Well-quasi-orderings and computability theory.

Antonio Montalbán.
University of Chicago.

Greater Boston Logic Conference
May 2006
Definition: A well-quasi-ordering (wqo), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
- labeled transfinite sequences with finite labels [Nash-Williams 65];
- scattered linear orderings [Laver 71];
- finite graphs [Robertson, Seymour 04].
Theorem: Let $Q = (Q, \leq_Q)$ be a quasi-ordering. TFAE:

1. For every sequence $\{x_n\}_{n \in \omega} \subseteq Q$, $\exists i < j \ (x_i \leq_Q x_j)$.
2. Q has no infinite descending seq. and no infinite antichains.
3. Every linearization of Q is well-ordered.
4. For every $X \subseteq Q$ there exists a finite $F \subseteq X$ such that $\forall x \in X \exists y \in F \ (y \leq_Q x)$.
Graph minor Theorem

Theorem: [Robertson, Seymour 04] The set of finite graphs, ordered by $G \preceq H$ if G is a minor of H, is a Well-Quasi-Ordering.

Corollary: If P is a set of graphs which is closed upwards, then there exists graphs $G_1, ..., G_k$ such that a graph G is in P iff it has some of the $G_1, ..., G_k$ as a minor.

Example: A graph is planar
(i.e. it can be drawn without auto-intersections),

\iff it doesn’t have neither $K_{3,3}$ nor K_5 as a minor.
Jump Upper semilattices

Definition: A *Jump Upper semilattice* is a structure $\mathcal{J} = (J, \leq, \lor, j(\cdot))$, where
- (J, \leq) is a partial ordering,
- \lor is the least upper bound
- and $j(\cdot)$ is a monotonic and increasing operator.

Example: The Turing degree structure $\mathcal{D} = (D, \leq_T, \oplus, ')$

Lemma (M. 03)

Every finitely generated Jump Upper semilattice is WQO.

This was used in [M. 03] to prove that
Every ctable. Jump Upper semilattice embeds into \mathcal{D}.
Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \preceq S$ if there is an embedding $: T \to S$ preserving \leq and $g.l.b.$ Then \mathcal{T} is a WQO.

Theorem: [Friedman] Kruskal’s theorem is can’t be proved in ATR_0.
Reverse Mathematics

Setting: Second order arithmetic.

Main Question: What axioms are necessary to prove the theorems of Mathematics?

Axiom systems:

- **RCA$_0$:** Recursive Comprehension + Σ^0_1-induction + Semiring ax.
- **WKL$_0$:** Weak König’s Lemma + RCA$_0$

 (Every infinite subtree of $2^{<\omega}$ has a path.)
- **ACA$_0$:** Arithmetic Comprehension + RCA$_0$

 \iff “for every set X, X' exists”.
- **ATR$_0$:** Arithmetic Transfinite Recursion + ACA$_0$

 \iff “$\forall X, \forall$ ordinal α, $X(\alpha)$ exists”.
- **Π^1_1-CA$_0$:** Π^1_1-Comprehension + ACA$_0$

 \iff “$\forall X$, the hyper-jump of X exists”.

Well-quasi-orderings and computability theory.
Cholak, Marcone, Simpson and Solomon studied how hard is it to prove the equivalence between the definitions of WQO.

Theorem: ACA$_0$ can prove:
Let $Q = (Q, \leq_Q)$ be a quasi-ordering. TFAE:

1. for every sequence $\{x_n\}_{n \in \omega} \subseteq Q$, $\exists i < j (x_i \leq_Q x_j)$.
2. Q has no infinite descending seq. and no infinite antichains.
3. Every linearization of Q is well-ordered.
4. For every $X \subseteq Q$ there exists a finite $F \subseteq X$ such that $\forall x \in X \exists y \in F (y \leq_Q x)$.

Theorem: WKL$_0$ can only prove $1 \Rightarrow 2$, $1 \Leftrightarrow 3$ and $1 \Leftrightarrow 4$.

Theorem: RCA$_0$ can only prove $1 \Rightarrow 2$, $1 \Rightarrow 3$ and $1 \Leftrightarrow 4$.
Fraïssé’s conjecture

Theorem [Fraïssé’s Conjecture ’48; Laver ’71]

FRA: The countable linear orderings form a WQO with respect to embeddablity.

Laver’s proof of FRA can be carried out in Π^1_2-CA$_0$.

Obs: Since FRA is a Π^1_2 statement, it cannot imply Π^1_1-CA$_0$.

Theorem (Shore ’93)

The fact that the well-orderings form a WQO implies ATR_0 over RCA_0.

Corollary: FRA implies ATR_0 over RCA_0.
Fraïssé’s conjecture

\[\begin{align*}
\Pi^1_2 \text{-CA}_0 & \downarrow \\
\Pi^1_1 \text{-CA}_0 & \downarrow \\
FRA & \downarrow \\
\text{ATR}_0 & \downarrow \\
\text{ACA}_0 & \downarrow \\
\text{WKL}_0 & \downarrow \\
\text{RCA}_0 & \downarrow \\
\end{align*} \]

Conjecture: [Clote ’90] [Simpson ’99][Marcone]

FRA is equivalent to ATR\(_0\) over RCA\(_0\).
Theory for linear orderings.

