When low information is no information.

Antonio Montalbán. U. of Chicago

AMS sectional meeting, Middletown, CT October 2008

Definition: The degree Spectrum of a structure A is $Spec(A) = \{deg(B) : B \cong A\}$

and when $\mathcal A$ is non-trivial Knight showed that

 $Spec(A) = \{ deg(X) : X \text{ can compute a copy of } A \}.$

Theorem: [Downey, Jockusch 94] Every low Boolean Algebra has a computable copy.

Relativized version: If $X' \equiv_{\mathcal{T}} Y'$ and \mathcal{B} is a Boolean Alg., then \mathcal{B} has copy $\leq_{\mathcal{T}} X \iff \mathcal{B}$ has copy $\leq_{\mathcal{T}} Y$.

Lemma: [Downey, Jockusch 94] For every Boolean Alg \mathcal{B} and set X, \mathcal{B} has copy $\leq_T X \iff (\mathcal{B}, atom^{\mathcal{B}})$ has copy $\leq_T X'$ where $atom^{\mathcal{B}} = \{x \in \mathcal{B} : \exists y \in \mathcal{B} \ (0 < y < x)\}.$

Definition

A structure \mathcal{A} admits Jump Inversion if there are relations $P_0, P_1, ...$ in \mathcal{A} such that for every X, $(\mathcal{A}, P_0, P_1, ...)$ has copy $\leq_{\mathcal{T}} X' \iff \mathcal{A}$ has copy $\leq_{\mathcal{T}} X$

Observation If \mathcal{A} admits Jump Inversion and X' = Y', then \mathcal{A} has copy $\leq_{\mathcal{T}} X \iff \mathcal{A}$ has copy $\leq_{\mathcal{T}} Y$.

Jump Inversion vs Low property

 \mathcal{A} admits Jump Inversion if there are $P_0, P_1, ...$ in \mathcal{A} s.t. $\forall X$ $(\mathcal{A}, P_0, P_1, ...)$ has copy $\leq_T X' \iff \mathcal{A}$ has copy $\leq_T X$

Theorem ([M 08])

Let \mathcal{A} be a structure. TFAE

• For every X, Y with $X' \equiv_T Y'$, A has copy $\leq_T X \iff A$ has copy $\leq_T Y$.

• A admits Jump Inversion.

Lemma ([M 08])

If the computably infinitiary Σ_1^0 diagram of \mathcal{A} is comp. in $Z \ge_T 0'$. Then there is Y such that Y' = Z and \mathcal{A} has copy $\leq_T Y$.

Pf: Computably in Z, we build a copy \mathcal{B} of \mathcal{A} , and we use the Σ_1^0 diagram of \mathcal{A} to force the jump of \mathcal{B} .

Definition: The *degree Spectrum of a relation* R on a structure computable A is

 $DgSp_{\mathcal{A}}(R) = \{ deg(Q) : (\mathcal{B}, Q) \cong (\mathcal{A}, R), \mathcal{B} \text{ computable} \}$

Def: $atom^{\mathcal{B}} = \{x \in \mathcal{B} : \exists y \in \mathcal{B} \ (0 < y < x)\} = DgSp_{\mathcal{B}}(atom)$

Suppose $\ensuremath{\mathcal{B}}$ has infinitely many atoms

- $atom^{\mathcal{B}}$ is co-c.e., so $DgSp_{\mathcal{B}}(atom) \subseteq$ c.e. degrees.
- There is \mathcal{B} with $\mathbf{0} \notin DgSp_{\mathcal{B}}(atom)$. [Goncharov 75]
- DgSp_B(atom) is closed upwards in the c.e. degrees [Remmel 81]
- DgSp_B(atom) always contains some incomplete c.e. degree.
 [Downey 93]

Theorem ([M07])

Every high₃ c.e. degree is in $DgSp_{\mathcal{B}}(atom)$.

On the Triple jump of the Atom relation

Lemma [Thurber 95] $(\mathcal{B}, atom^{\mathcal{B}})$ admits jump inversion. $(\mathcal{B}, atom^{\mathcal{B}})$ has copy $\leq_T X \iff$ $(\mathcal{B}, atom^{\mathcal{B}}, atmoless^{\mathcal{B}}, infinite^{\mathcal{B}})$ has copy $\leq_T X'$

Lemma [Knigh Stob 00] (\mathcal{B} , atom^{\mathcal{B}}, atomless^{\mathcal{B}}, infinite^{\mathcal{B}}) admits double jump inversion.

Therefore, if X is high₃ and \mathcal{B} computable. Then (\mathcal{B} , atom^{\mathcal{B}}) has copy $\leq_T 0' \implies (\mathcal{B}$, atom^{\mathcal{B}}) has copy $\leq_T X$.

Lemma ([M], extending [Downey Jockusch 94])

If X is c.e. and $(\mathcal{B}, atom^{\mathcal{B}})$ has copy $\leq_T X$, then \mathcal{B} has computable copy \mathcal{A} where $atom^{\mathcal{A}} \leq_T X$.

On the Triple jump of the Atom relation

Theorem ([M07])

Every high₃ c.e. degree is in $DgSp_{\mathcal{B}}(atom)$.

Questions: Is it true for every high_n c.e. degree? Do other relations, like *atomless*, have similar behavior? **Open Question:**

Does every low_n Boolean Algebra have a computable copy?

Theorem: [Knight, Stob 00]

Every low₄ Boolean Algebra has a computable copy.

Q: Do we know other structures with the low_n property?

Theorem [Spector 55]: Every hyperarithmetic well ordering has a computable copy.

Theorem [M 05]: Every hypearithmetic linear ordering is equimorphic (bi-embeddable) to a computable one.

Def: A *descening cut* of a lin. ord. A is a partition (L, R) of A where R is closed upwards and has no least element.

Theorem ([Kach, Miller, M 08])

Every low_n lin. ord. with finitely many descending cuts has a computable copy.

Theorem

There is a lin. ord. of intermediate with finitely many descending cuts and no computable copy.

Low for Feiner

Given a set
$$A \subseteq \omega$$
 let
 $L_A = \omega^{\omega} + (...\omega^2 \cdot A(2) + \omega \cdot A(1) + \cdot A(0)).$

Theorem [Kach, Miller 08]: L_A has copy $\leq_T X \iff \exists e \text{ such that } \forall n \ (n \in A \leftrightarrow n \in W_e^{X^{(2n+2)}}).$

Definition: [Hirschfeldt, Kach, M 08]. X is *low for Feiner* if $\forall e \exists i \text{ such that } \forall n \ (n \in W_e^{X^{(2n+2)}} \leftrightarrow n \in W_i^{0^{(2n+2)}}).$

Obs: X is $low_n \implies X$ is low for Feiner.

Theorem ([Hirschfeldt, Kach, M 08])

There is an intermediate X degree that is not low for Feiner.