Veblen Functions for Computability Theorists.

Antonio Montalbán. University of Chicago

> Oberwolfach, October 2011

Antonio Montalbán. University of Chicago Veblen Functions for Computability Theorists.

(4) (5) (4) (5) (4)

The Veblen functions go : Ordinals \rightarrow Ordinals.

They are well-known and useful in *Proof theory* to calculate the proof theoretic ordinals of predicative theories.

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

The *Veblen functions* go : Ordinals \rightarrow Ordinals.

They are well-known and useful in *Proof theory* to calculate the proof theoretic ordinals of predicative theories.

We'll use *Computability Theory* to exhibit the properties that make these functions so interesting to Proof Theorists.

高 とう モン・ く ヨ と

ϵ_0

Def: Let $\epsilon_0 = \sup(\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, ...)$, the 1st fixed point of the func. $\gamma \mapsto \omega^{\gamma}$.

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

・ロト ・回ト ・ヨト ・ヨト

Thm [Gentzen 36]: Finitiary methods + Transfinite-Ind. up to $\epsilon_0 \vdash$ PA is consistent.

・ 回 と く ヨ と く ヨ と

Thm [Gentzen 36]: Finitiary methods + Transfinite-Ind. up to $\epsilon_0 \vdash$ PA is consistent.

Obs: For $\alpha < \epsilon_0$, PA \vdash Trans.-Ind. up to α .

Thm [Gentzen 36]: Finitiary methods + Transfinite-Ind. up to $\epsilon_0 \vdash$ PA is consistent.

Obs: For $\alpha < \epsilon_0$, PA \vdash Trans.-Ind. up to α .

This makes ϵ_0 the *proof theoretic ordinal* of PA.

(4月) イヨト イヨト

Thm [Gentzen 36]: Finitiary methods + Transfinite-Ind. up to $\epsilon_0 \vdash$ PA is consistent.

Obs: For $\alpha < \epsilon_0$, PA \vdash Trans.-Ind. up to α .

This makes ϵ_0 the proof theoretic ordinal of PA. ϵ_0 is also the proof theoretic ordinal of ACA₀.

Thm [Gentzen 36]: Finitiary methods + Transfinite-Ind. up to $\epsilon_0 \vdash$ PA is consistent.

Obs: For $\alpha < \epsilon_0$, PA \vdash Trans.-Ind. up to α .

This makes ϵ_0 the proof theoretic ordinal of PA. ϵ_0 is also the proof theoretic ordinal of ACA₀.

Obs: ϵ_0 can be represented by a prim. rec. relation \leq_{ϵ_0} on ω .

(4月) イヨト イヨト

Proof-theoretic ordinals of various theories have been calculated.

Example: ACA₀⁺ \equiv ACA₀ + $\forall X$ ($X^{(\omega)}$ exists).

(本語) (本語) (本語) (語)

Proof-theoretic ordinals of various theories have been calculated.

Example: ACA₀⁺ \equiv ACA₀ + $\forall X$ ($X^{(\omega)}$ exists).

The proof-theoretic ordinal of ACA⁺₀ is $\epsilon_{\epsilon_{\epsilon_{0}}} = \sup\{\epsilon_{0}, \epsilon_{\epsilon_{0}}, \epsilon_{\epsilon_{\epsilon_{0}}}, ...\},\$

▲□→ ▲目→ ▲目→ 三日

Proof-theoretic ordinals of various theories have been calculated.

Example: ACA₀⁺ \equiv ACA₀ + $\forall X$ ($X^{(\omega)}$ exists).

The proof-theoretic ordinal of ACA⁺₀ is $\epsilon_{\epsilon_{\ldots}} = \sup\{\epsilon_0, \epsilon_{\epsilon_0}, \epsilon_{\epsilon_{\epsilon_0}}, \ldots\}$,

That means that,

- Finitiary methods + Trans-Ind. up to $\epsilon_{\epsilon_{\epsilon...}} \vdash \text{Cons}(\text{ACA}_0^+)$
- For $\alpha < \epsilon_{\epsilon_{\epsilon...}}$, $ACA_0^+ \vdash \alpha$ is an ordinal.

For each α , we define a function φ_{α} : *Ord* \rightarrow *Ord*.

•
$$\varphi_0(\beta) = \omega^{\beta}$$

(日) (四) (王) (王) (王)

For each α , we define a function φ_{α} : *Ord* \rightarrow *Ord*.

•
$$\varphi_0(\beta) = \omega^{\beta}$$

•
$$\varphi_1(\beta) = \epsilon_{\beta}$$
.

(日) (四) (王) (王) (王)

For each α , we define a function φ_{α} : Ord \rightarrow Ord.

•
$$\varphi_0(\beta) = \omega^{\beta}$$
.

