On the Strength of Fraissés conjecture..

Antonio Montalbán. University of Chicago

Computability, Reverse Mathematics and Combinatorics, Banff, December 2008

The embeddability relation on Linear Orderings

A linear ordering (a.k.a. total ordering) is a structure $\mathcal{L} = (L, \leq)$, where \leq is a is transitive, reflexive, antisymmetric and $\forall x, y (x \leq y \vee y \leq x)$.

A linear ordering \mathcal{A} embeds into another linear ordering \mathcal{B} if \mathcal{A} is isomorphic to a subset of \mathcal{B} . We write $\mathcal{A} \preccurlyeq \mathcal{B}$.

 \mathcal{A} and \mathcal{B} are equimorphic if $\mathcal{A} \preccurlyeq \mathcal{B}$ and $\mathcal{B} \preccurlyeq \mathcal{A}$. We denote this by $\mathcal{A} \sim \mathcal{B}$.

We are interested in properties of linear orderings that are preserved under equimorphisms, of course, from a logic viewpoint.

The embeddability relation on Linear Orderings

A linear ordering (a.k.a. total ordering) is a structure $\mathcal{L} = (L, \leq)$, where \leq is a is transitive, reflexive, antisymmetric and $\forall x, y (x \leq y \vee y \leq x)$.

A linear ordering \mathcal{A} embeds into another linear ordering \mathcal{B} if \mathcal{A} is isomorphic to a subset of \mathcal{B} . We write $\mathcal{A} \preceq \mathcal{B}$.

 \mathcal{A} and \mathcal{B} are equimorphic if $\mathcal{A} \preccurlyeq \mathcal{B}$ and $\mathcal{B} \preccurlyeq \mathcal{A}$. We denote this by $\mathcal{A} \sim \mathcal{B}$.

We are interested in properties of linear orderings that are preserved under equimorphisms, of course, from a logic viewpoint.

The embeddability relation on Linear Orderings

A linear ordering (a.k.a. total ordering) is a structure $\mathcal{L} = (L, \leq)$, where \leq is a is transitive, reflexive, antisymmetric and $\forall x, y (x \leq y \lor y \leq x)$.

A linear ordering \mathcal{A} embeds into another linear ordering \mathcal{B} if \mathcal{A} is isomorphic to a subset of \mathcal{B} . We write $\mathcal{A} \preceq \mathcal{B}$.

 \mathcal{A} and \mathcal{B} are equimorphic if $\mathcal{A} \preccurlyeq \mathcal{B}$ and $\mathcal{B} \preccurlyeq \mathcal{A}$. We denote this by $\mathcal{A} \sim \mathcal{B}$.

We are interested in properties of linear orderings that are preserved under equimorphisms, of course, from a logic viewpoint.

- 1 Equimorphism types of Linear Orderings
- 2 Computable Mathematics
- Reverse Mathematics
- 4 Lengths of WQOs

- Given a l.o. \mathcal{L} , we define another l.o. \mathcal{L}' by identifying the elements of \mathcal{L} which have finitely many elements in between.
- Then we define $\mathcal{L}^0 = \mathcal{L}$, $\mathcal{L}^{\alpha+1} = (\mathcal{L}^{\alpha})'$, and take direct limits when α is a limit ordinal.
- $\mathsf{rk}(\mathcal{L})$, the Hausdorff rank of \mathcal{L} , is the least α such that \mathcal{L}^{α} is finite.

Examples:
$$\operatorname{rk}(\mathbb{N}) = \operatorname{rk}(\mathbb{Z}) = 1, \qquad \operatorname{rk}(\mathbb{Z} + \mathbb{Z} + \mathbb{Z} + \cdots) = 2,$$
 $\operatorname{rk}(\omega^{\alpha}) = \alpha, \qquad \operatorname{rk}(\mathbb{Q}) = \infty.$

If
$$\mathcal{A} \preccurlyeq \mathcal{B}$$
, then $\mathsf{rk}(\mathcal{A}) \leqslant \mathsf{rk}(\mathcal{B})$. So, $\mathcal{A} \sim \mathcal{B} \Rightarrow \mathsf{rk}(\mathcal{A}) = \mathsf{rk}(\mathcal{B})$

- Given a l.o. \mathcal{L} , we define another l.o. \mathcal{L}' by identifying the elements of \mathcal{L} which have finitely many elements in between.
- Then we define $\mathcal{L}^0 = \mathcal{L}$, $\mathcal{L}^{\alpha+1} = (\mathcal{L}^{\alpha})'$, and take direct limits when α is a limit ordinal.
- $\mathsf{rk}(\mathcal{L})$, the Hausdorff rank of \mathcal{L} , is the least α such that \mathcal{L}^{α} is finite

Examples:
$$\operatorname{rk}(\mathbb{N}) = \operatorname{rk}(\mathbb{Z}) = 1$$
, $\operatorname{rk}(\mathbb{Z} + \mathbb{Z} + \mathbb{Z} + \cdots) = 2$, $\operatorname{rk}(\omega^{\alpha}) = \alpha$, $\operatorname{rk}(\mathbb{Q}) = \infty$.

