The complexity within well-partial-orderings

Antonio Montalbán

University of Chicago

Madison, March 2012

Background on WQOs

- 2 WQOs in Proof Theory
 - Kruskal's theorem and the graph-minor theorem
 - Linear orderings and Fraissé's Conjecture

WPOs in Computability Theory

Definition: A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

Definition: A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:

finite strings over a finite alphabet [Higman 52];

Definition: A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],

Definition: A *well-quasi-ordering* (*WQO*), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
- labeled transfinite sequences with finite labels [Nash-Williams 65];

Definition: A *well-quasi-ordering* (*WQO*), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
- labeled transfinite sequences with finite labels [Nash-Williams 65];
- countable linear orderings [Laver 71];

Definition: A *well-quasi-ordering* (*WQO*), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
- labeled transfinite sequences with finite labels [Nash-Williams 65];
- countable linear orderings [Laver 71];
- finite graphs [Robertson, Seymour].

Definition: A *well-quasi-ordering* (*WQO*), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
- labeled transfinite sequences with finite labels [Nash-Williams 65];
- countable linear orderings [Laver 71];
- finite graphs [Robertson, Seymour].

Definition: A *well-quasi-ordering (WQO)*, is quasi-ordering which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
- labeled transfinite sequences with finite labels [Nash-Williams 65];
- countable linear orderings [Laver 71];
- finite graphs [Robertson, Seymour].

Definition:

A well-partial-ordering (WPO), is a WQO which is a partial ordering.

There are many equivalent characterizations of WPOs:

ullet ${\cal P}$ is well-founded and has no infinite antichains;

- ullet \mathcal{P} is well-founded and has no infinite antichains;
- for every $f : \mathbb{N} \to P$ there exists i < j such that $f(i) \leqslant_P f(j)$;

- ullet \mathcal{P} is well-founded and has no infinite antichains;
- for every $f : \mathbb{N} \to P$ there exists i < j such that $f(i) \leqslant_P f(j)$;
- every subset of P has a finite set of minimal elements;

- ullet ${\cal P}$ is well-founded and has no infinite antichains;
- for every $f : \mathbb{N} \to P$ there exists i < j such that $f(i) \leqslant_P f(j)$;
- every subset of P has a finite set of minimal elements;
- ullet all linear extensions of ${\mathcal P}$ are well-orders.

There are many equivalent characterizations of WPOs:

- ullet ${\cal P}$ is well-founded and has no infinite antichains;
- for every $f : \mathbb{N} \to P$ there exists i < j such that $f(i) \leqslant_P f(j)$;
- every subset of P has a finite set of minimal elements;
- ullet all linear extensions of ${\mathcal P}$ are well-orders.

The reverse mathematics and computability theory of these equivalences was been studied in [Cholak-Marcone-Solomon 04].

The sum and disjoint sum of two WPOs are WPO

- The sum and disjoint sum of two WPOs are WPO
- The product of two WPOs is WPO

- The sum and disjoint sum of two WPOs are WPO
- The product of two WPOs is WPO
- Finite strings over a WPO are a WPO (Higman, 1952)

- The sum and disjoint sum of two WPOs are WPO
- The product of two WPOs is WPO
- Finite strings over a WPO are a WPO (Higman, 1952)
- Finite trees with labels from a WPO are a WPO (Kruskal, 1960)

- The sum and disjoint sum of two WPOs are WPO
- The product of two WPOs is WPO
- Finite strings over a WPO are a WPO (Higman, 1952)
- Finite trees with labels from a WPO are a WPO (Kruskal, 1960)
- Transfinite sequences with labels from a WPO which use only finitely many labels are a WPO (Nash-Williams, 1965)

Recall: Every linearization of a WPO is well-ordered.

Recall: Every linearization of a WPO is well-ordered.

 $(\leqslant_{\scriptscriptstyle L} \text{ is a linearization of } (P,\leqslant_{\scriptscriptstyle P}) \text{ if it's linear } \text{ and } x\leqslant_{\scriptscriptstyle P} y\Rightarrow x\leqslant_{\scriptscriptstyle L} y.$

Recall: Every linearization of a WPO is well-ordered.