- $\varphi_1(\beta) = \epsilon_{\beta}$.
- $\varphi_{\alpha+1}(\beta)$ is the β th fixed point of φ_{α} .

For each α , we define a function $\varphi_{\alpha} \colon \mathit{Ord} \to \mathit{Ord}$.

•
$$\varphi_0(\beta) = \omega^{\beta}$$
.

- $\varphi_1(\beta) = \epsilon_{\beta}$.
- $\varphi_{\alpha+1}(\beta)$ is the β th fixed point of φ_{α} .
- $\varphi_{\lambda}(\beta)$ is the β th simultaneous fixed point of φ_{α} for all $\alpha < \lambda$.

▲圖▶ ▲屋▶ ▲屋▶

For each α , we define a function φ_{α} : $Ord \rightarrow Ord$.

•
$$\varphi_0(\beta) = \omega^{\beta}$$
.

- $\varphi_1(\beta) = \epsilon_{\beta}$.
- $\varphi_{\alpha+1}(\beta)$ is the β th fixed point of φ_{α} .
- $\varphi_{\lambda}(\beta)$ is the β th simultaneous fixed point of φ_{α} for all $\alpha < \lambda$.

Def: $\Gamma_0 = \sup\{\varphi_0(0), \varphi_{\varphi_0(0)}(0), \varphi_{\varphi_{\varphi_0(0)}(0)}(0), ...\}$ is the first ordinal s.t. $\forall \alpha, \beta < \Gamma_0 \quad \varphi_\alpha(\beta) < \Gamma_0$.

・ 回 と く ヨ と く ヨ と

For each α , we define a function φ_{α} : $Ord \rightarrow Ord$.

•
$$\varphi_0(\beta) = \omega^{\beta}$$
.

- $\varphi_1(\beta) = \epsilon_{\beta}$.
- $\varphi_{\alpha+1}(\beta)$ is the β th fixed point of φ_{α} .
- $\varphi_{\lambda}(\beta)$ is the β th simultaneous fixed point of φ_{α} for all $\alpha < \lambda$.

Def:
$$\Gamma_0 = \sup\{\varphi_0(0), \varphi_{\varphi_0(0)}(0), \varphi_{\varphi_{\varphi_0(0)}(0)}(0), ...\}$$

is the first ordinal s.t. $\forall \alpha, \beta < \Gamma_0 \quad \varphi_\alpha(\beta) < \Gamma_0$.

Obs: Γ_0 can be represented by a prim. rec. relation \leq_{Γ_0} on ω .

For each α , we define a function φ_{α} : $Ord \rightarrow Ord$.

•
$$\varphi_0(\beta) = \omega^{\beta}$$
.

- $\varphi_1(\beta) = \epsilon_{\beta}$.
- $\varphi_{\alpha+1}(\beta)$ is the β th fixed point of φ_{α} .
- $\varphi_{\lambda}(\beta)$ is the β th simultaneous fixed point of φ_{α} for all $\alpha < \lambda$.

Def: $\Gamma_0 = \sup\{\varphi_0(0), \varphi_{\varphi_0(0)}(0), \varphi_{\varphi_{\varphi_0(0)}(0)}(0), ...\}$ is the first ordinal s.t. $\forall \alpha, \beta < \Gamma_0 \quad \varphi_\alpha(\beta) < \Gamma_0$.

Obs: Γ_0 can be represented by a prim. rec. relation \leq_{Γ_0} on ω .

 Γ_0 is the proof theoretic ordinal of ATR₀.

Thm [Girard 87]: TFAE over RCA₀.

- For every well ordering \mathcal{X} , $\omega^{\mathcal{X}}$ is also a well-ordering.
- ACA₀ (Arithmetic Comprehension).

(日本) (日本) (日本)

Thm [Girard 87]: TFAE over RCA₀.

- For every well ordering \mathcal{X} , $\omega^{\mathcal{X}}$ is also a well-ordering.
- ACA₀ (Arithmetic Comprehension).

Obs: There is a natural way of defining an operation that given a linear orderings \mathcal{X}, \mathcal{Y} , returns a linear ordering $\varphi_{\mathcal{X}}(\mathcal{Y})$.

(日本) (日本) (日本)

Thm [Girard 87]: TFAE over RCA₀.

- For every well ordering $\mathcal{X},\,\omega^{\mathcal{X}}$ is also a well-ordering.
- ACA₀ (Arithmetic Comprehension).

Obs: There is a natural way of defining an operation that given a linear orderings \mathcal{X}, \mathcal{Y} , returns a linear ordering $\varphi_{\mathcal{X}}(\mathcal{Y})$.

Thm [Friedman]: TFAE over RCA₀.

- For every well ordering \mathcal{X} , $\varphi_{\mathcal{X}}(0)$ is also a well-ordering.
- ATR₀ (Arithmetic Transfinite Recursion).