If
$$\mathcal{A}\preccurlyeq\mathcal{B}$$
, then $\mathrm{rk}(\mathcal{A})\leqslant\mathrm{rk}(\mathcal{B}).$ So, $\mathcal{A}\sim\mathcal{B}\Rightarrow\mathrm{rk}(\mathcal{A})=\mathrm{rk}(\mathcal{B})$

- Given a l.o. \mathcal{L} , we define another l.o. \mathcal{L}' by identifying the elements of \mathcal{L} which have finitely many elements in between.
- Then we define $\mathcal{L}^0 = \mathcal{L}$, $\mathcal{L}^{\alpha+1} = (\mathcal{L}^{\alpha})'$, and take direct limits when α is a limit ordinal.
- $\operatorname{rk}(\mathcal{L})$, the Hausdorff rank of \mathcal{L} , is the least α such that \mathcal{L}^{α} is finite.

Examples:
$$\operatorname{rk}(\mathbb{N}) = \operatorname{rk}(\mathbb{Z}) = 1$$
, $\operatorname{rk}(\mathbb{Z} + \mathbb{Z} + \mathbb{Z} + \cdots) = 2$ $\operatorname{rk}(\omega^{\alpha}) = \alpha$, $\operatorname{rk}(\mathbb{Q}) = \infty$.

If
$$\mathcal{A}\preccurlyeq\mathcal{B}$$
, then $\mathrm{rk}(\mathcal{A})\leqslant\mathrm{rk}(\mathcal{B}).$ So, $\mathcal{A}\sim\mathcal{B}\Rightarrow\mathrm{rk}(\mathcal{A})=\mathrm{rk}(\mathcal{B})$

Definition:

- Given a l.o. \mathcal{L} , we define another l.o. \mathcal{L}' by identifying the elements of \mathcal{L} which have finitely many elements in between.
- Then we define $\mathcal{L}^0 = \mathcal{L}$, $\mathcal{L}^{\alpha+1} = (\mathcal{L}^{\alpha})'$, and take direct limits when α is a limit ordinal.
- $rk(\mathcal{L})$, the Hausdorff rank of \mathcal{L} , is the least α such that \mathcal{L}^{α} is finite.

Examples:
$$\operatorname{rk}(\mathbb{N}) = \operatorname{rk}(\mathbb{Z}) = 1$$
, $\operatorname{rk}(\mathbb{Z} + \mathbb{Z} + \mathbb{Z} + \cdots) = 2$, $\operatorname{rk}(\omega^{\alpha}) = \alpha$, $\operatorname{rk}(\mathbb{Q}) = \infty$.

If $\mathcal{A} \preccurlyeq \mathcal{B}$, then $\operatorname{rk}(\mathcal{A}) \leqslant \operatorname{rk}(\mathcal{B})$. So, $\mathcal{A} \sim \mathcal{B} \Rightarrow \operatorname{rk}(\mathcal{A}) = \operatorname{rk}(\mathcal{B})$

- Given a l.o. \mathcal{L} , we define another l.o. \mathcal{L}' by identifying the elements of \mathcal{L} which have finitely many elements in between.
- Then we define $\mathcal{L}^0 = \mathcal{L}$, $\mathcal{L}^{\alpha+1} = (\mathcal{L}^{\alpha})'$, and take direct limits when α is a limit ordinal.
- $rk(\mathcal{L})$, the Hausdorff rank of \mathcal{L} , is the least α such that \mathcal{L}^{α} is finite.

Examples:
$$\operatorname{rk}(\mathbb{N}) = \operatorname{rk}(\mathbb{Z}) = 1$$
, $\operatorname{rk}(\mathbb{Z} + \mathbb{Z} + \mathbb{Z} + \cdots) = 2$, $\operatorname{rk}(\omega^{\alpha}) = \alpha$, $\operatorname{rk}(\mathbb{Q}) = \infty$.

If
$$A \preccurlyeq \mathcal{B}$$
, then $\mathsf{rk}(A) \leqslant \mathsf{rk}(\mathcal{B})$. So, $A \sim \mathcal{B} \Rightarrow \mathsf{rk}(A) = \mathsf{rk}(\mathcal{B})$

- Given a l.o. \mathcal{L} , we define another l.o. \mathcal{L}' by identifying the elements of \mathcal{L} which have finitely many elements in between.
- Then we define $\mathcal{L}^0 = \mathcal{L}$, $\mathcal{L}^{\alpha+1} = (\mathcal{L}^{\alpha})'$, and take direct limits when α is a limit ordinal.
- $rk(\mathcal{L})$, the Hausdorff rank of \mathcal{L} , is the least α such that \mathcal{L}^{α} is finite.

