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Veblen Function

The Veblen functions go : Ordinals → Ordinals.

They are well-known and useful in Proof theory
to calculate the proof theoretic ordinals of predicative theories.

We’ll use Computability Theory to exhibit the properties that make
these functions so interesting to Proof Theorists.
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ε0

Def: Let
ε0 = sup(ω, ωω, ωω

ω
, ...), the 1st fixed point of the func. γ 7→ ωγ .

εβ = the βth fixed point of the function γ 7→ ωγ

Thm [Gentzen 36]:
Finitiary methods + Transfinite-Ind. up to ε0 ` PA is consistent.

Obs: For α < ε0, PA ` Trans.-Ind. up to α.

This makes ε0 the proof theoretic ordinal of PA.
ε0 is also the proof theoretic ordinal of ACA0.

Obs: ε0 can be represented by a prim. rec. relation 6ε0 on ω.
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Proof-theoretic ordinal of ACA+
0

Proof-theoretic ordinals of various theories have been calculated.

Example:
ACA+

0 ≡ ACA0 + ∀X (X (ω) exists).

The proof-theoretic ordinal of ACA+
0 is εεε... = sup{ε0, εε0 , εεε0

, ...},

That means that,

Finitiary methods + Trans-Ind. up to εεε... ` Cons( ACA+
0 )

For α < εεε... , ACA+
0 ` α is an ordinal.
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Veblen Functions

Definition [Veblen 1908]:
For each α, we define a function ϕα : Ord → Ord .

ϕ0(β) = ωβ.

ϕ1(β) = εβ.

ϕα+1(β) is the βth fixed point of ϕα.

ϕλ(β) is the βth simultaneous fixed point of ϕα for all α < λ.

Def: Γ0 = sup{ϕ0(0), ϕϕ0(0)(0), ϕϕϕ0(0)(0)(0), ...}
is the first ordinal s.t. ∀α, β < Γ0 ϕα(β) < Γ0.

Obs: Γ0 can be represented by a prim. rec. relation 6Γ0 on ω.

Γ0 is the proof theoretic ordinal of ATR0.
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Girard and Friedman’s result

Obs: There is a natural way of defining an operation that

given a linear ordering X , returns a linear ordering ωX .

Thm [Girard 87]: TFAE over RCA0.

For every well ordering X , ωX is also a well-ordering.

ACA0 (Arithmetic Comprehension).

Obs: There is a natural way of defining an operation that

given a linear orderings X ,Y, returns a linear ordering ϕX (Y).

Thm [Friedman]: TFAE over RCA0.

For every well ordering X , ϕX (0) is also a well-ordering.

ATR0 (Arithmetic Transfinite Recursion).
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Preserving Well-Orderings

Let F be an operator : LO → LO.
(LO ≡ Linear Orderings)

WO(F): If X is well-ordering, so is F(X ).

Q: What is the proof theoretic complexity of WO(F)?

Q: What is the computability theoretic complexity of WO(F)?

Given a LO X and a descending sequence in F(X ),
how difficult is it to find a descending sequence in X ?
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The easier direction for F(X ) = ωX .

Thm: Let X be a comp. LO with a comp. desc. sequence in ωX .
Then, there is a desc. seq. in X computable in 0′.

Pf. We have a0 > a1 > .... > an > ... ∈ ωX where

a0 = ωx0,0 + ωx0,1 + ...+ ωx0,k0

• Therefore, x0,0 > x1,0 > x2,0 > ... > xn,0 > ...
If this doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n0 after which

xn0,0 = xn0+1,0 = xn0+2,0 = ...
• Then xn0,1 > xn0+1,1 > xn0+2,1 > ...
If it doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n1 when it does.
• We continue like this. If we never succeed this way, we get

xn0,0 > xn1,1 > xn2,2 > ... computable in 0′ doesn’t stabilize.

Antonio Montalbán. University of Chicago Veblen Functions for Computability Theorists.



The easier direction for F(X ) = ωX .

Thm: Let X be a comp. LO with a comp. desc. sequence in ωX .
Then, there is a desc. seq. in X computable in 0′.
Pf. We have a0 > a1 > .... > an > ... ∈ ωX where

a0 = ωx0,0 + ωx0,1 + ...+ ωx0,k0

and x0,0 > x0,1 > ... > x0,k0 ∈ X

• Therefore, x0,0 > x1,0 > x2,0 > ... > xn,0 > ...
If this doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n0 after which

xn0,0 = xn0+1,0 = xn0+2,0 = ...
• Then xn0,1 > xn0+1,1 > xn0+2,1 > ...
If it doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n1 when it does.
• We continue like this. If we never succeed this way, we get

xn0,0 > xn1,1 > xn2,2 > ... computable in 0′ doesn’t stabilize.