・ロト ・回ト ・ヨト ・ ヨト

```
Let \mathcal{F} be an operator : LO \rightarrow LO.
(LO \equiv Linear Orderings)
```

(日) (四) (王) (王) (王)

```
Let \mathcal{F} be an operator : LO \rightarrow LO.
(LO \equiv Linear Orderings)
```

Q: What is the proof theoretic complexity of $WO(\mathcal{F})$?

- (日) (三) (三) (三) (三)

```
Let \mathcal{F} be an operator : LO \rightarrow LO.
(LO \equiv Linear Orderings)
```

Q: What is the proof theoretic complexity of $WO(\mathcal{F})$?

Q: What is the computability theoretic complexity of $WO(\mathcal{F})$?

- イボト イヨト - ヨ

```
Let \mathcal{F} be an operator : LO \rightarrow LO.
(LO \equiv Linear Orderings)
```

Q: What is the proof theoretic complexity of $WO(\mathcal{F})$?

Q: What is the computability theoretic complexity of $WO(\mathcal{F})$?

Given a LO \mathcal{X} and a descending sequence in $\mathcal{F}(\mathcal{X})$, how difficult is it to find a descending sequence in \mathcal{X} ?

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\omega^{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in 0'.

・ 回 と く ヨ と く ヨ と

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\omega^{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in 0'. **Pf.** We have $a_0 > a_1 > \dots > a_n > \dots \in \omega^{\mathcal{X}}$ where

$$a_0 = \omega^{x_{0,0}} + \omega^{x_{0,1}} + \dots + \omega^{x_{0,k_0}}$$

and $x_{0,0} \ge x_{0,1} \ge ... \ge x_{0,k_0} \in \mathcal{X}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\omega^{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in 0'. **Pf.** We have $a_0 > a_1 > \dots > a_n > \dots \in \omega^{\mathcal{X}}$ where

$$a_0 = \omega^{x_{0,0}} + \omega^{x_{0,1}} + \dots + \omega^{x_{0,k_0}}$$

$$\begin{aligned} \mathbf{a}_n &= \omega^{\mathbf{x}_{n,0}} + \omega^{\mathbf{x}_{n,1}} + \dots + \omega^{\mathbf{x}_{n,k_0}} \\ \mathbf{a}_{n+1} &= \omega^{\mathbf{x}_{n+1,0}} + \omega^{\mathbf{x}_{n+1,1}} + \dots + \omega^{\mathbf{x}_{n+1,k_1}} \end{aligned}$$

(本間) (本語) (本語) (語)

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\omega^{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in 0'. **Pf.** We have $a_0 > a_1 > ... > a_n > ... \in \omega^{\mathcal{X}}$ where

$$a_0 = \omega^{x_{0,0}} + \omega^{x_{0,1}} + \dots + \omega^{x_{0,k_0}}$$

$$a_{n} = \omega^{x_{n,0}} + \omega^{x_{n,1}} + \dots + \omega^{x_{n,k_{0}}}$$
$$a_{n+1} = \omega^{x_{n+1,0}} + \omega^{x_{n+1,1}} + \dots + \omega^{x_{n+1,k_{1}}}$$
$$\vdots$$

• Therefore, $x_{0,0} \ge x_{1,0} \ge x_{2,0} \ge ... \ge x_{n,0} \ge ...$

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\omega^{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in 0'. **Pf.** We have $a_0 > a_1 > ... > a_n > ... \in \omega^{\mathcal{X}}$ where

$$a_0 = \omega^{x_{0,0}} + \omega^{x_{0,1}} + \dots + \omega^{x_{0,k_0}}$$

$$\begin{array}{lll} \boldsymbol{a}_{n} & = & \omega^{x_{n,0}} + \omega^{x_{n,1}} + \ldots + \omega^{x_{n,k_{0}}} \\ \boldsymbol{a}_{n+1} & = & \omega^{x_{n+1,0}} + \omega^{x_{n+1,1}} + \ldots + \omega^{x_{n+1,k_{1}}} \\ & \vdots \end{array}$$

• Therefore, $x_{0,0} \ge x_{1,0} \ge x_{2,0} \ge ... \ge x_{n,0} \ge ...$ If this doesn't stabilize, it has a comp. desc. subsequence in \mathcal{X} .