 $(\leqslant_{\iota} \text{ is a linearization of } (P, \leqslant_{P}) \text{ if it's linear } \text{ and } x \leqslant_{P} y \Rightarrow x \leqslant_{\iota} y.$

So, if $\{x_n\}$ is \leqslant_L decreasing, $\forall i < j \ (x_i \nleq_P x_j)$.

Recall: Every linearization of a WPO is well-ordered.

$$(\leqslant_L \text{ is a } \textit{linearization} \text{ of } (P, \leqslant_P) \text{ if it's linear } \text{ and } x \leqslant_P y \Rightarrow x \leqslant_L y.$$

So, if $\{x_n\}$ is $\leqslant_L \text{ decreasing, } \forall i < j \ (x_i \leqslant_P x_i).$

Definition: The *length* of $\mathcal{P} = (P, \leqslant_P)$ is

 $o(\mathcal{P}) = \sup\{\operatorname{ordType}(W, \leqslant_{\iota}) : \text{ where } \leqslant_{\iota} \text{ is a linearization of } \mathcal{P}\}.$

Recall: Every linearization of a WPO is well-ordered.

$$(\leqslant_L \text{ is a } \textit{linearization} \text{ of } (P, \leqslant_P) \text{ if it's linear } \text{ and } x \leqslant_P y \Rightarrow x \leqslant_L y.$$

So, if $\{x_n\}$ is $\leqslant_L \text{ decreasing, } \forall i < j \ (x_i \leqslant_P x_i).$

Definition: The *length* of $\mathcal{P} = (P, \leq_P)$ is

 $o(\mathcal{P}) = \sup\{\operatorname{ordType}(W, \leqslant_{\scriptscriptstyle L}) : \text{ where } \leqslant_{\scriptscriptstyle L} \text{ is a linearization of } \mathcal{P}\}.$

Def:
$$\mathbb{B}\mathrm{ad}(\mathcal{P}) = \{\langle x_0, ..., x_{n-1} \rangle \in P^{<\omega} : \forall i < j < n \ (x_i \not\leq_P x_j) \},$$

Note: \mathcal{P} is a WPO $\Leftrightarrow \mathbb{B}ad(\mathcal{P})$ is well-founded.

Recall: Every linearization of a WPO is well-ordered.

$$(\leqslant_L \text{ is a } \textit{linearization} \text{ of } (P, \leqslant_P) \text{ if it's linear } \text{ and } x \leqslant_P y \Rightarrow x \leqslant_L y.$$

So, if $\{x_n\}$ is $\leqslant_L \text{ decreasing, } \forall i < j \ (x_i \leqslant_P x_i).$

Definition: The *length* of $\mathcal{P} = (P, \leq_P)$ is

 $o(\mathcal{P}) = \sup\{\operatorname{ordType}(W, \leqslant_{\iota}) : \text{ where } \leqslant_{\iota} \text{ is a linearization of } \mathcal{P}\}.$

Def:
$$\mathbb{B}\mathrm{ad}(\mathcal{P}) = \{\langle x_0, ..., x_{n-1} \rangle \in P^{<\omega} : \forall i < j < n \ (x_i \not\leq_P x_j) \},$$

Note: \mathcal{P} is a WPO $\Leftrightarrow \mathbb{B}ad(\mathcal{P})$ is well-founded.

Theorem: [De Jongh, Parikh 77] $o(P) + 1 = rk(\mathbb{B}ad(P))$.

Background on WQOs

- 2 WQOs in Proof Theory
 - Kruskal's theorem and the graph-minor theorem
 - Linear orderings and Fraïssé's Conjecture

Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \leq S$ if there is an embedding : $T \to S$ preserving \leq and g.l.b. Then \mathcal{T} is a WQO.

Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \leq S$ if there is an embedding : $T \to S$ preserving \leq and g.l.b. Then \mathcal{T} is a WQO.

Theorem: [Friedman] The length of \mathcal{T} is $\geqslant \Gamma_0$.

Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \leq S$ if there is an embedding : $T \to S$ preserving \leq and g.l.b. Then \mathcal{T} is a WQO.

