions of jump, but similar proofs.

個 と く ヨ と く ヨ と

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.

同 とくほ とくほと

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.

Cor: $Sp(\mathcal{A}') = \{x' : x \in Sp(\mathcal{A})\}$

・ 回 と ・ ヨ と ・ モ と …

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.

Cor: $Sp(\mathcal{A}') = \{x' : x \in Sp(\mathcal{A})\}$

Cor: [Frolov] If 0' computes a copy of $(\mathcal{L}, succ)$, \mathcal{L} has a low copy.

・ 回 と ・ ヨ と ・ ヨ と …

Theorem (2nd Jump Inversion Theorem)

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.

Cor: $Sp(\mathcal{A}') = \{x' : x \in Sp(\mathcal{A})\}$

Cor: [Frolov] If 0' computes a copy of $(\mathcal{L}, succ)$, \mathcal{L} has a low copy.

Cor: If *R* is r.i. Σ_2^0 in \mathcal{A} , then *R* is r.i.c.e. in \mathcal{A}' . It follows that r.i. Σ_n^0 relations are Σ_n^c -definable.

[Ash, Knight, Manasse, Slaman; Chisholm]

・ 同・ ・ ヨ・ ・ ヨ・

Theorem (2nd Jump Inversion Theorem)

If Y can compute a copy of A', then there exists X that computes a copy of A and $X' \equiv_T Y$.

- **Cor:** $Sp(\mathcal{A}') = \{x' : x \in Sp(\mathcal{A})\}$
- **Cor:** [Frolov] If 0' computes a copy of $(\mathcal{L}, succ)$, \mathcal{L} has a low copy.

Cor: If R is r.i. Σ_2^0 in A, then R is r.i.c.e. in A'. It follows that r.i. Σ_n^0 relations are Σ_n^c -definable. [Ash, Knight, Manasse, Slaman; Chisholm]

 $\ensuremath{\text{Cor:}}[\ensuremath{\mathbb{M}}]$ Given $\ensuremath{\mathcal{A}}$, the following are equivalent:

• Low property: If $X \in Sp(\mathcal{A})$ and $X' \equiv_T Y'$ then $Y \in Sp(\mathcal{A})$.

▲御≯ ▲注≯ ▲注≯

• Strong jump inversion: If $X' \in Sp(\mathcal{A}')$ then $X \in Sp(\mathcal{A})$.

Recall: For $A \subseteq \mathbb{N}$, $A \not\equiv_T A'$.

・ロン ・回 と ・ ヨン ・ モン

æ

Recall: For $A \subseteq \mathbb{N}$, $A \not\equiv_T A'$.

Theorem ([M])

The existence of A with Sp(A) = Sp(A'), is not provable in full nth-order arithmetic for any n.

★ 同 ▶ ★ 三 ▶

Recall: For $A \subseteq \mathbb{N}$, $A \not\equiv_T A'$.

Theorem ([M])

The existence of A with Sp(A) = Sp(A'), is not provable in full nth-order arithmetic for any n.

Note: Almost all of classical mathematics can be proved in nth-order arithmetic for some n, (except for set theory or model theory).

Recall: For $A \subseteq \mathbb{N}$, $A \not\equiv_T A'$.

Theorem ([M])

The existence of A with Sp(A) = Sp(A'), is not provable in full nth-order arithmetic for any n.

Note: Almost all of classical mathematics can be proved in nth-order arithmetic for some n, (except for set theory or model theory).

Theorem ([M] using 0[#]; [Puzarenko; S.Friedman, Welch] in ZFC)

There is a structure \mathcal{A} such that $\mathcal{A} \equiv_{I} \mathcal{A}'$.

★御★ ★注★ ★注★

Recall: For $A \subseteq \mathbb{N}$, $A \not\equiv_T A'$.

Theorem ([M])

The existence of A with Sp(A) = Sp(A'), is not provable in full nth-order arithmetic for any n.

Note: Almost all of classical mathematics can be proved in nth-order arithmetic for some n, (except for set theory or model theory).

Theorem ([M] using 0[#]; [Puzarenko; S.Friedman, Welch] in ZFC)

There is a structure \mathcal{A} such that $\mathcal{A} \equiv_{I} \mathcal{A}'$.

Idea of proof: Build \mathcal{A} as a non-well-founded ω -model of V = L such that for some $\alpha \in \mathcal{A}$, $\mathcal{A} \cong L^{\mathcal{A}}_{\alpha}$.