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\omega^{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in 0'. **Pf.** We have $a_0 > a_1 > ... > a_n > ... \in \omega^{\mathcal{X}}$ where

$$a_0 = \omega^{x_{0,0}} + \omega^{x_{0,1}} + \dots + \omega^{x_{0,k_0}}$$

$$\begin{array}{lll} a_{n} & = & \omega^{x_{n,0}} + \omega^{x_{n,1}} + \ldots + \omega^{x_{n,k_{0}}} \\ a_{n+1} & = & \omega^{x_{n+1,0}} + \omega^{x_{n+1,1}} + \ldots + \omega^{x_{n+1,k_{1}}} \\ & \vdots \end{array}$$

• Therefore, $x_{0,0} \ge x_{1,0} \ge x_{2,0} \ge ... \ge x_{n,0} \ge ...$ If this doesn't stabilize, it has a comp. desc. subsequence in \mathcal{X} . If it stabilizes, 0' can find a point n_0 after which

$$x_{n_0,0} = x_{n_0+1,0} = x_{n_0+2,0} = \dots$$

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\omega^{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in 0'. **Pf.** We have $a_0 > a_1 > ... > a_n > ... \in \omega^{\mathcal{X}}$ where

$$a_0 = \omega^{x_{0,0}} + \omega^{x_{0,1}} + \dots + \omega^{x_{0,k_0}}$$

$$\begin{array}{lll} a_{n} & = & \omega^{x_{n,0}} + \omega^{x_{n,1}} + \ldots + \omega^{x_{n,k_{0}}} \\ a_{n+1} & = & \omega^{x_{n+1,0}} + \omega^{x_{n+1,1}} + \ldots + \omega^{x_{n+1,k_{1}}} \\ & \vdots \end{array}$$

• Therefore, $x_{0,0} \ge x_{1,0} \ge x_{2,0} \ge ... \ge x_{n,0} \ge ...$ If this doesn't stabilize, it has a comp. desc. subsequence in \mathcal{X} . If it stabilizes, 0' can find a point n_0 after which

$$x_{n_0,0} = x_{n_0+1,0} = x_{n_0+2,0} = \dots$$

• Then
$$x_{n_0,1} \ge x_{n_0+1,1} \ge x_{n_0+2,1} \ge ...$$

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\omega^{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in 0'. **Pf.** We have $a_0 > a_1 > ... > a_n > ... \in \omega^{\mathcal{X}}$ where

$$a_0 = \omega^{x_{0,0}} + \omega^{x_{0,1}} + \dots + \omega^{x_{0,k_0}}$$

$$\begin{array}{lll} a_{n} & = & \omega^{x_{n,0}} + \omega^{x_{n,1}} + \ldots + \omega^{x_{n,k_{0}}} \\ a_{n+1} & = & \omega^{x_{n+1,0}} + \omega^{x_{n+1,1}} + \ldots + \omega^{x_{n+1,k_{1}}} \\ & \vdots \end{array}$$

Therefore, x_{0,0} ≥ x_{1,0} ≥ x_{2,0} ≥ ... ≥ x_{n,0} ≥ ...
 If this doesn't stabilize, it has a comp. desc. subsequence in X.
 If it stabilizes, 0' can find a point n₀ after which

 $x_{n_0,0} = x_{n_0+1,0} = x_{n_0+2,0} = \dots$

• Then $x_{n_0,1} \ge x_{n_0+1,1} \ge x_{n_0+2,1} \ge \dots$ If it doesn't stabilize, it has a comp. desc. subsequence in \mathcal{X} .

伺下 イヨト イヨト
The easier direction for $\mathcal{F}(\mathcal{X}) = \omega^{\mathcal{X}}$.

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\omega^{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in 0'. **Pf.** We have $a_0 > a_1 > ... > a_n > ... \in \omega^{\mathcal{X}}$ where

$$a_0 = \omega^{x_{0,0}} + \omega^{x_{0,1}} + \dots + \omega^{x_{0,k_0}}$$

$$a_{n} = \omega^{x_{n,0}} + \omega^{x_{n,1}} + \dots + \omega^{x_{n,k_{0}}}$$

$$a_{n+1} = \omega^{x_{n+1,0}} + \omega^{x_{n+1,1}} + \dots + \omega^{x_{n+1,k_{1}}}$$

$$\vdots$$

Therefore, x_{0,0} ≥ x_{1,0} ≥ x_{2,0} ≥ ... ≥ x_{n,0} ≥ ...
 If this doesn't stabilize, it has a comp. desc. subsequence in X.
 If it stabilizes, 0' can find a point n₀ after which

 $x_{n_0,0} = x_{n_0+1,0} = x_{n_0+2,0} = \dots$

• Then $x_{n_0,1} \ge x_{n_0+1,1} \ge x_{n_0+2,1} \ge \dots$

If it doesn't stabilize, it has a comp. desc. subsequence in \mathcal{X} . If it stabilizes, 0' can find a point n_1 when it does.

(1) マン・ション・

The easier direction for $\mathcal{F}(\mathcal{X}) = \omega^{\mathcal{X}}$.