Theorem: [Friedman] The length of \mathcal{T} is $\geqslant \Gamma_0$. (where Γ_0 is the the proof-theoretic ordinal of ATR₀. It's the "least ordinal" that ATR₀ can't prove it's an ordinal.

Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \leq S$ if there is an embedding : $T \to S$ preserving \leq and g.l.b. Then \mathcal{T} is a WQO.

Theorem: [Friedman] The length of \mathcal{T} is $\geqslant \Gamma_0$. (where Γ_0 is the the proof-theoretic ordinal of ATR₀. It's the "least ordinal" that ATR₀ can't prove it's an ordinal.

*ATR*₀ –*Arithmetic Transfinite Recursion*– is the subsystem of 2nd-order arithmetic that allows the iteration of the Turing jump along any ordinal.)

Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \preccurlyeq S$ if there is an embedding : $T \to S$ preserving \leqslant and g.l.b. Then \mathcal{T} is a WQO.

Theorem: [Friedman] The length of \mathcal{T} is $\geqslant \Gamma_0$.

(where Γ_0 is the the proof-theoretic ordinal of ATR₀. It's the "least ordinal" that ATR₀ can't prove it's an ordinal.

 ATR_0 – Arithmetic Transfinite Recursion — is the subsystem of 2nd-order arithmetic that allows the iteration of the Turing jump along any ordinal.)

Corollary: [Friedman] (RCA₀) Kruskal's theorem $\Rightarrow \Gamma_0$ well-ordered. Therefore,

 $ATR_0 \not\vdash Kruskal's theorem.$

The "big five" subsystems of 2nd-order arithmetic

Axiom systems:

RCA₀:

WKL₀:

ACA₀:

ATR₀:

 Π_1^1 -CA₀:

The "big five" subsystems of 2nd-order arithmetic

Axiom systems:

 RCA_0 : Recursive Comprehension $+ \Sigma_1^0$ -induction + Semiring ax.

WKL₀:

ACA₀:

 ATR_0 :

 Π_1^1 -CA₀:

Axiom systems:

 RCA_0 : Recursive Comprehension + Σ^0_1 -induction + Semiring ax.

WKL₀: Weak König's lemma + RCA₀

ACA₀:

 ATR_0 :

 Π_1^1 -CA₀:

Axiom systems:

 RCA_0 : Recursive Comprehension + Σ^0_1 -induction + Semiring ax.

WKL₀: Weak König's lemma + RCA₀

ACA₀: Arithmetic Comprehension + RCA₀ \Leftrightarrow "for every set X, X' exists".

 ATR_0 :

 Π_1^1 -CA₀:

Axiom systems:

 RCA_0 : Recursive Comprehension $+ \Sigma_1^0$ -induction + Semiring ax.

WKL₀: Weak König's lemma + RCA₀

ACA₀: Arithmetic Comprehension + RCA₀ \Leftrightarrow "for every set X, X' exists".

ATR₀: Arithmetic Transfinite recursion + ACA₀. \Leftrightarrow " $\forall X$, \forall ordinal α , $X^{(\alpha)}$ exists".

 Π_1^1 -CA₀:

Axiom systems:

 RCA_0 : Recursive Comprehension + Σ^0_1 -induction + Semiring ax.

 WKL_0 : Weak König's lemma + RCA₀

ACA₀: Arithmetic Comprehension + RCA₀ \Leftrightarrow "for every set X, X' exists".

ATR₀: Arithmetic Transfinite recursion + ACA₀. \Leftrightarrow " $\forall X$, \forall ordinal α , $X^{(\alpha)}$ exists".

 Π_1^1 -CA₀: Π_1^1 -Comprehension + ACA₀. \Leftrightarrow " $\forall X$, the hyper-jump of X exists".

The exact reversals

[Friedman] Neither of ATR₀, or Kruskal's theorem implies the other.

The exact reversals

[Friedman] Neither of ATR₀, or Kruskal's theorem implies the other.

Thm: [Rathjen–Weiermann 93] The length of $\mathcal T$ is the Ackerman ordinal $\theta\Omega^\omega$.