Antonio Montalbán. University of Chicago Veblen Functions for Computability Theorists.



The easier direction for F(X ) = ωX .

Thm: Let X be a comp. LO with a comp. desc. sequence in ωX .
Then, there is a desc. seq. in X computable in 0′.
Pf. We have a0 > a1 > .... > an > ... ∈ ωX where

a0 = ωx0,0 + ωx0,1 + ...+ ωx0,k0

...

an = ωxn,0 + ωxn,1 + ...+ ωxn,k0

an+1 = ωxn+1,0 + ωxn+1,1 + ...+ ωxn+1,k1

...

• Therefore, x0,0 > x1,0 > x2,0 > ... > xn,0 > ...
If this doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n0 after which

xn0,0 = xn0+1,0 = xn0+2,0 = ...
• Then xn0,1 > xn0+1,1 > xn0+2,1 > ...
If it doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n1 when it does.
• We continue like this. If we never succeed this way, we get

xn0,0 > xn1,1 > xn2,2 > ... computable in 0′ doesn’t stabilize.

Antonio Montalbán. University of Chicago Veblen Functions for Computability Theorists.



The easier direction for F(X ) = ωX .

Thm: Let X be a comp. LO with a comp. desc. sequence in ωX .
Then, there is a desc. seq. in X computable in 0′.
Pf. We have a0 > a1 > .... > an > ... ∈ ωX where

a0 = ωx0,0 + ωx0,1 + ...+ ωx0,k0

...

an = ωxn,0 + ωxn,1 + ...+ ωxn,k0

an+1 = ωxn+1,0 + ωxn+1,1 + ...+ ωxn+1,k1

...

• Therefore, x0,0 > x1,0 > x2,0 > ... > xn,0 > ...

If this doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n0 after which

xn0,0 = xn0+1,0 = xn0+2,0 = ...
• Then xn0,1 > xn0+1,1 > xn0+2,1 > ...
If it doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n1 when it does.
• We continue like this. If we never succeed this way, we get

xn0,0 > xn1,1 > xn2,2 > ... computable in 0′ doesn’t stabilize.

Antonio Montalbán. University of Chicago Veblen Functions for Computability Theorists.



The easier direction for F(X ) = ωX .

Thm: Let X be a comp. LO with a comp. desc. sequence in ωX .
Then, there is a desc. seq. in X computable in 0′.
Pf. We have a0 > a1 > .... > an > ... ∈ ωX where

a0 = ωx0,0 + ωx0,1 + ...+ ωx0,k0

...

an = ωxn,0 + ωxn,1 + ...+ ωxn,k0

an+1 = ωxn+1,0 + ωxn+1,1 + ...+ ωxn+1,k1

...

• Therefore, x0,0 > x1,0 > x2,0 > ... > xn,0 > ...
If this doesn’t stabilize, it has a comp. desc. subsequence in X .

If it stabilizes, 0′ can find a point n0 after which
xn0,0 = xn0+1,0 = xn0+2,0 = ...

• Then xn0,1 > xn0+1,1 > xn0+2,1 > ...
If it doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n1 when it does.
• We continue like this. If we never succeed this way, we get

xn0,0 > xn1,1 > xn2,2 > ... computable in 0′ doesn’t stabilize.

Antonio Montalbán. University of Chicago Veblen Functions for Computability Theorists.



The easier direction for F(X ) = ωX .

Thm: Let X be a comp. LO with a comp. desc. sequence in ωX .
Then, there is a desc. seq. in X computable in 0′.
Pf. We have a0 > a1 > .... > an > ... ∈ ωX where

a0 = ωx0,0 + ωx0,1 + ...+ ωx0,k0

...

an = ωxn,0 + ωxn,1 + ...+ ωxn,k0

an+1 = ωxn+1,0 + ωxn+1,1 + ...+ ωxn+1,k1

...

• Therefore, x0,0 > x1,0 > x2,0 > ... > xn,0 > ...
If this doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n0 after which

xn0,0 = xn0+1,0 = xn0+2,0 = ...

• Then xn0,1 > xn0+1,1 > xn0+2,1 > ...
If it doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n1 when it does.
• We continue like this. If we never succeed this way, we get

xn0,0 > xn1,1 > xn2,2 > ... computable in 0′ doesn’t stabilize.

Antonio Montalbán. University of Chicago Veblen Functions for Computability Theorists.



The easier direction for F(X ) = ωX .