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\omega^{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in 0'. **Pf.** We have $a_0 > a_1 > ... > a_n > ... \in \omega^{\mathcal{X}}$ where

$$a_0 = \omega^{x_{0,0}} + \omega^{x_{0,1}} + \dots + \omega^{x_{0,k_0}}$$

$$\begin{array}{lll} a_n & = & \omega^{x_{n,0}} + \omega^{x_{n,1}} + \ldots + \omega^{x_{n,k_0}} \\ a_{n+1} & = & \omega^{x_{n+1,0}} + \omega^{x_{n+1,1}} + \ldots + \omega^{x_{n+1,k_1}} \\ & \vdots \end{array}$$

Therefore, x_{0,0} ≥ x_{1,0} ≥ x_{2,0} ≥ ... ≥ x_{n,0} ≥ ...
 If this doesn't stabilize, it has a comp. desc. subsequence in X.
 If it stabilizes, 0' can find a point n₀ after which

 $x_{n_0,0} = x_{n_0+1,0} = x_{n_0+2,0} = \dots$

• Then $x_{n_0,1} \ge x_{n_0+1,1} \ge x_{n_0+2,1} \ge ...$

If it doesn't stabilize, it has a comp. desc. subsequence in \mathcal{X} .

If it stabilizes, 0' can find a point n_1 when it does.

• We continue like this. If we never succeed this way, we get

 $x_{n_0,0} \ge x_{n_1,1} \ge x_{n_2,2} \ge \dots$ computable in 0'doesn't stabilize.

Thm [Hirst]: There exists a comp. LO \mathcal{X} s.t. $\omega^{\mathcal{X}}$ has a comp. desc. sequence but all descending sequences in \mathcal{X} compute 0'.

高 とう モン・ く ヨ と

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\epsilon_{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in $0^{(\omega)}$.

▲□→ ▲ □→ ▲ □→

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\epsilon_{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in $0^{(\omega)}$. **Pf.** We have $a_0 > a_1 > \dots > a_n > \dots$ in $\epsilon_{\mathcal{X}}$. Let $x_0 \in \mathcal{X}$ be such that $\epsilon_{x_0} \leq a_0 < \epsilon_{x_0+1}$.

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\epsilon_{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in $0^{(\omega)}$. **Pf.** We have $a_0 > a_1 > \dots > a_n > \dots$ in $\epsilon_{\mathcal{X}}$. Let $x_0 \in \mathcal{X}$ be such that $\epsilon_{x_0} \leq a_0 < \epsilon_{x_0+1}$.

Find n₀ such that

高 とう モン・ く ヨ と

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\epsilon_{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in $0^{(\omega)}$. **Pf.** We have $a_0 > a_1 > \dots > a_n > \dots$ in $\epsilon_{\mathcal{X}}$. Let $x_0 \in \mathcal{X}$ be such that $\epsilon_{x_0} \leq a_0 < \epsilon_{x_0+1}$.

Find n₀ such that

$$\epsilon_{x_0} \leqslant a_0 < \overbrace{\omega^{\omega^{\cdots \omega^{\epsilon_{x_0+1}}}}}^{n_0 \text{ tower}} < \epsilon_{x_0+1} \cdot \cdot \cdot \cdot \cdot$$

Using previous proof n_0 times to $(a_n)_{n \in \mathbb{N}} \subseteq \omega^{\omega^{\dots \omega^{\epsilon_{x_0+1}}}}$, get a sequence $b_0 > b_1 > \dots > b_n > \dots \subseteq \epsilon_{x_0}$ computable in $0^{(n_0)}$.

向下 イヨト イヨト

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\epsilon_{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in $0^{(\omega)}$. **Pf.** We have $a_0 > a_1 > \dots > a_n > \dots$ in $\epsilon_{\mathcal{X}}$. Let $x_0 \in \mathcal{X}$ be such that $\epsilon_{x_0} \leq a_0 < \epsilon_{x_0+1}$.

Find n₀ such that

$$\epsilon_{x_0} \leqslant a_0 < \overbrace{\omega^{\omega \cdots \omega^{\epsilon_{x_0+1}}}}^{n_0 \text{ tower}} < \epsilon_{x_0+1}.$$

Using previous proof n_0 times to $(a_n)_{n \in \mathbb{N}} \subseteq \omega^{\omega^{\dots,\omega^{-1}}}$, get a sequence $b_0 > b_1 > \dots > b_n > \dots \subseteq \epsilon_{x_0}$ computable in $0^{(n_0)}$. Let $x_1 < x_0$ be such that

$$\epsilon_{x_1} \leqslant b_0 < \epsilon_{x_1+1}.$$

向下 イヨト イヨト

Thm: Let \mathcal{X} be a comp. LO with a comp. desc. sequence in $\epsilon_{\mathcal{X}}$. Then, there is a desc. seq. in \mathcal{X} computable in $0^{(\omega)}$. **Pf.** We have $a_0 > a_1 > \dots > a_n > \dots$ in $\epsilon_{\mathcal{X}}$. Let $x_0 \in \mathcal{X}$ be such that $\epsilon_{x_0} \leq a_0 < \epsilon_{x_0+1}$.