Examples:
$$\operatorname{rk}(\mathbb{N}) = \operatorname{rk}(\mathbb{Z}) = 1$$
, $\operatorname{rk}(\mathbb{Z} + \mathbb{Z} + \mathbb{Z} + \cdots) = 2$, $\operatorname{rk}(\omega^{\alpha}) = \alpha$, $\operatorname{rk}(\mathbb{Q}) = \infty$.

If
$$\mathcal{A} \preccurlyeq \mathcal{B}$$
, then $\mathsf{rk}(\mathcal{A}) \leqslant \mathsf{rk}(\mathcal{B})$. So, $\mathcal{A} \sim \mathcal{B} \Rightarrow \mathsf{rk}(\mathcal{A}) = \mathsf{rk}(\mathcal{B})$

Scattered and Indecomposable linear orderings

Two other properties are preserved under equimorphism:

Definition: \mathcal{L} is scattered if $\mathbb{Q} \not\preccurlyeq \mathcal{L}$.

Observation: A linear ordering \mathcal{L} is scattered

 \Leftrightarrow for some α , \mathcal{L}^{α} is finite

 $\Leftrightarrow \operatorname{rk}(\mathcal{L}) \neq \infty$.

Definition: \mathcal{L} is indecomposable if whenever

$$\mathcal{L} \preccurlyeq \mathcal{A} + \mathcal{B}$$
, either $\mathcal{L} \preccurlyeq \mathcal{A}$ or $\mathcal{L} \preccurlyeq \mathcal{B}$.

Example: ω , ω^* , ω^2 are indecomposable. \mathbb{Z} is not.

Scattered and Indecomposable linear orderings

Two other properties are preserved under equimorphism:

Definition: \mathcal{L} is scattered if $\mathbb{Q} \not\preccurlyeq \mathcal{L}$.

Observation: A linear ordering \mathcal{L} is scattered

 \Leftrightarrow for some α , \mathcal{L}^{α} is finite

 $\Leftrightarrow \operatorname{rk}(\mathcal{L}) \neq \infty$.

Definition: \mathcal{L} is indecomposable if whenever

 $\mathcal{L} \preccurlyeq \mathcal{A} + \mathcal{B}$, either $\mathcal{L} \preccurlyeq \mathcal{A}$ or $\mathcal{L} \preccurlyeq \mathcal{B}$.

Example: ω , ω^* , ω^2 are indecomposable. \mathbb{Z} is not.

The structure of the scattered linear orderings

Theorem: [Laver '71] Every scattered linear ordering can be written as a finite sum of indecomposable ones.

```
Theorem: [Fraïssé's Conjecture '48; Laver '71] Every ctble. indecomposable linear ordering can be written as either an \omega-sum or an \omega^*-sum of indecomposable l.o. of smaller rank.
```

```
Theorem: [Fraïsse's Conjecture '48; Laver '71]
The scattered linear orderings form a well-quasi-ordering with respect to embeddablity.
```

(i.e., there are no infinite descending sequences and no infinite antichains.)

The structure of the scattered linear orderings

Theorem: [Laver '71] Every scattered linear ordering can be written as a finite sum of indecomposable ones.

```
Theorem: [Fraïssé's Conjecture '48; Laver '71] Every ctble. indecomposable linear ordering can be written as either an \omega-sum or an \omega^*-sum of indecomposable l.o. of smaller rank.
```

```
Theorem: [Fraïssé's Conjecture '48; Laver '71]
The scattered linear orderings form a well-quasi-ordering with respect to embeddablity.
```

(i.e., there are no infinite descending sequences and no infinite antichains.)

The structure of the scattered linear orderings

Theorem: [Laver '71] Every scattered linear ordering can be written as a finite sum of indecomposable ones.

Theorem: [Fraïssé's Conjecture '48; Laver '71] Every ctble. indecomposable linear ordering can be written as either an ω -sum or an ω^* -sum of indecomposable l.o.

of smaller rank.

Theorem: [Fraïssé's Conjecture '48; Laver '71]

The scattered linear orderings form a well-quasi-ordering

with respect to embeddablity.

(i.e., there are no infinite descending sequences and no infinite antichains.)

Equimorphism types of Linear Orderings
Computable Mathematics
Reverse Mathematics
Lengths of WQOs

Equimorphism types of Linear Orderings

2 Computable Mathematics

Reverse Mathematics

Up to equimorphism, hyperarithmetic is computable.

Obs: If α is an ordinal and $\mathcal{L} \sim \alpha$, then \mathcal{L} is isomorphic to α .

Proof: $\mathcal{L} \leq \alpha \Rightarrow \mathcal{L}$ is an ordinal and $\mathcal{L} \leq \alpha$.

 $\alpha \preccurlyeq \mathcal{L} \Rightarrow \alpha \leqslant \mathcal{L}$ and hence $\mathcal{L} \cong \alpha$.

$\mathsf{Theorem}$

Every hyperarithmetic linear ordering is equimorphic to a computable one.