The following are equivalent over RCA₀

- Kruskal's theorem.
- The Π_1^1 -reflection principle for Π_2^1 -bar induction.

The exact reversals

[Friedman] Neither of ATR₀, or Kruskal's theorem implies the other.

Thm: [Rathjen–Weiermann 93] The length of $\mathcal T$ is the Ackerman ordinal $\theta\Omega^\omega$.

The following are equivalent over RCA₀

- Kruskal's theorem.
- The Π_1^1 -reflection principle for Π_2^1 -bar induction.

Thm: [M.-Weiermann 2006] The following are equivalent over RCA₀

- ATR₀
- For every \mathcal{P} , if \mathcal{P} is a WQO, then so is $\mathcal{T}(\mathcal{P})$, where $\mathcal{T}(\mathcal{P})$ is the set of finite trees with labels in \mathcal{P} , ordered by homomorphism.

Theorem: [Robertson, Seymour]

Let ${\cal G}$ be the set of finite graphs ordered by the minor relation.

Then \mathcal{G} is a WQO.

Theorem: [Robertson, Seymour]

Let ${\cal G}$ be the set of finite graphs ordered by the minor relation.

Then \mathcal{G} is a WQO.

Theorem: [Friedman, Robertson, Seymour] The length of \mathcal{G} is $\geqslant \phi_0(\epsilon_{\Omega_\omega+1})$.

Theorem: [Robertson, Seymour] Let \mathcal{G} be the set of finite graphs ordered by the minor relation. Then \mathcal{G} is a WQO.

Theorem: [Friedman, Robertson, Seymour] The length of \mathcal{G} is $\geqslant \phi_0(\epsilon_{\Omega_\omega+1})$. (where $\phi_0(\epsilon_{\Omega_\omega+1})$, the Takeuti-Feferman-Buchholz ordinal, is the proof-theoretic ordinal of Π^1_1 -CA₀.

Theorem: [Robertson, Seymour] Let $\mathcal G$ be the set of finite graphs ordered by the minor relation. Then $\mathcal G$ is a WQO.

Theorem: [Friedman, Robertson, Seymour] The length of \mathcal{G} is $\geqslant \phi_0(\epsilon_{\Omega_\omega+1})$. (where $\phi_0(\epsilon_{\Omega_\omega+1})$, the Takeuti-Feferman-Buchholz ordinal, is the the proof-theoretic ordinal of Π^1_1 -CA₀. Π^1_1 -CA₀ – is the system that allows Π^1_1 -comprehension.)

Theorem: [Robertson, Seymour] Let \mathcal{G} be the set of finite graphs ordered by the minor relation. Then \mathcal{G} is a WQO.

Theorem: [Friedman, Robertson, Seymour] The length of \mathcal{G} is $\geqslant \phi_0(\epsilon_{\Omega_\omega+1})$. (where $\phi_0(\epsilon_{\Omega_\omega+1})$, the Takeuti-Feferman-Buchholz ordinal, is the proof-theoretic ordinal of Π^1_1 -CA₀.

 Π_1^1 - CA_0 – is the system that allows Π_1^1 -comprehension.)

Corollary: [Friedman, Robertson, Seymour] (RCA₀) The minor-grarph theorem $\Rightarrow \phi_0(\epsilon_{\Omega_\omega+1})$ well-ordered. Therefore,

 Π_1^1 -CA₀ $\not\vdash$ minor-graph theorem.

Fraïssé's Conjecture

Theorem [Fraïssé's Conjecture '48; Laver '71]

FRA: The countable linear orderings are WQO under embeddablity.

Fraïssé's Conjecture

Theorem [Fraïssé's Conjecture '48; Laver '71]

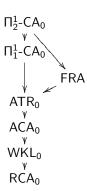
FRA: The countable linear orderings are WQO under embeddablity.

Theorem[Shore '93]

FRA implies ATR₀ over RCA₀.

Conjecture: [Clote '90] [Simpson '99] [Marcone]

FRA is equivalent to ATR_0 over RCA_0 .



Axiom systems:

 RCA_0 : Recursive Comprehension $+ \Sigma_1^0$ -induction + Semiring ax.