Find n₀ such that

$$\epsilon_{x_0} \leqslant a_0 < \overbrace{\omega^{\omega^{\dots\omega^{\epsilon_{x_0+1}}}}}^{n_0 \text{ tower}} < \epsilon_{x_0+1}.$$

Using previous proof n_0 times to $(a_n)_{n \in \mathbb{N}} \subseteq \omega^{\omega^{\dots,\omega^{-1}}}$, get a sequence $b_0 > b_1 > \dots > b_n > \dots \subseteq \epsilon_{x_0}$ computable in $0^{(n_0)}$. Let $x_1 < x_0$ be such that

$$\epsilon_{x_1} \leqslant b_0 < \epsilon_{x_1+1}.$$

... Continue like this and build $x_0 > x_1 > ... \in \mathcal{X}$ computable in $0^{(\omega)}$.

- 4 同 6 4 日 6 4 日 6

Theorem (Marcone, M)

There exists a comp. LO \mathcal{X} s.t. $\epsilon_{\mathcal{X}}$ has a comp. desc. sequence, but all descending sequences in \mathcal{X} compute $0^{(\omega)}$.

伺下 イヨト イヨト

Theorem (Marcone, M)

There exists a comp. LO \mathcal{X} s.t. $\epsilon_{\mathcal{X}}$ has a comp. desc. sequence, but all descending sequences in \mathcal{X} compute $0^{(\omega)}$.

Corollary

TFAE over RCA₀.

• If \mathcal{X} is well ordered, then so is $\epsilon_{\mathcal{X}}$.

•
$$\mathsf{ACA}_0^+ \equiv \mathit{RCA}_0 + \forall X, X^{(\omega)}$$
 exists.

(4月) (4日) (4日)

Theorem (Marcone, M)

There exists a comp. LO \mathcal{X} s.t. $\epsilon_{\mathcal{X}}$ has a comp. desc. sequence, but all descending sequences in \mathcal{X} compute $0^{(\omega)}$.

Corollary

TFAE over RCA₀.

• If \mathcal{X} is well ordered, then so is $\epsilon_{\mathcal{X}}$.

•
$$\mathsf{ACA}^+_0 \equiv \mathit{RCA}_0 + \forall X, X^{(\omega)}$$
 exists.

Ashfari and Rathjen [2009] found a purely proof-theoretic proof of this corollary, using different logic systems, cut elimination, etc..

- 4 同 2 4 日 2 4 日 2

・ロン ・回と ・ヨン・

æ

Thm: Let \mathcal{X} be a comp.LO with a comp.desc. sequence in $\varphi_{\alpha}(\mathcal{X})$. Then, there is a desc. seq. in \mathcal{X} computable in $0^{(\omega^{\alpha})}$.

同下 イヨト イヨト

Thm: Let \mathcal{X} be a comp.LO with a comp.desc. sequence in $\varphi_{\alpha}(\mathcal{X})$. Then, there is a desc. seq. in \mathcal{X} computable in $0^{(\omega^{\alpha})}$.

Theorem (Marcone, M)

 \exists a comp. lin. \mathcal{X} s.t. $\varphi_{\alpha}(\mathcal{X})$ has a comp. desc. sequence, but all descending sequences in \mathcal{X} compute $0^{(\omega^{\alpha})}$.

- (目) - (日) - (日)

Thm: Let \mathcal{X} be a comp.LO with a comp.desc. sequence in $\varphi_{\alpha}(\mathcal{X})$. Then, there is a desc. seq. in \mathcal{X} computable in $0^{(\omega^{\alpha})}$.

Theorem (Marcone, M)

 \exists a comp. lin. \mathcal{X} s.t. $\varphi_{\alpha}(\mathcal{X})$ has a comp. desc. sequence, but all descending sequences in \mathcal{X} compute $0^{(\omega^{\alpha})}$.

Corollary (MM)

TFAE over RCA₀.

- If \mathcal{X} is well ordered, then so is $\varphi_{\alpha}(\mathcal{X})$.
- Π^0_{α} -CA₀ = RCA₀ + $\forall X, X^{(\omega^{\alpha})}$ exists.

イロト イポト イヨト イヨト

Corollary 2 [Friedman]: TFAE over RCA₀.

- If \mathcal{X} is well ordered, then so is $\varphi_{\mathcal{X}}(0)$.
- ATR₀ (Arithmetic Transfinite Recursion).

・ 同 ト ・ ヨ ト ・ ヨ ト

Corollary 2 [Friedman]: TFAE over RCA₀.

- If \mathcal{X} is well ordered, then so is $\varphi_{\mathcal{X}}(0)$.
- ATR₀ (Arithmetic Transfinite Recursion).