Thm: Let X be a comp. LO with a comp. desc. sequence in ωX .
Then, there is a desc. seq. in X computable in 0′.
Pf. We have a0 > a1 > .... > an > ... ∈ ωX where

a0 = ωx0,0 + ωx0,1 + ...+ ωx0,k0

...

an = ωxn,0 + ωxn,1 + ...+ ωxn,k0

an+1 = ωxn+1,0 + ωxn+1,1 + ...+ ωxn+1,k1

...

• Therefore, x0,0 > x1,0 > x2,0 > ... > xn,0 > ...
If this doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n0 after which

xn0,0 = xn0+1,0 = xn0+2,0 = ...
• Then xn0,1 > xn0+1,1 > xn0+2,1 > ...

If it doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n1 when it does.
• We continue like this. If we never succeed this way, we get

xn0,0 > xn1,1 > xn2,2 > ... computable in 0′ doesn’t stabilize.

Antonio Montalbán. University of Chicago Veblen Functions for Computability Theorists.



The easier direction for F(X ) = ωX .

Thm: Let X be a comp. LO with a comp. desc. sequence in ωX .
Then, there is a desc. seq. in X computable in 0′.
Pf. We have a0 > a1 > .... > an > ... ∈ ωX where

a0 = ωx0,0 + ωx0,1 + ...+ ωx0,k0

...

an = ωxn,0 + ωxn,1 + ...+ ωxn,k0

an+1 = ωxn+1,0 + ωxn+1,1 + ...+ ωxn+1,k1

...

• Therefore, x0,0 > x1,0 > x2,0 > ... > xn,0 > ...
If this doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n0 after which

xn0,0 = xn0+1,0 = xn0+2,0 = ...
• Then xn0,1 > xn0+1,1 > xn0+2,1 > ...
If it doesn’t stabilize, it has a comp. desc. subsequence in X .

If it stabilizes, 0′ can find a point n1 when it does.
• We continue like this. If we never succeed this way, we get

xn0,0 > xn1,1 > xn2,2 > ... computable in 0′ doesn’t stabilize.

Antonio Montalbán. University of Chicago Veblen Functions for Computability Theorists.



The easier direction for F(X ) = ωX .

Thm: Let X be a comp. LO with a comp. desc. sequence in ωX .
Then, there is a desc. seq. in X computable in 0′.
Pf. We have a0 > a1 > .... > an > ... ∈ ωX where

a0 = ωx0,0 + ωx0,1 + ...+ ωx0,k0

...

an = ωxn,0 + ωxn,1 + ...+ ωxn,k0

an+1 = ωxn+1,0 + ωxn+1,1 + ...+ ωxn+1,k1

...

• Therefore, x0,0 > x1,0 > x2,0 > ... > xn,0 > ...
If this doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n0 after which

xn0,0 = xn0+1,0 = xn0+2,0 = ...
• Then xn0,1 > xn0+1,1 > xn0+2,1 > ...
If it doesn’t stabilize, it has a comp. desc. subsequence in X .
If it stabilizes, 0′ can find a point n1 when it does.

• We continue like this. If we never succeed this way, we get
xn0,0 > xn1,1 > xn2,2 > ... computable in 0′ doesn’t stabilize.
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ωX vs 1-Turing-Jump

Thm [Hirst]:
There exists a comp. LO X s.t. ωX has a comp. desc. sequence
but all descending sequences in X compute 0′.
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The easier direction for F(X ) = εX .

Thm: Let X be a comp. LO with a comp. desc. sequence in εX .
Then, there is a desc. seq. in X computable in 0(ω).

Pf. We have a0 > a1 > .... > an > ... in εX . Let x0 ∈ X be such that
εx0 6 a0 < εx0+1.

Find n0 such that

εx0 6 a0 <

n0 tower︷ ︸︸ ︷
ωω

...ω
εx0+1

< εx0+1.

Using previous proof n0 times to (an)n∈N ⊆ ωω
...ω

εx0+1

,
get a sequence b0 > b1 > .... > bn > ... ⊆ εx0 computable in 0(n0).
Let x1 < x0 be such that

εx1 6 b0 < εx1+1.

... Continue like this and build x0 > x1 > ... ∈ X computable in 0(ω).
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Computability of the ε-function

Theorem (Marcone, M)

There exists a comp. LO X s.t. εX has a comp. desc. sequence,
but all descending sequences in X compute 0(ω).

Corollary

TFAE over RCA0.

If X is well ordered, then so is εX .

ACA+
0 ≡ RCA0 + ∀X ,X (ω) exists.