 WKL_0 : Weak König's lemma + RCA₀

ACA₀: Arithmetic Comprehension + RCA₀ \Leftrightarrow "for every set X, X' exists".

ATR₀: Arithmetic Transfinite recursion + ACA₀. \Leftrightarrow " $\forall X$, \forall ordinal α , $X^{(\alpha)}$ exists".

 Π_1^1 -CA₀: Π_1^1 -Comprehension + ACA₀. \Leftrightarrow " $\forall X$, the hyper-jump of X exists".

Fraïssé's conjecture again.

Claim

 RCA_0+FRA is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.

Fraïssé's conjecture again.

Claim

 RCA_0+FRA is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.

Theorem

The following are equivalent over RCA₀

- FRA;
- Every scattered lin. ord. is a finite sum of indecomposables;
- Every indecomposable lin. ord. is either an ω -sum or an ω^* -sum of indecomposable l.o. of smaller rank.
- Jullien's characterization of extendible linear orderings

Theorem:[Folklore] If we color $\mathbb Q$ with finitely many colors, there exists an embedding $\mathbb Q \to \mathbb Q$ whose image has only one color.

Theorem:[Folklore] If we color \mathbb{Q} with finitely many colors, there exists an embedding $\mathbb{Q} \to \mathbb{Q}$ whose image has only one color.

Theorem:[Laver '72]

For every countable \mathcal{L} , there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that:

If $\mathcal L$ is colored with finitely many colors,

there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ colors.

Theorem:[Folklore] If we color $\mathbb Q$ with finitely many colors, there exists an embedding $\mathbb Q \to \mathbb Q$ whose image has only one color.

Theorem:[Laver '72]

For every countable \mathcal{L} , there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that:

If $\mathcal L$ is colored with finitely many colors,

there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ colors.

Theorem ([M. 2005])

FRA is implied by Laver's Theorem above over RCA_0 .

Theorem:[Folklore] If we color $\mathbb Q$ with finitely many colors, there exists an embedding $\mathbb Q \to \mathbb Q$ whose image has only one color.

Theorem:[Laver '72]

For every countable \mathcal{L} , there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that:

If \mathcal{L} is colored with finitely many colors,

there is an embedding $\mathcal{L} \to \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ colors.

Theorem ([M. 2005])

FRA is implied by Laver's Theorem above over RCA₀.

Theorem ([Kach-Marcone-M.-Weiermann 2011])

FRA is equivalent to Laver's Theorem above over RCA₀.

Def: Let \mathbb{L}_{α} be the set of linear orderings of Hausdorff rank $< \alpha$, quotiented by the bi-embeddability relation, and ordered by the embeddability relation.

1 [Laver 71] For countable α , \mathbb{L}_{α} is countable.

- **1** [Laver 71] For countable α , \mathbb{L}_{α} is countable.
- ② [M. 05] For computable α , ($\mathbb{L}_{\alpha}, \preceq$) is computably presentable.

- **1** [Laver 71] For countable α , \mathbb{L}_{α} is countable.
- ② [M. 05] For computable α , ($\mathbb{L}_{\alpha}, \preceq$) is computably presentable.
- (This was used to prove that every hypearithmetic linear ordering is bi-embeddable with a computable one in [M. 05])

- **1** [Laver 71] For countable α , \mathbb{L}_{α} is countable.
- ② [M. 05] For computable α , ($\mathbb{L}_{\alpha}, \preccurlyeq$) is computably presentable.
- (This was used to prove that every hypearithmetic linear ordering is bi-embeddable with a computable one in [M. 05])
- FRA is equivalent to " \forall ordinal $\alpha < \omega_1$ (\mathbb{L}_{α} is WQO)."

Def: Let \mathbb{L}_{α} be the set of linear orderings of Hausdorff rank $< \alpha$, quotiented by the bi-embeddability relation, and ordered by the embeddability relation.