Rathjen and Weiermann [2009] found a purely proof theoretic proof of this corollary, using different logic systems, cut elimination, etc..

向下 イヨト イヨト

System	p.t.o.	$F(\mathcal{X})$	references
ACA ₀	ϵ_0	$\omega^{\mathcal{X}}$	Girard; Hirst.
ACA_0^+	$\varphi_2(0)$	$\epsilon_{\mathcal{X}}$	[MM]; Afshari-Rathjen
$\Pi^0_{\omega^{lpha}}$ -CA ₀	$\varphi_{\alpha+1}(0)$	$\boldsymbol{\varphi}(\alpha, \mathcal{X})$	[MM].
ATR_0	Γ ₀	$arphi(\mathcal{X},0)$	Friedman; Rathjen-Weiermann; [MM].

where:

p.t.o. is the proof theoretic ordinal of the system; \mathcal{F} is such that $\mathsf{RCA}_0 \vdash$ system $\Leftrightarrow WOP(\mathcal{F})$; references are in historical order.

伺下 イヨト イヨト

・ 同 ト ・ ヨ ト ・ ヨ ト

Ideas in the Proof:

• Slightly modify definition of Z'.

伺下 イヨト イヨト

Ideas in the Proof:

- Slightly modify definition of Z'.
- Def comp. operation \mathcal{J} on trees such that $[\mathcal{J}(T)] = \{Z' : Z \in [T]\}.$

向下 イヨト イヨト

Ideas in the Proof:

- Slightly modify definition of Z'.
- Def comp. operation \mathcal{J} on trees such that $[\mathcal{J}(T)] = \{Z' : Z \in [T]\}.$
- Using ideas of Hirst define a comp. operator h such that

・ 同 ト ・ ヨ ト ・ ヨ ト

Ideas in the Proof:

- Slightly modify definition of Z'.
- Def comp. operation \mathcal{J} on trees such that $[\mathcal{J}(T)] = \{Z' : Z \in [T]\}.$
- Using ideas of Hirst define a comp. operator h such that

given $g: \mathcal{J}(T) \to \mathcal{X}$ ($\subset, >_{\mathcal{X}}$)-monotone returns $h_g: T \to \omega^{\mathcal{X}}$ ($\subset, >_{\omega^{\mathcal{X}}}$)-monotone.

・ 同 ト ・ ヨ ト ・ ヨ ト

• This operator can be iterated

Ideas in the Proof:

- Slightly modify definition of Z'.
- Def comp. operation \mathcal{J} on trees such that $[\mathcal{J}(T)] = \{Z' : Z \in [T]\}.$
- Using ideas of Hirst define a comp. operator h such that

given $g: \mathcal{J}(T) \to \mathcal{X} \quad (\subset, >_{\mathcal{X}})$ -monotone returns $h_g: T \to \omega^{\mathcal{X}} \quad (\subset, >_{\omega^{\mathcal{X}}})$ -monotone.

This operator can be iterated

given
$$g: \mathcal{J}^2(T) \to \mathcal{X} \quad (\subset, >_{\mathcal{X}})$$
-monotone
returns $h_g^2: T \to \omega^{\omega^{\mathcal{X}}} \quad (\subset, >_{\omega^{\omega^{\mathcal{X}}}})$ -monotone.

伺下 イヨト イヨト

• Slightly modify def of $Z^{(\omega)}$ so that $Z^{(\omega)} = Z(0)^{\frown}(Z')^{(\omega)}$.

Ideas in the Proof:

- Slightly modify definition of Z'.
- Def comp. operation \mathcal{J} on trees such that $[\mathcal{J}(T)] = \{Z' : Z \in [T]\}.$
- Using ideas of Hirst define a comp. operator h such that

given $g: \mathcal{J}(T) \to \mathcal{X} \quad (\subset, >_{\mathcal{X}})$ -monotone returns $h_g: T \to \omega^{\mathcal{X}} \quad (\subset, >_{\omega^{\mathcal{X}}})$ -monotone.

This operator can be iterated

given
$$g: \mathcal{J}^2(T) \to \mathcal{X} \quad (\subset, >_{\mathcal{X}})$$
-monotone
returns $h_g^2: T \to \omega^{\omega^{\mathcal{X}}} \quad (\subset, >_{\omega^{\omega^{\mathcal{X}}}})$ -monotone.

• Slightly modify def of $Z^{(\omega)}$ so that $Z^{(\omega)} = Z(0)^{\frown}(Z')^{(\omega)}$.

Compare with $\epsilon_{\mathcal{X}} = \omega^{\epsilon_{\mathcal{X}}}$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Ideas in the Proof:

- Slightly modify definition of Z'.
- Def comp. operation \mathcal{J} on trees such that $[\mathcal{J}(T)] = \{Z' : Z \in [T]\}.$
- Using ideas of Hirst define a comp. operator h such that

given $g: \mathcal{J}(T) \to \mathcal{X} \quad (\subset, >_{\mathcal{X}})$ -monotone returns $h_g: T \to \omega^{\mathcal{X}} \quad (\subset, >_{\omega^{\mathcal{X}}})$ -monotone.