Ashfari and Rathjen [2009] found a purely proof-theoretic proof of
this corollary, using different logic systems, cut elimination, etc..
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Computability of the Veblen Function

Let α be a computable ordinal.

Thm: Let X be a comp.LO with a comp.desc. sequence in ϕα(X ).
Then, there is a desc. seq. in X computable in 0(ωα).

Theorem (Marcone, M)

∃ a comp. lin. X s.t. ϕα(X ) has a comp. desc. sequence,
but all descending sequences in X compute 0(ωα).

Corollary (MM)

TFAE over RCA0.

If X is well ordered, then so is ϕα(X ).

Π0
α-CA0≡ RCA0 + ∀X ,X (ωα) exists.
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New proofs of Friedman’s result

Corollary 2 [Friedman]: TFAE over RCA0.

If X is well ordered, then so is ϕX (0).

ATR0 (Arithmetic Transfinite Recursion).

Rathjen and Weiermann [2009] found a purely proof theoretic proof
of this corollary, using different logic systems, cut elimination, etc..

Antonio Montalbán. University of Chicago Veblen Functions for Computability Theorists.



New proofs of Friedman’s result

Corollary 2 [Friedman]: TFAE over RCA0.

If X is well ordered, then so is ϕX (0).

ATR0 (Arithmetic Transfinite Recursion).

Rathjen and Weiermann [2009] found a purely proof theoretic proof
of this corollary, using different logic systems, cut elimination, etc..

Antonio Montalbán. University of Chicago Veblen Functions for Computability Theorists.



Summary

System p.t.o. F(X ) references

ACA0 ε0 ωX Girard; Hirst.

ACA+
0 ϕ2(0) εX [MM]; Afshari-Rathjen

Π0
ωα-CA0 ϕα+1(0) ϕ(α,X ) [MM].

ATR0 Γ0 ϕ(X , 0) Friedman; Rathjen-Weiermann; [MM].

where:
p.t.o. is the proof theoretic ordinal of the system;
F is such that RCA0` system ⇔ WOP(F);
references are in historical order.
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Computability theory proof

Thm[Marcone, M] There exists a comp. LO X s.t. εX has a comp.
desc. sequence, but all descending sequences in X compute 0(ω).

Ideas in the Proof:

• Slightly modify definition of Z ′.

• Def comp. operation J on trees such that [J (T )] = {Z ′ : Z ∈ [T ]}.
• Using ideas of Hirst define a comp. operator h such that

given g : J (T )→ X (⊂, >X )-monotone
returns hg : T → ωX (⊂, >ωX )-monotone.

• This operator can be iterated
given g : J 2(T )→ X (⊂, >X )-monotone

returns h2
g : T → ωω

X
(⊂, >ωωX )-monotone.

• Slightly modify def of Z (ω) so that Z (ω) = Z (0)_(Z ′)(ω).
Compare with εX = ωεX .

• Find a sort of fixed point of the operator h.
given g : J ω(T )→ X (⊂, >X )-monotone
returns hωg : T → εX (⊂, >εX )-monotone.
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Proof theoretic Proof

Thm:[Ashfari, Rathjen].
WOP(X 7→ εX ) is equivalent to ACA+

0 over RCA0.

Ideas in the Proof:
• ACA+

0 is equivalent to
“Every Z belongs to a countably coded ω-model of ACA”.

• Given Z , prove a version of ω-completeness for ACA+“a relation for
Z”.

• So, either we get a c.c. ω-model as wanted
or a well-founded proof of 1 = 0 in a certain logical system.

• Assume the case is the latter.
Translate this proof to a system with cut elimination.

• If X is the rank of the well-founded proof, show that transfinite
induction on εX can do the cut elimination proof.

• Contradiction.
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More recent work

Claim:[Rathjen] Statements of the form WOP(F) are equivalent to
statements of the form

“Every X belongs to a countably coded ω-model of T”.

Thm:[Rathjen] WOP(X 7→ ΓX ) is equivalent to
“Every X belongs to a countably coded ω-model of ATR0”.

over RCA0.
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Preserving WOP

Conjecture: [Rathjen]

Statements saying that
operators (LO → LO)→ (LO → LO) preserve WOP,

are equivalent to statements saying that
“Every X belongs to a countably coded β-models of T”.

Conjecture: [M]

TFAE over RCA0

• Π1
1-CA0

• WOPP(f 7→ ϑ(f (Ω + 1))).

• WOP(f )⇒ ∃α ∈WO
(
α <1 f (α + 1)

)
.

• WOP(f )⇒WQO(T (f (REC )))
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