- **1** [Laver 71] For countable α , \mathbb{L}_{α} is countable.
- **2** [M. 05] For computable α , ($\mathbb{L}_{\alpha}, \preceq$) is computably presentable.
- (This was used to prove that every hypearithmetic linear ordering is bi-embeddable with a computable one in [M. 05])
- FRA is equivalent to " \forall ordinal $\alpha < \omega_1$ (\mathbb{L}_{α} is WQO)."

Question: Given α , what is the length of \mathbb{L}_{α} ?

Finite Hausdorff rank

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\epsilon...}}$,

the first fixed point of the function $\alpha \mapsto \epsilon_{\alpha}$

Finite Hausdorff rank

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\epsilon...}}$,

the first fixed point of the function $\alpha \mapsto \epsilon_{\alpha}$

Note: $\epsilon_{\epsilon_{\epsilon...}}$ is the proof-theoretic ordinal of ACA⁺, where ACA⁺ is the system RCA₀+ $\forall X(X^{(\omega)} \ exists.$ (So $\epsilon_{\epsilon_{\epsilon...}}$ is the least ordinal that ACA⁺ can't prove is well-ordered.)

Finite Hausdorff rank

Theorem ([Marcone, M 08])

The length of \mathbb{L}_{ω} is $\epsilon_{\epsilon_{\epsilon...}}$,

the first fixed point of the function $\alpha \mapsto \epsilon_{\alpha}$

Note: $\epsilon_{\epsilon_{\epsilon...}}$ is the proof-theoretic ordinal of ACA⁺, where ACA⁺ is the system RCA₀+ $\forall X(X^{(\omega)}\ exists.$ (So $\epsilon_{\epsilon_{\epsilon...}}$ is the least ordinal that ACA⁺ can't prove is well-ordered.)

Theorem ([Marcone, M 08])

The following are equivalent over ACA+:

- $\epsilon_{\epsilon_{\epsilon}}$ is well-ordered
- \mathbb{L}_{ω} is a WQO

Background on WQOs

- 2 WQOs in Proof Theory
 - Kruskal's theorem and the graph-minor theorem
 - Linear orderings and Fraissé's Conjecture

Recall: $o(\mathcal{P}) = \sup\{\operatorname{ordType}(P, \leqslant_{\iota}) : \text{ where } \leqslant_{\iota} \text{ is a linearization of } \mathcal{P}\}.$

Recall: $o(\mathcal{P}) = \sup\{\operatorname{ordType}(P, \leqslant_{\iota}) : \text{ where } \leqslant_{\iota} \text{ is a linearization of } \mathcal{P}\}.$

Theorem: [De Jongh, Parikh 77]

Every WPO \mathcal{P} has a linearization of order type $o(\mathcal{P})$.

Recall: $o(P) = \sup\{\operatorname{ordType}(P, \leqslant_{\iota}) : \text{ where } \leqslant_{\iota} \text{ is a linearization of } P\}.$

Theorem: [De Jongh, Parikh 77]

Every WPO \mathcal{P} has a linearization of order type $o(\mathcal{P})$.

We call such a linearization, a *maximal linearization* of \mathcal{P} .

Recall: $o(\mathcal{P}) = \sup\{\operatorname{ordType}(P, \leqslant_{\iota}) : \text{ where } \leqslant_{\iota} \text{ is a linearization of } \mathcal{P}\}.$

Theorem: [De Jongh, Parikh 77]

Every WPO \mathcal{P} has a linearization of order type $o(\mathcal{P})$.

We call such a linearization, a *maximal linearization* of \mathcal{P} .

Such linearizations have been found by different methods in different examples.

Recall: $o(\mathcal{P}) = \sup\{\operatorname{ordType}(P, \leqslant_{\iota}) : \text{ where } \leqslant_{\iota} \text{ is a linearization of } \mathcal{P}\}.$

Theorem: [De Jongh, Parikh 77]

Every WPO \mathcal{P} has a linearization of order type $o(\mathcal{P})$.

We call such a linearization, a *maximal linearization* of \mathcal{P} .

Such linearizations have been found by different methods in different examples.

Question [Schmidt 1979]:

Is the length of a computable WPO computable?

Computable Length

Q: Is the length of a computable WPO, computable?

Computable Length

Q: Is the length of a computable WPO, computable?