• This operator can be iterated

given
$$g: \mathcal{J}^2(\mathcal{T}) \to \mathcal{X} \quad (\subset, >_{\mathcal{X}})$$
-monotone
returns $h_g^2: \mathcal{T} \to \omega^{\omega^{\mathcal{X}}} \quad (\subset, >_{\omega^{\omega^{\mathcal{X}}}})$ -monotone.

• Slightly modify def of $Z^{(\omega)}$ so that $Z^{(\omega)} = Z(0)^{\frown}(Z')^{(\omega)}$.

Compare with $\epsilon_{\mathcal{X}} = \omega^{\epsilon_{\mathcal{X}}}$.

- 4 同 6 4 日 6 4 日 6

• Find a sort of fixed point of the operator h.

given
$$g: \mathcal{J}^{\omega}(T) \to \mathcal{X} \quad (\subset, >_{\mathcal{X}})$$
-monotone
returns $h_g^{\omega}: T \to \epsilon_{\mathcal{X}} \quad (\subset, >_{\epsilon_{\mathcal{X}}})$ -monotone.

・日本 ・ モン・ ・ モン

Ideas in the Proof:

ACA₀⁺ is equivalent to
 "Every Z belongs to a countably coded ω-model of ACA".

伺下 イヨト イヨト

Ideas in the Proof:

- ACA₀⁺ is equivalent to
 "Every Z belongs to a countably coded ω-model of ACA".
- Given Z, prove a version of ω -completeness for ACA+ "a relation for Z".

伺下 イヨト イヨト

Ideas in the Proof:

- ACA₀⁺ is equivalent to
 "Every Z belongs to a countably coded ω-model of ACA".
- Given Z, prove a version of ω -completeness for ACA+ "a relation for Z".
- So, either we get a c.c. ω-model as wanted or a well-founded proof of 1 = 0 in a certain logical system.

回 と く ヨ と く ヨ と

Ideas in the Proof:

- ACA₀⁺ is equivalent to "Every Z belongs to a countably coded ω-model of ACA".
- Given Z, prove a version of ω -completeness for ACA+ "a relation for Z".
- So, either we get a c.c. ω-model as wanted or a well-founded proof of 1 = 0 in a certain logical system.
- Assume the case is the latter.

Translate this proof to a system with cut elimination.

・日・ ・ヨ・ ・ヨ・

Ideas in the Proof:

- ACA₀⁺ is equivalent to "Every Z belongs to a countably coded ω-model of ACA".
- Given Z, prove a version of ω -completeness for ACA+ "a relation for Z".
- So, either we get a c.c. ω-model as wanted or a well-founded proof of 1 = 0 in a certain logical system.
- Assume the case is the latter. Translate this proof to a system with cut elimination.
- If X is the rank of the well-founded proof, show that transfinite induction on ε_X can do the cut elimination proof.

- 4 同 6 4 日 6 4 日 6

Ideas in the Proof:

- ACA₀⁺ is equivalent to "Every Z belongs to a countably coded ω-model of ACA".
- Given Z, prove a version of ω -completeness for ACA+ "a relation for Z".
- So, either we get a c.c. ω-model as wanted or a well-founded proof of 1 = 0 in a certain logical system.
- Assume the case is the latter. Translate this proof to a system with cut elimination.
- If X is the rank of the well-founded proof, show that transfinite induction on ε_X can do the cut elimination proof.
- Contradiction.

- 4 同 6 4 日 6 4 日 6

Claim: [Rathjen] Statements of the form $\mathsf{WOP}(\mathcal{F})$ are equivalent to statements of the form

"Every X belongs to a countably coded ω -model of T".

Thm: [Rathjen] $WOP(\mathcal{X} \mapsto \Gamma_{\mathcal{X}})$ is equivalent to "Every X belongs to a countably coded ω -model of ATR₀". over RCA₀.

・ 回 と ・ ヨ と ・ モ と

Conjecture: [Rathjen] Statements saying that operators $(LO \rightarrow LO) \rightarrow (LO \rightarrow LO)$ preserve WOP, are equivalent to statements saying that "Every X belongs to a countably coded β -models of T".

Conjecture: [M] TFAE over RCA₀

- WOPP $(f \mapsto \vartheta(f(\Omega + 1)))$.
- WOP $(f) \Rightarrow \exists \alpha \in WO \ (\alpha <_1 f(\alpha + 1)).$
- WOP $(f) \Rightarrow$ WQO(T(f(REC)))

伺下 イヨト イヨト