Lemma

- Every hyperarithmetic scattered l.o. has rank $< \omega_1^{CK}$.
- If $rk(\mathcal{L}) < \omega_1^{CK}$ then \mathcal{L} is equimorphic to a computable l.o.

Up to equimorphism, hyperarithmetic is computable.

Obs: If α is an ordinal and $\mathcal{L} \sim \alpha$, then \mathcal{L} is isomorphic to α .

Proof: $\mathcal{L} \preccurlyeq \alpha \Rightarrow \mathcal{L}$ is an ordinal and $\mathcal{L} \leqslant \alpha$.

 $\alpha \preccurlyeq \mathcal{L} \Rightarrow \alpha \leqslant \mathcal{L}$ and hence $\mathcal{L} \cong \alpha$.

Theorem

Every hyperarithmetic linear ordering is equimorphic to a computable one.

Lemma

- Every hyperarithmetic scattered l.o. has rank $<\omega_1^{\rm CK}$.
- If $rk(\mathcal{L}) < \omega_1^{CK}$ then \mathcal{L} is equimorphic to a computable l.o.

Up to equimorphism, hyperarithmetic is computable.

Obs: If α is an ordinal and $\mathcal{L} \sim \alpha$, then \mathcal{L} is isomorphic to α .

Proof: $\mathcal{L} \preceq \alpha \Rightarrow \mathcal{L}$ is an ordinal and $\mathcal{L} \leqslant \alpha$.

 $\alpha \preccurlyeq \mathcal{L} \Rightarrow \alpha \leqslant \mathcal{L}$ and hence $\mathcal{L} \cong \alpha$.

Theorem

Every hyperarithmetic linear ordering is equimorphic to a computable one.

Lemma

- Every hyperarithmetic scattered l.o. has rank $<\omega_1^{CK}$.
- If $rk(\mathcal{L}) < \omega_1^{CK}$ then \mathcal{L} is equimorphic to a computable l.o.

Definition: Let \mathbb{L} be the partial ordering of equimorphism types of countable linear orderings, ordered by embeddablity.

Let \mathbb{L}_{α} be the restriction of \mathbb{L} to the linear orderings of rank $< \alpha$.

$\mathsf{Theorem}$

For every ordinal α , \mathbb{L}_{α} is computably presentable $\Leftrightarrow \alpha < \omega_1^{CK}$.

Furthermore, a primitive recursive presentation of \mathbb{L}_{α} can be computed uniformly form $\alpha < \omega_1^{CK}$.

Definition: Let \mathbb{L} be the partial ordering of equimorphism types of countable linear orderings, ordered by embeddablity.

Let \mathbb{L}_{α} be the restriction of \mathbb{L} to the linear orderings of rank $< \alpha$.

$\mathsf{Theorem}$

For every ordinal α , \mathbb{L}_{α} is computably presentable $\Leftrightarrow \ \alpha < \omega_1^{\mathsf{CK}}$.

Furthermore, a primitive recursive presentation of \mathbb{L}_{α} can be computed uniformly form $\alpha < \omega_1^{CK}$.

Definition: Let \mathbb{L} be the partial ordering of equimorphism types of countable linear orderings, ordered by embeddablity.

Let \mathbb{L}_{α} be the restriction of \mathbb{L} to the linear orderings of rank $< \alpha$.

Theorem

For every ordinal α , \mathbb{L}_{α} is computably presentable $\Leftrightarrow \alpha < \omega_1^{\mathsf{CK}}$.

Furthermore, a primitive recursive presentation of \mathbb{L}_{α} can be computed uniformly form $\alpha < \omega_1^{CK}$.

Definition: Let \mathbb{L} be the partial ordering of equimorphism types of countable linear orderings, ordered by embeddablity.

Let \mathbb{L}_{α} be the restriction of \mathbb{L} to the linear orderings of rank $< \alpha$.

Theorem

For every ordinal α , \mathbb{L}_{α} is computably presentable $\Leftrightarrow \alpha < \omega_1^{\mathsf{CK}}$.

Furthermore, a primitive recursive presentation of \mathbb{L}_{α} can be computed uniformly form $\alpha < \omega_1^{\mathit{CK}}$.

Equimorphism types of Linear Orderings Computable Mathematics Reverse Mathematics Lengths of WQOs

Equimorphism types of Linear Orderings

2 Computable Mathematics

Reverse Mathematics

4 Lengths of WQOs

Theorem [Fraissé's Conjecture '48; Laver '71]

FRA: The countable linear orderings form a

WQO with respect to embeddablity.

(i.e., there are no infinite descending sequences and no infinite antichains.)

Obs: Π_2^1 -CA₀ \vdash FRA. By Laver's original proof.

Obs: $FRA \Rightarrow \Pi_2^1 - CA_0$. Because no true Π_2^1 statement does.

Theorem[Shore '93] FRA \Rightarrow ATR₀ over RCA₀.