We mentioned that $o(\mathcal{P}) + 1 = \mathsf{rk}(\mathbb{B}\mathrm{ad}(\mathcal{P}))$, where

$$\mathbb{B}\mathrm{ad}(\mathcal{P}) = \{ \langle x_0, ..., x_{n-1} \rangle \in W^{<\omega} : \forall i < j < n \ (x_i \not\leq_P x_j) \},$$

Since $\mathbb{B}\mathrm{ad}(\mathcal{P})$ is computable and well-founded, it has rank $<\omega_1^{\mathit{CK}}$. So, $o(\mathcal{P})$ is a computable ordinal.

Computable Length

Q: Is the length of a computable WPO, computable?

We mentioned that $o(\mathcal{P}) + 1 = \mathsf{rk}(\mathbb{B}ad(\mathcal{P}))$, where

$$\mathbb{B}\mathrm{ad}(\mathcal{P}) = \{ \langle x_0, ..., x_{n-1} \rangle \in W^{<\omega} : \forall i < j < n \ (x_i \not \leq_P x_j) \},$$

Since $\mathbb{B}\mathrm{ad}(\mathcal{P})$ is computable and well-founded, it has rank $<\omega_1^{\mathit{CK}}$. So, $o(\mathcal{P})$ is a computable ordinal.

Q:

Does every computable WPO have a computable maximal linearization?

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Q: Can we find them uniformly?

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Q: Can we find them uniformly?

Theorem ([M 2007])

There is computable procedure that

given ${\mathcal P}$ produces a linearization ${\mathcal L}$ such that for some δ

$$\omega^{\delta} \leqslant \mathcal{L} \leqslant o(\mathcal{P}) < \omega^{\delta+1}.$$

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Q: Can we find them uniformly?

Theorem ([M 2007])

There is computable procedure that given $\mathcal P$ produces a linearization $\mathcal L$ such that for some δ

$$\omega^{\delta} \leqslant \mathcal{L} \leqslant o(\mathcal{P}) < \omega^{\delta+1}$$
.

Theorem ([M 2007])

Let a be a Turing degree. TFAE:

- **1** a uniformly computes maximal linearizations of comp. WPOs.
- **2** a uniformly computes $0^{(\beta)}$ for every $\beta < \omega_1^{CK}$.

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 \mathcal{P} is a WPO \Rightarrow all its chains are well-orders.

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 \mathcal{P} is a WPO \Rightarrow all its chains are well-orders.

Definition

If \mathcal{P} is well founded, its *height* is

$$ht(\mathcal{P}) = \sup\{\alpha : \exists \mathcal{C} \in Ch(\mathcal{P}) \alpha = \operatorname{ordType}(\mathbb{L})\}.$$

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 \mathcal{P} is a WPO \Rightarrow all its chains are well-orders.

Definition

If \mathcal{P} is well founded, its *height* is

$$ht(\mathcal{P}) = \sup\{\alpha : \exists \mathcal{C} \in Ch(\mathcal{P}) \alpha = \operatorname{ordType}(\mathbb{L})\}.$$

We can also define the *height of* $x \in P$:

$$\mathsf{ht}_{\mathcal{P}}(x) = \mathsf{sup}\{\mathsf{ht}_{\mathcal{P}}(y) + 1 : y <_{P} x\}.$$

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 \mathcal{P} is a WPO \Rightarrow all its chains are well-orders.

Definition

If \mathcal{P} is well founded, its *height* is

$$ht(\mathcal{P}) = \sup\{\alpha : \exists \mathcal{C} \in Ch(\mathcal{P}) \alpha = \operatorname{ordType}(\mathbb{L})\}.$$

We can also define the *height of* $x \in P$:

$$\mathsf{ht}_{\mathcal{P}}(x) = \mathsf{sup}\{\mathsf{ht}_{\mathcal{P}}(y) + 1 : y <_{P} x\}.$$

Theorem: [Wolk 1967]

If \mathcal{P} is a WPO, there exists $\mathcal{C} \in Ch(\mathcal{P})$ with order type $ht(\mathcal{P})$.