▲圖→ ▲屋→ ▲屋→

For which A and n is there a nice description of $A^{(n)}$?

(4回) (4回) (4回)

æ

For which A and n is there a nice description of $A^{(n)}$?

Definition (M.) $P_0, ..., P_k, ...$ are a *complete sequence of* \sum_n^c *relations on* \mathcal{A} if they are uniformly \sum_n^c and $\bigoplus_k P_k \oplus \overrightarrow{0^{(n)}} \equiv_s^{\mathcal{A}} \emptyset^{(n)^{\mathcal{A}}}$.

・日本 ・ヨト ・ヨト

For which A and n is there a nice description of $A^{(n)}$?

Definition (M.) $P_0, ..., P_k, ...$ are a *complete sequence of* \sum_n^c *relations on* \mathcal{A} if they are uniformly \sum_n^c and $\bigoplus_k P_k \oplus \overrightarrow{0^{(n)}} \equiv_s^{\mathcal{A}} \emptyset^{(n)^{\mathcal{A}}}$.

Question:

For which \mathcal{A} and n, is there a finite complete sets of $\sum_{n=1}^{c}$ relations?

・日本 ・ヨト ・ヨト

For which A and n is there a nice description of $A^{(n)}$?

Definition (M.)

 $P_0, ..., P_k, ...$ are a *complete sequence of* \sum_n^c *relations on* \mathcal{A} if they are uniformly \sum_n^c and $\bigoplus_k P_k \oplus \overrightarrow{0^{(n)}} \equiv_s^{\mathcal{A}} \emptyset^{(n)^{\mathcal{A}}}$.

Question:

For which A and n, is there a finite complete sets of Σ_n^c relations?

Question:

For which \mathcal{A} and n, is there a nice complete sets of $\sum_{n=1}^{c}$ relations?

(本間) (本語) (本語)

Ex: Let \mathcal{A} be a *Boolean algebra*. Then

白 ト く ヨ ト く ヨ ト

æ

Ex: Let \mathcal{A} be a *Boolean algebra*. Then

 $\emptyset'^{\mathcal{A}} \equiv^{\mathcal{A}}_{s} atom \oplus \overrightarrow{0'}.$

白 ト く ヨ ト く ヨ ト

Ex: Let \mathcal{A} be a *Boolean algebra*. Then

 $\emptyset'^{\mathcal{A}} \equiv^{\mathcal{A}}_{s} atom \oplus \overrightarrow{0'}.$

 $\emptyset''^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} atom(x) \oplus atomless(x) \oplus finite(x) \oplus \overrightarrow{0''}$

白 ト く ヨ ト く ヨ ト

Ex: Let \mathcal{A} be a *Boolean algebra*. Then

 $\emptyset'^{\mathcal{A}} \equiv^{\mathcal{A}}_{s} atom \oplus \overrightarrow{0'}.$

 $\emptyset''^{\mathcal{A}} \equiv^{\mathcal{A}}_{s} atom(x) \oplus atomless(x) \oplus finite(x) \oplus \overrightarrow{0''}$

 $\emptyset'''^{\mathcal{A}} \equiv^{\mathcal{A}}_{s} atom \oplus atomless \oplus finite \oplus atomic \oplus 1\text{-}atom \oplus atominf \oplus \overrightarrow{0'''}$

白 ト イヨト イヨト

Ex: Let \mathcal{A} be a *Boolean algebra*. Then

 $\emptyset'^{\mathcal{A}} \equiv^{\mathcal{A}}_{s} atom \oplus \overrightarrow{0'}.$

 $\emptyset''^{\mathcal{A}} \equiv^{\mathcal{A}}_{s} atom(x) \oplus atomless(x) \oplus finite(x) \oplus \overrightarrow{\mathsf{0}''}$

 $\emptyset'''^{\mathcal{A}} \equiv^{\mathcal{A}}_{s} \textit{atom} \oplus \textit{atomless} \oplus \textit{finite} \oplus \textit{atomic} \oplus 1 \textit{-atom} \oplus \textit{atominf} \oplus \overrightarrow{0'''}$

 $\emptyset^{(4)^{\mathcal{A}}} \equiv_{s}^{\mathcal{A}} atom \oplus atomless \oplus finite \oplus atomic \oplus 1-atom \oplus atominf \oplus$ $\sim-inf \oplus Int(\omega + \eta) \oplus infatomicless \oplus 1-atomless \oplus nomaxatomless \oplus \overrightarrow{0^{(4)}}$ These relations were used by Thurber [95], Knight and Stob [00].