Furthermore, the statement

Theorem [Fraissé's Conjecture '48; Laver '71]

FRA: The countable linear orderings form a

WQO with respect to embeddablity.

(i.e., there are no infinite descending sequences and no infinite antichains.)

Obs: Π_2^1 -CA₀ \vdash FRA. By Laver's original proof.

Obs: $FRA \Rightarrow \Pi_2^1 - CA_0$. Because no true Π_2^1 statement does.

Theorem[Shore '93] $FRA \Rightarrow ATR_0$ over RCA_0 .

Furthermore, the statement

Theorem [Fraïssé's Conjecture '48; Laver '71]

FRA: The countable linear orderings form a

WQO with respect to embeddablity.

(i.e., there are no infinite descending sequences and no infinite antichains.)

Obs: Π_2^1 -CA₀ \vdash FRA. By Laver's original proof.

Obs: $FRA \not\Rightarrow \Pi_2^1 - CA_0$. Because no true Π_2^1 statement does.

Theorem[Shore '93] FRA ⇒ ATR₀ over RCA₀. Furthermore, the statement

Theorem [Fraïssé's Conjecture '48; Laver '71]

FRA: The countable linear orderings form a

WQO with respect to embeddablity.

(i.e., there are no infinite descending sequences and no infinite antichains.)

Obs: Π_2^1 -CA₀ \vdash FRA. By Laver's original proof.

Obs: $FRA \not\Rightarrow \Pi_2^1 - CA_0$. Because no true Π_2^1 statement does.

Theorem[Shore '93] $FRA \Rightarrow ATR_0$ over RCA_0 .

Furthermore, the statement

Theorem [Fraïssé's Conjecture '48; Laver '71]

FRA: The countable linear orderings form a

WQO with respect to embeddablity.

(i.e., there are no infinite descending sequences and no infinite antichains.)

Obs: Π_2^1 -CA₀ \vdash FRA. By Laver's original proof.

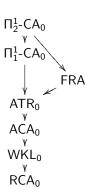
Obs: $FRA \Rightarrow \Pi_2^1 - CA_0$. Because no true Π_2^1 statement does.

Theorem[Shore '93] $FRA \Rightarrow ATR_0$ over RCA_0 .

Furthermore, the statement

"countable well-orderings form a WQO under embeddablity" is equivalent to ATR_0 over RCA_0 .

Conjecture: [Clote '90] [Simpson '99] [Marcone] FRA is equivalent to ATR₀ over RCA₀.



Fraïssé's conjecture again.

Claim

 RCA_0+FRA is the least system where it is possible to develop a reasonable theory of equimorphism types of linear orderings.

$\mathsf{T}\mathsf{heorem}$

The following are equivalent over RCA₀

- FRA;
- Every scattered lin. ord. is a finite sum of indecomposables;
- Every indecomposable lin. ord. is either an ω -sum or an ω^* -sum of indecomposable l.o. of smaller rank.
- Jullien's characterization of extendible linear orderings

Fraïssé's conjecture again.

Claim

 RCA_0+FRA is the least system where it is possible to develop a reasonable theory of equimorphism types of linear orderings.

Theorem

The following are equivalent over RCA₀

- FRA;
- Every scattered lin. ord. is a finite sum of indecomposables;
- Every indecomposable lin. ord. is either an ω -sum or an ω^* -sum of indecomposable l.o. of smaller rank.
- Jullien's characterization of extendible linear orderings

A Partition theorem

Theorem:[Folklore] If we color \mathbb{Q} with finitely many colors, there exists an embedding $\mathbb{Q} \to \mathbb{Q}$ whose image has only one color.

Theorem:[Laver '72]

For every ctble \mathcal{L} , there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that:

if $\boldsymbol{\mathcal{L}}$ is colored with finitely many colors, there is an embedding

 $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ many colors.

$\mathsf{Theorem}$

FRA is implied by Laver's Theorem above over RCA₀.

Conjecture

FRA is equivalent to Laver's Theorem above over RCA₀.

A Partition theorem

Theorem:[Folklore] If we color \mathbb{Q} with finitely many colors, there exists an embedding $\mathbb{Q} \to \mathbb{Q}$ whose image has only one color.

Theorem:[Laver '72]

For every ctble \mathcal{L} , there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that:

if $\mathcal L$ is colored with finitely many colors, there is an embedding

 $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ many colors.

$\mathsf{Theorem}$

FRA is implied by Laver's Theorem above over RCA_0 .

Conjecture

FRA is equivalent to Laver's Theorem above over RCA₀.

Robust Systems

FRA is a *Robust* system, as the big five, in the sense that small modifications of it are equivalent to it.

Better quasi orderings

Thm:[Laver 71] The scattered linear orderings form a Better quasi ordering under embeddability.

The notion of *Better-quasi-ordering* is stronger than WQO, and enjoys more closer properties.

