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Degree Spectrum

Definition: The degree Spectrum of a structure A is

Spec(A) = {deg(B) : B ∼= A}

and when A is non-trivial Knight showed that

Spec(A) = {deg(X ) : X can compute a copy of A}.
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Low Boolean Algebras

Theorem: [Downey, Jockusch 94]

Every low Boolean Algebra has a computable copy.

Relativized version: If X ′ ≡T Y ′ and B is a Boolean Alg., then
B has copy ≤T X ⇐⇒ B has copy ≤T Y .

Lemma: [Downey, Jockusch 94] For every Boolean Alg B and set X ,

B has copy ≤T X ⇐⇒ (B, atomB) has copy ≤T X ′

where atomB = {x ∈ B : 6 ∃y ∈ B (0 < y < x)}.
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Jump Inversion

Definition

A structure A admits Jump Inversion if
there are relations P0, P1, ... in A such that for every X ,

(A, P0, P1, ...) has copy ≤T X ′ ⇐⇒ A has copy ≤T X

Observation If A admits Jump Inversion and X ′ = Y ′, then
A has copy ≤T X ⇐⇒ A has copy ≤T Y .
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Jump Inversion vs Low property

A admits Jump Inversion if there are P0, P1, ... in A s.t. ∀X

(A, P0, P1, ...) has copy ≤T X ′ ⇐⇒ A has copy ≤T X

Theorem ([M 08])

Let A be a structure. TFAE

For every X , Y with X ′ ≡T Y ′,
A has copy ≤T X ⇐⇒ A has copy ≤T Y .

A admits Jump Inversion.

Lemma ([M 08])

If the computably infinitiary Σ0
1 diagram of A is comp. in Z ≥T 0′.

Then there is Y such that Y ′ = Z and A has copy ≤T Y .

Pf: Computably in Z , we build a copy B of A, and

we use the Σ0
1 diagram of A to force the jump of B.
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Spectrum of a Relation

Definition: The degree Spectrum of a relation R on a structure
computable A is

DgSpA(R) = {deg(Q) : (B, Q) ∼= (A, R),B computable}
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Atom Relation

Def: atomB = {x ∈ B :6 ∃y ∈ B (0 < y < x)} = DgSpB(atom)

Suppose B has infinitely many atoms

atomB is co-c.e., so DgSpB(atom) ⊆ c.e. degrees.

There is B with 0 6∈ DgSpB(atom). [Goncharov 75]

DgSpB(atom) is closed upwards in the c.e. degrees [Remmel 81]

DgSpB(atom) always contains some incomplete c.e. degree.
[Downey 93]

Theorem ([M07])

Every high3 c.e. degree is in DgSpB(atom).
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On the Triple jump of the Atom relation

Lemma [Thurber 95] (B, atomB) admits jump inversion.
(B, atomB) has copy ≤T X ⇐⇒

(B, atomB, atmolessB, infiniteB) has copy ≤T X ′

Lemma [Knigh Stob 00] (B, atomB, atomlessB, infiniteB)
admits double jump inversion.

Therefore, if X is high3 and B computable. Then

(B, atomB) has copy ≤T 0′ =⇒ (B, atomB) has copy ≤T X .

Lemma ([M], extending [Downey Jockusch 94])

If X is c.e. and (B, atomB) has copy ≤T X ,
then B has computable copy A where atomA ≤T X .
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On the Triple jump of the Atom relation

Theorem ([M07])

Every high3 c.e. degree is in DgSpB(atom).

Questions: Is it true for every highn c.e. degree?
Do other relations, like atomless, have similar behavior?
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Lown Question

Open Question:
Does every lown Boolean Algebra have a computable copy?

Theorem: [Knight, Stob 00]

Every low4 Boolean Algebra has a computable copy.

Q: Do we know other structures with the lown property?

Theorem [Spector 55]:
Every hyperarithmetic well ordering has a computable copy.

Theorem [M 05]: Every hypearithmetic linear ordering is
equimorphic (bi-embeddable) to a computable one.
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Finite descending cuts

Def: A descening cut of a lin. ord. A is a partition (L, R) of A
where R is closed upwards and has no least element.

Theorem ([Kach, Miller, M 08])

Every lown lin. ord. with finitely many descending cuts
has a computable copy.

Theorem

There is a lin. ord. of intermediate with
finitely many descending cuts and no computable copy.
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Low for Feiner

Given a set A ⊆ ω let
LA = ωω + (...ω2 · A(2) + ω · A(1) + ·A(0)).

Theorem [Kach, Miller 08]: LA has copy ≤T X ⇐⇒
∃e such that ∀n (n ∈ A↔ n ∈W X (2n+2)

e ).

Definition: [Hirschfeldt, Kach, M 08]. X is low for Feiner if

∀e∃i such that ∀n (n ∈W X (2n+2)

e ↔ n ∈W 0(2n+2)

i ).

Obs: X is lown =⇒ X is low for Feiner.

Theorem ([Hirschfeldt, Kach, M 08])

There is an intermediate X degree that is not low for Feiner.
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