回り くほり くほり ……ほ

Ex: Let \mathcal{A} be a *Boolean algebra*. Then

 ${\emptyset'}^{\mathcal{A}} \equiv^{\mathcal{A}}_{s} atom \oplus \overrightarrow{\mathfrak{0}'}.$

 $\emptyset''^{\mathcal{A}} \equiv^{\mathcal{A}}_{s} atom(x) \oplus atomless(x) \oplus finite(x) \oplus \overrightarrow{\mathsf{0}''}$

 $\emptyset'''^{\mathcal{A}} \equiv^{\mathcal{A}}_{s} \textit{atom} \oplus \textit{atomless} \oplus \textit{finite} \oplus \textit{atomic} \oplus 1 \textit{-atom} \oplus \textit{atominf} \oplus \overrightarrow{0'''}$

 $\emptyset^{(4)^{\mathcal{A}}} \equiv_{s}^{\mathcal{A}} atom \oplus atomless \oplus finite \oplus atomic \oplus 1-atom \oplus atominf \oplus$ $\sim-inf \oplus Int(\omega + \eta) \oplus infatomicless \oplus 1-atomless \oplus nomaxatomless \oplus \overrightarrow{0^{(4)}}$ These relations were used by Thurber [95], Knight and Stob [00].

Theorem (K.Harris – M. 08)

On Boolean algebras, $\forall n \in \mathbb{N}$, there is a finite sequence $P_0, ..., P_{k_n}$, of Σ_n^c formulas such that for all \mathcal{A} $\emptyset^{(n)^{\mathcal{A}}} \equiv_s^{\mathcal{A}} P_0^{\mathcal{A}}(x) \oplus ... \oplus P_{k_n}^{\mathcal{A}}(x) \oplus \overline{0^{(n)}}$.

Let \mathcal{L} be a linear ordering.

白 と く ヨ と く ヨ と

Let \mathcal{L} be a linear ordering.

Ex: Let \mathcal{L} be a *linear ordering*. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{L}} succ(x, y) \oplus \overrightarrow{0'}$.

同 と く ヨ と く ヨ と

Let \mathcal{L} be a linear ordering.

Ex: Let \mathcal{L} be a *linear ordering*. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{L}} succ(x, y) \oplus \overrightarrow{0'}$.

白 と く ヨ と く ヨ と …

Let \mathcal{L} be a linear ordering.

Ex: Let \mathcal{L} be a *linear ordering*. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{L}} succ(x, y) \oplus \overrightarrow{0'}$.

Ex: [Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev] We don't need infinitely many relations.

コマン くほう くほう

Let \mathcal{L} be a linear ordering.

Ex: Let \mathcal{L} be a *linear ordering*. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{L}} succ(x, y) \oplus \overrightarrow{0'}$.

Ex: [Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev] We don't need infinitely many relations. $\emptyset''^{\mathcal{L}} \equiv_{s}^{\mathcal{L}} limleft(x) \oplus limright(x) \oplus P(x, y, z, w) \oplus \overrightarrow{0''}$ where $P(x, y, z, w) \equiv \bigvee_{n} (succ^{n}(y) = z \& D_{n+2}(x, w))$

回 と く ヨ と く ヨ と

Let \mathcal{L} be a linear ordering.

Ex: Let \mathcal{L} be a *linear ordering*. Then $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{L}} succ(x, y) \oplus \overrightarrow{0'}$.

Ex: [Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev] We don't need infinitely many relations. $\emptyset''^{\mathcal{L}} \equiv_{s}^{\mathcal{L}} limleft(x) \oplus limright(x) \oplus P(x, y, z, w) \oplus \overrightarrow{0''}$ where $P(x, y, z, w) \equiv \bigvee_{n} (succ^{n}(y) = z \& D_{n+2}(x, w))$

Thm: [M.] There is no relativizable (and hence nice) set of Σ_3^c relations that work for all linear orderings simultaneously.

Let ${\mathcal V}$ be an infinite dimensional ${\mathbb Q}\text{-vector space}.$

回 と く ヨ と く ヨ と

æ

Let ${\mathcal V}$ be an infinite dimensional ${\mathbb Q}\text{-vector space}.$

$$\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} \vec{LD} \oplus \vec{0'}$$

where $\vec{LD} = (LD_1, LD_2, ...)$, and $LD_i = \{(v_1, ..., v_i) : v_1, ..., v_i \text{ are lin. dep.}\}$

・ 回 と ・ ヨ と ・ ヨ と …

æ

Let \mathcal{V} be an infinite dimensional \mathbb{Q} -vector space.

$$\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} \vec{LD} \oplus \vec{0'}$$

where $\vec{LD} = (LD_1, LD_2, ...)$, and $LD_i = \{(v_1, ..., v_i) : v_1, ..., v_i \text{ are lin. dep.}\}$

Thm: [Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev] No finite set of relations is Σ_1^c complete in \mathcal{V} .