Marcone studied the reverse mathematics of FRA though the study of Better-quasi-orderings.

For instance he showed that if ATR₀ \vdash FRA, it would need a completely new proof, as some lemmas used in Laver's proof require Π^1_1 -CA₀.

Better quasi orderings

Thm:[Laver 71] The scattered linear orderings form a Better quasi ordering under embeddability.

The notion of *Better-quasi-ordering* is stronger than WQO, and enjoys more closer properties.

Marcone studied the reverse mathematics of FRA though the study of Better-quasi-orderings.

For instance he showed that if $ATR_0 \vdash FRA$, it would need a completely new proof, as some lemmas used in Laver's proof require Π^1_1 -CA₀.

Equimorphism types of Linear Orderings Computable Mathematics Reverse Mathematics Lengths of WQOs

Equimorphism types of Linear Orderings

2 Computable Mathematics

Reverse Mathematics

4 Lengths of WQOs

Well-quasi-orderings

Definition: A *well-quasi-ordering* (*wqo*), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
- labeled transfinite sequences with finite labels [Nash-Williams 65];
- scattered linear orderings [Laver 71];
- finite graphs [Robertson, Seymour 04].

Well-quasi-orderings

Definition: A *well-quasi-ordering* (*wqo*), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
- labeled transfinite sequences with finite labels [Nash-Williams 65];
- scattered linear orderings [Laver 71];
- finite graphs [Robertson, Seymour 04].

Obs: Every linearization of a wpo is well-ordered. (A *linearization* of (P, \leqslant_P) is a linear ordering \leqslant_L of P such that $x \leqslant_P y \Rightarrow x \leqslant_L y$.)

Definition: The *length* of $\mathcal{W} = (W, \leqslant_w)$ is $o(\mathcal{W}) = \sup\{\operatorname{ordTy}(W, \leqslant_L) : \text{ where } \leqslant_L \text{ is a linearization of } \mathcal{W}\}.$

Def: $\mathbb{B}ad(\mathcal{W}) = \{\langle x_0, ..., x_{n-1} \rangle \in W^{<\omega} : \forall i < j < n \ (x_i \not\leq_W x_j)\},$ **Note:** \mathcal{W} is a wpo $\Leftrightarrow \mathbb{B}ad(\mathcal{W})$ is well-founded.

Theorem: [De Jongh, Parikh 77] $o(\mathcal{W}) + 1 = \mathsf{rk}(\mathbb{B}\mathrm{ad}(\mathcal{W}))$

Obs: Every linearization of a wpo is well-ordered. (A *linearization* of (P, \leq_P) is a linear ordering \leq_L of P such that $x \leq_P y \Rightarrow x \leq_L y$.)

Definition: The *length* of $\mathcal{W} = (W, \leq_w)$ is $o(\mathcal{W}) = \sup\{\operatorname{ordTy}(W, \leq_L) : \text{ where } \leq_L \text{ is a linearization of } \mathcal{W}\}.$

Def: $\mathbb{B}ad(\mathcal{W}) = \{\langle x_0, ..., x_{n-1} \rangle \in W^{<\omega} : \forall i < j < n \ (x_i \not\leq_W x_j)\},$ **Note:** \mathcal{W} is a wpo $\Leftrightarrow \mathbb{B}ad(\mathcal{W})$ is well-founded.

Theorem: [De Jongh, Parikh 77] $o(W) + 1 = \text{rk}(\mathbb{B}ad(W))$

Obs: Every linearization of a wpo is well-ordered. (A *linearization* of (P, \leq_P) is a linear ordering \leq_L of P such that $x \leq_P y \Rightarrow x \leq_L y$.)

Definition: The *length* of $\mathcal{W} = (W, \leq_w)$ is $o(\mathcal{W}) = \sup\{\operatorname{ordTy}(W, \leq_L) : \text{ where } \leq_L \text{ is a linearization of } \mathcal{W}\}.$

Def: $\mathbb{B}ad(\mathcal{W}) = \{\langle x_0, ..., x_{n-1} \rangle \in W^{<\omega} : \forall i < j < n \ (x_i \not\leq_W x_j) \},$ **Note:** \mathcal{W} is a wpo $\Leftrightarrow \mathbb{B}ad(\mathcal{W})$ is well-founded.

Theorem: [De Jongh, Parikh 77] $o(W) + 1 = \operatorname{rk}(\mathbb{B}\operatorname{ad}(W))$

Obs: Every linearization of a wpo is well-ordered. (A *linearization* of (P, \leq_P) is a linear ordering \leq_L of P such that $x \leq_P y \Rightarrow x \leq_L y$.)

Definition: The *length* of $\mathcal{W} = (W, \leq_w)$ is $o(\mathcal{W}) = \sup\{\operatorname{ordTy}(W, \leq_L) : \text{ where } \leq_L \text{ is a linearization of } \mathcal{W}\}.$

Def: $\mathbb{B}ad(\mathcal{W}) = \{\langle x_0, ..., x_{n-1} \rangle \in W^{<\omega} : \forall i < j < n \ (x_i \nleq_W x_j)\},$

Note: \mathcal{W} is a wpo $\Leftrightarrow \mathbb{B}ad(\mathcal{W})$ is well-founded.