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 \mathcal{P} is a WPO \Rightarrow all its chains are well-orders.

Definition

If \mathcal{P} is well founded, its *height* is

$$ht(\mathcal{P}) = \sup\{\alpha : \exists \mathcal{C} \in Ch(\mathcal{P}) \alpha = \operatorname{ordType}(\mathbb{L})\}.$$

We can also define the *height of* $x \in P$:

$$\mathsf{ht}_{\mathcal{P}}(x) = \mathsf{sup}\{\mathsf{ht}_{\mathcal{P}}(y) + 1 : y <_{P} x\}.$$

Theorem: [Wolk 1967]

If \mathcal{P} is a WPO, there exists $\mathcal{C} \in \mathsf{Ch}(\mathcal{P})$ with order type $\mathsf{ht}(\mathcal{P})$.

Such a chain is called a *maximal chain* of \mathcal{P} .

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

 \mathcal{P} is a WPO \Rightarrow all its chains are well-orders.

Definition

If \mathcal{P} is well founded, its *height* is

$$ht(\mathcal{P}) = \sup\{\alpha : \exists \mathcal{C} \in Ch(\mathcal{P}) \alpha = \operatorname{ordType}(\mathbb{L})\}.$$

We can also define the *height of* $x \in P$:

$$\mathsf{ht}_{\mathcal{P}}(x) = \mathsf{sup}\{\mathsf{ht}_{\mathcal{P}}(y) + 1 : y <_{P} x\}.$$

Theorem: [Wolk 1967]

If \mathcal{P} is a WPO, there exists $\mathcal{C} \in \mathsf{Ch}(\mathcal{P})$ with order type $\mathsf{ht}(\mathcal{P})$.

Such a chain is called a *maximal chain* of \mathcal{P} .

Q: How difficult is it to compute maximal chains?

Theorem ([Marcone-Shore 2010])

Every computable WPO ${\cal P}$ has a hyperarithmetic maximal chain.

(Recall: $X \subseteq \omega$ is hyperarithmetic iff it's Δ_1^1 .)

Theorem ([Marcone-Shore 2010])

Every computable WPO \mathcal{P} has a hyperarithmetic maximal chain.

(Recall: $X \subseteq \omega$ is hyperarithmetic iff it's Δ_1^1 .)

Maximal chains aren't easy to compute:

Theorem ([Marcone–M.–Shore 2012])

Let $\alpha < \omega_1^{CK}$.

There exists a computable WPO $\mathcal P$ such that

 $0^{(lpha)}$ does not compute any maximal chain of ${\mathcal P}.$

Maximal chains are not easy to compute,

but almost everybody can compute them.

Maximal chains are not easy to compute, but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let G be hyperarithmetically generic.

Every computable WPO has a maximal chain computable in G.

Maximal chains are not easy to compute,

but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let G be hyperarithmetically generic.

Every computable WPO has a maximal chain computable in G.

Pf:

The key observation is that all downward closed subsets of P are computable.

Maximal chains are not easy to compute,

but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let G be hyperarithmetically generic.

Every computable WPO has a maximal chain computable in G.

Pf:

- ullet The key observation is that all downward closed subsets of P are computable.
- Then, build an operator $\Phi_{\alpha}^{\mathcal{P},G}$, that returns a sequence of computable sub-partial orderings $P_0 \leqslant P_1 \leqslant ...$, such that, if \mathcal{P} has cofinality $\omega^{\alpha+1}$, and G is generic, then infinitely many of the P_i will have cofinality ω^{α} .

Maximal chains are not easy to compute,

but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let G be hyperarithmetically generic.

Every computable WPO has a maximal chain computable in G.

Pf:

- ullet The key observation is that all downward closed subsets of P are computable.
- Then, build an operator $\Phi_{\alpha}^{\mathcal{P},G}$, that returns a sequence of computable sub-partial orderings $P_0 \leqslant P_1 \leqslant ...$, such that, if \mathcal{P} has cofinality $\omega^{\alpha+1}$, and G is generic, then infinitely many of the P_i will have cofinality ω^{α} .
- Then use effective transfinite recursion.