白 と く ヨ と く ヨ と

Let $\mathcal{A} = (\mathcal{A}; \equiv)$ be an equivalence structure.

個 と く ヨ と く ヨ と …

Let $\mathcal{A} = (\mathcal{A}; \equiv)$ be an equivalence structure.

Ex: $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} (E_{k}(x) : k \in \mathbb{N}) \oplus \overrightarrow{R} \oplus \overrightarrow{0'},$ where $E_{k}(x) \iff$ there are $\geq k$ elements equivalent to x, and $R = \{\langle n, k \rangle \in \mathbb{N}^{2} : \text{there are } \geq n \text{ equivalence classes with } \geq k \text{ elements} \}.$ Let $\mathcal{A} = (\mathcal{A}; \equiv)$ be an equivalence structure.

Ex: $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} (E_{k}(x) : k \in \mathbb{N}) \oplus \overrightarrow{R} \oplus \overrightarrow{0'},$ where $E_{k}(x) \iff$ there are $\geq k$ elements equivalent to x, and $R = \{\langle n, k \rangle \in \mathbb{N}^{2} : \text{there are } \geq n \text{ equivalence classes with } \geq k \text{ elements} \}.$

Suppose that \mathcal{A} has infinitely many classes of each size. **Thm:**[Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev] No finite set of relations is Σ_1^c complete in \mathcal{A} .

御 と く ほ と く ほ と …

Let $\mathcal{A} = (\mathcal{A}; \equiv)$ be an equivalence structure.

Ex: $\emptyset'^{\mathcal{A}} \equiv_{s}^{\mathcal{A}} (E_{k}(x) : k \in \mathbb{N}) \oplus \overrightarrow{R} \oplus \overrightarrow{0'},$ where $E_{k}(x) \iff$ there are $\geq k$ elements equivalent to x, and $R = \{\langle n, k \rangle \in \mathbb{N}^{2} : \text{there are } \geq n \text{ equivalence classes with } \geq k \text{ elements} \}.$

Suppose that \mathcal{A} has infinitely many classes of each size. **Thm:**[Knight-R. Miller-M.-Soskov-Soskova-Soskova-VanDendreissche-Vatev] No finite set of relations is Σ_1^c complete in \mathcal{A} . There is a finite set of relations is Σ_2^c complete in \mathcal{A} .

白 と く ヨ と く ヨ と …

Theorem ([M])

Let \mathbb{K} be an axiomatizable class of structures. Exactly one of the following holds:

(relative to any sufficiently large oracle)

• There is a nice characterization of $\mathcal{A}^{(n)}$:

2 Every set can be coded in $\mathcal{A}^{(n-1)}$:

Theorem ([M])

Let \mathbb{K} be an axiomatizable class of structures. Exactly one of the following holds:

(relative to any sufficiently large oracle)

① There is a nice characterization of $\mathcal{A}^{(n)}$:

- There is a uniform, rel, countable complete sets of Σ_n^c rels.
- No set can be coded by the (n-1)st jump of any $\mathcal{A} \in \mathbb{K}$.
- There are countably many n-back-and-forth equivalence classes

2 Every set can be coded in $\mathcal{A}^{(n-1)}$:

Theorem ([M])

Let \mathbb{K} be an axiomatizable class of structures. Exactly one of the following holds:

(relative to any sufficiently large oracle)

イロン イヨン イヨン イヨン

① There is a nice characterization of $\mathcal{A}^{(n)}$:

- There is a uniform, rel, countable complete sets of Σ_n^c rels.
- No set can be coded by the (n-1)st jump of any $A \in \mathbb{K}$.
- There are countably many n-back-and-forth equivalence classes
- **2** Every set can be coded in $\mathcal{A}^{(n-1)}$:
 - There is no uniform, rel, countable complete sets of Σ_n^c rels.
 - $\forall X \subseteq \omega$, there is a $\mathcal{A} \in \mathbb{K}$ s.t. X is a r.i.c.e. real in $\mathcal{A}^{(n-1)}$,
 - \exists Continuum many n-back-and-forth equivalence classes