Theorem: [De Jongh, Parikh 77] $o(W) + 1 = \operatorname{rk}(\mathbb{B}\operatorname{ad}(W))$

Friedman's result

Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \preccurlyeq S$ if there is an embedding : $T \to S$ preserving \leqslant and g.l.b. Then \mathcal{T} is a WQO.

Theorem: [Friedman] The length of \mathcal{T} is $\geqslant \Gamma_0$. (where Γ_0 the the proof-theoretic ordinal of ATR₀. it's the "least ordinal" that ATR₀ can't prove it's an ordinal.)

Corollary: [Friedman] (RCA₀) Kruskal's theorem $\Rightarrow \Gamma_0$ well-ordered. Therefore, ATR₀ cannot imply Kruskal's theorem

Friedman's result

Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \leq S$ if there is an embedding : $T \rightarrow S$ preserving \leq and g.l.b. Then \mathcal{T} is a WQO.

Theorem: [Friedman] The length of \mathcal{T} is $\geq \Gamma_0$. (where Γ_0 the the proof-theoretic ordinal of ATR₀. it's the "least ordinal" that ATR₀ can't prove it's an ordinal.)

Corollary: [Friedman] (RCA₀) Kruskal's theorem $\Rightarrow \Gamma_0$ well-ordered.

Therefore, ATR₀ cannot imply Kruskal's theorem.

Maximal order types

Theorem: [De Jongh, Parikh 77] Every wpo W has a linearization of order type o(W).

We call such a linearization, a maximal linearization of W.

This is why o(W) if often called the *maximal order type* of W.

Such linearizations have been found in many of the examples, always by different methods.

Question [Schmidt 1979]: Is the length of a computable wpo computable

Maximal order types

Theorem: [De Jongh, Parikh 77]

Every wpo W has a linearization of order type o(W).

We call such a linearization, a maximal linearization of W.

This is why o(W) if often called the *maximal order type* of W.

Such linearizations have been found in many of the examples, always by different methods.

Question [Schmidt 1979]: Is the length of a computable wpo computable?

Maximal order types

Theorem: [De Jongh, Parikh 77]

Every wpo W has a linearization of order type o(W).

We call such a linearization, a maximal linearization of W.

This is why o(W) if often called the *maximal order type* of W.

Such linearizations have been found in many of the examples, always by different methods.

Question [Schmidt 1979]:

Is the length of a computable wpo computable?

Computable Length

Q: Is the length, or maximal order type, of a computable wpo, computable?

We mentioned that $o(\mathcal{W})+1=\mathsf{rk}(\mathbb{B}\mathrm{ad}(\mathcal{W}))$, where

$$\mathbb{B}\mathrm{ad}(\mathcal{W}) = \{ \langle x_0, ..., x_{n-1} \rangle \in W^{<\omega} : \forall i < j < n \ (x_i \not\leq_W x_j) \}$$

Since $\mathbb{B}\mathrm{ad}(\mathcal{W})$ is computable and well-founded, it has rank $<\omega_1^{CK}$. So, $o(\mathcal{W})$ is a computable ordinal.

Q: Does every computable wpo have a computable maximal linearization?

Computable Length

Q: Is the length, or maximal order type, of a computable wpo, computable?

We mentioned that $o(\mathcal{W}) + 1 = \mathsf{rk}(\mathbb{B}\mathrm{ad}(\mathcal{W}))$, where

$$\mathbb{B}\mathrm{ad}(\mathcal{W}) = \{\langle x_0, ..., x_{n-1} \rangle \in W^{<\omega} : \forall i < j < n \; \big(x_i \not \leq_w x_j \big) \},$$

Since $\mathbb{B}\mathrm{ad}(\mathcal{W})$ is computable and well-founded, it has rank $<\omega_1^{CK}$. So, $o(\mathcal{W})$ is a computable ordinal.

Q: Does every computable wpo have a computable maximal linearization?

Computable Length

Q: Is the length, or maximal order type, of a computable wpo, computable?

We mentioned that $o(W) + 1 = \mathsf{rk}(\mathbb{B}ad(W))$, where

$$\mathbb{B}\mathrm{ad}(\mathcal{W}) = \{ \langle x_0, ..., x_{n-1} \rangle \in W^{<\omega} : \forall i < j < n \ (x_i \not\leq_W x_j) \},$$

Since $\mathbb{B}\mathrm{ad}(\mathcal{W})$ is computable and well-founded, it has rank $<\omega_1^{CK}$. So, $o(\mathcal{W})$ is a computable ordinal.

Q: Does every computable wpo have a computable maximal linearization?

A computable maximal linearization

Theorem

Every computable wpo has a computable maximal linearization.

Q: Can we find them uniformly?

$\mathsf{T}\mathsf{heorem}$

Let a be a Turing degree. TFAE.

- ① a uniformly computes maximal linearizations of comp. wpos.
- ② a uniformly computes $0^{(\beta)}$ for every $\beta < \omega_1^{CK}$.

A computable maximal linearization

$\mathsf{Theorem}$

Every computable wpo has a computable maximal linearization.

Q: Can we find them uniformly?

$\mathsf{Theorem}$

Let a be a Turing degree. TFAE:

- ① a uniformly computes maximal linearizations of comp. wpos.
- **2** a uniformly computes $0^{(\beta)}$ for every $\beta < \omega_1^{CK}$.

A computable maximal linearization

$\mathsf{Theorem}$

Every computable wpo has a computable maximal linearization.

Q: Can we find them uniformly?

Theorem

Let **a** be a Turing degree. TFAE:

- **1** a uniformly computes maximal linearizations of comp. wpos.
- **2** a uniformly computes $0^{(\beta)}$ for every $\beta < \omega_1^{CK}$.

Back to FRA

Def: Let \mathbb{L}_{α} be the partial ordering of linear orderings of Hausdorff rank $< \alpha$, modulo equimorphism.

For countable α , \mathbb{L}_{α} is countable For computable α , $(\mathbb{L}_{\alpha}, \preccurlyeq)$ is computably presentable

Obs: FRA is equivalent to " \forall ordinal α (\mathbb{L}_{α} is WQO)".

Question: Given α , what is the length of \mathbb{L}_{α} ?

Back to FRA

Def: Let \mathbb{L}_{α} be the partial ordering of linear orderings of Hausdorff rank $< \alpha$, modulo equimorphism.

For countable α , \mathbb{L}_{α} is countable For computable α , $(\mathbb{L}_{\alpha}, \preccurlyeq)$ is computably presentable

Obs: FRA is equivalent to " \forall ordinal α (\mathbb{L}_{α} is WQO)".

Question: Given α , what is the length of \mathbb{L}_{α} ?

Back to FRA

Def: Let \mathbb{L}_{α} be the partial ordering of linear orderings of Hausdorff rank $< \alpha$, modulo equimorphism.

For countable α , \mathbb{L}_{α} is countable For computable α , $(\mathbb{L}_{\alpha}, \preccurlyeq)$ is computably presentable

Obs: FRA is equivalent to " \forall ordinal α (\mathbb{L}_{α} is WQO)".

Question: Given α , what is the length of \mathbb{L}_{α} ?

Finite Hausdorff rank

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\epsilon...}}$,

the first fixed point of the function $\alpha \mapsto \epsilon_{\alpha}$

```
Def: ACA<sup>+</sup> is the system RCA<sub>0</sub>+\forall X(X^{(\omega)} \ exists).
```

Note: $\epsilon_{\epsilon_{\epsilon_{m}}}$ is the proof-theoretic ordinal of ACA⁺.

(So $\epsilon_{\epsilon_{e...}}$ is the least ordinal that ACA⁺ can't prove is well-ordered.)

Theorem (

The following are equivalent over ACA+:

- \bullet $\epsilon_{\epsilon_{\epsilon...}}$ is well-ordered
- \mathbb{L}_{ω} is a WQO

Finite Hausdorff rank

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\epsilon...}}$,

the first fixed point of the function $\alpha \mapsto \epsilon_{\alpha}$

Def: ACA⁺ is the system RCA₀+ $\forall X(X^{(\omega)} \ exists)$.

Note: $\epsilon_{\epsilon_{\epsilon}}$ is the proof-theoretic ordinal of ACA⁺.

(So $\epsilon_{\epsilon_{e...}}$ is the least ordinal that ACA⁺ can't prove is well-ordered.)

Theorem

The following are equivalent over ACA+:

- \bullet $\epsilon_{\epsilon_{\epsilon...}}$ is well-ordered
- L., is a WQO

Finite Hausdorff rank

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\epsilon...}}$, the first fixed point of the function $\alpha \mapsto \epsilon_{\alpha}$

Def: ACA⁺ is the system RCA₀+ $\forall X(X^{(\omega)} \ exists)$.

Note: $\epsilon_{\epsilon_{\epsilon...}}$ is the proof-theoretic ordinal of ACA⁺.

(So $\epsilon_{\epsilon_{\ldots}}$ is the least ordinal that ACA⁺ can't prove is well-ordered.)

Theorem ([Marcone, M 08])

The following are equivalent over ACA+:

- $\epsilon_{\epsilon_{\epsilon}}$ is well-ordered
- \mathbb{L}_{ω} is a WQO

A Conjecture

Conjecture:

The following are equivalent:

- ATR₀⊬ FRA
- There exists $\alpha < \Gamma_0$, s.t. length(\mathbb{L}_{α}) $\geqslant \Gamma_0$.