Claim (Simpson 99)

“ATR₀ is the least system where it is possible to develop a reasonable theory of ordinals.”

Claim (M. 05)

“RCA₀ + FRA is the least system where it is possible to develop a reasonable theory of linear orderings and the relation of embeddability.”
Theorem: [Laver 71, 73]

1. FRA;
2. Every scattered linear ordering can be written as a finite sum of indecomposable ones;
3. Every indecomposable linear ordering can be written either as an ω-sum or as an ω^* sum of indecomposable l.o. of smaller rank.

Theorem (M. 05)

The three statements above are equivalent over RCA$_0$*

Other statements about L.O.s have been proved to be equivalent to FRA like Jullien’s classification of the extendible linear orderings, and the fact that there are only countably many equimorphism types below a countable L.O. [M. 05]
Signed Trees

Definition:

- A **signed tree** is a well-founded tree $T \subset \omega^{<\omega}$ together with a map $s_T : T \to \{+, -\}$.
- $h : T \to T'$ is a **homomorphism** if $\forall \sigma, \tau \in T$
 \[\sigma \subsetneq \tau \Rightarrow h(\sigma) \subsetneq h(\tau) \text{ and } s_{T'}(h(\sigma)) = s_T(\sigma). \]
- Let $T \preceq T'$ if such an h exists.

Obs: That the (unsigned) well-founded trees are WQO under \preceq is equivalent to ATR$_0$ over RCA$_0$.

Theorem (M. 05)

TFAE over RCA$_0$.

- FRA;
- The signed trees are WQO under \preceq.
Let $Q = (Q, \leq_Q)$ be a quasi-ordering.
Consider the partial-ordering associated to it in the usual way:
Let $x \equiv_Q y \iff x \leq_Q y \& y \leq_Q x$, and
let $W = Q/\equiv_Q$, where $[x] \leq_W [y] \iff x \leq_Q y$

Definition: A *well-partial-ordering (wpo)*, is a partial-ordering
with no infinite descending sequences and no infinite antichains.
Obs: Every linearization of a wpo is well-ordered.

(A linearization of \((P, \leq_P)\) is a linear ordering \(\leq_L\) of \(P\) such that \(x \leq_P y \Rightarrow x \leq_L y\).)

So, if \(\{x_n\}\) is \(\leq_L\) decreasing, \(\forall i < j (x_i \not\leq_P x_j)\)

Definition: The length of \(\mathcal{W} = (W, \leq_W)\) is

\[o(\mathcal{W}) = \sup \{ \text{ordTy}(W, \leq_L) : \text{where} \ \leq_L \ \text{is a linearization of} \ \mathcal{W}' \} \]

Def: \(\text{Bad}(\mathcal{W}) = \{ \langle x_0, \ldots, x_{n-1} \rangle \in W^{<\omega} : \forall i < j < n (x_i \not\leq_W x_j) \} \)

Note: \(\mathcal{W}\) is a wpo \(\iff\text{Bad}(\mathcal{W})\) is well-founded.

Theorem: [De Jongh, Parikh 77] \(o(\mathcal{W}) = \text{rk}(\text{Bad}(\mathcal{W}))\)
Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \prec S$ if there is an embedding $: T \rightarrow S$ preserving \leq and $g.l.b.$ Then \mathcal{T} is a WQO.

Theorem: [Friedman] The length of \mathcal{T} is $\geq \Gamma_0$. (where Γ_0 the the proof-theoretic ordinal of ATR_0. it’s the “least ordinal” that ATR_0 can’t prove it’s an ordinal.)
Moreover, there is a computable map $\mathcal{T} \rightarrow \Gamma_0$ which preserves \leq.

Corollary: [Friedman] (RCA$_0$) Kruskal’s theorem implies that Γ_0 is well-ordered. Therefore, ATR_0 cannot imply Kruskal’s theorem.

Theorem: [Marcone] Kruskal’s theorem can be proved in Π^1_1-CA$_0$.
Theorem: [Rathjen, Weiermann 93] Over ACA₀, Kruskal’s theorem is equivalent to the uniform Π^1_1 reflection principle for Π^1_1-Transfinite induction.

Theorem: [Friedman, Robertson, Seymour 87] The Graph minor theorem is not provable in Π^1_1-CA₀.
Theorem: [De Jongh, Parikh 77]
Every wpo \mathcal{W} has a linearization of order type $\mathcal{o}(\mathcal{W})$.

We call such a linearization, a *maximal linearization* of \mathcal{W}.

This is why $\mathcal{o}(\mathcal{W})$ is often called the *maximal order type* of \mathcal{W}.

Such linearizations have been found in many of the examples, always by different methods.
Schmidt’s questions

Schmidt, in her Habilitationsschrift [1979], computed the maximal order type of the wpo investigated by Higman, and gave upper bounds for the maximal order types of the wpo’s investigated by Kruskal and Nash-Williams.

Schmidt posed two questions:

Question:
Is there a non-trivial relation between rank and length of a wpo?

Question:
Is the length of a computable wpo, a computable ordinal?
Q: Is the maximal order type of a computable wpo, computable?

We mentioned that $\alpha(W) + 1 = \text{rk}(\text{Bad}(W))$, where

$$\text{Bad}(W) = \{\langle x_0, \ldots, x_{n-1} \rangle \in W^{<\omega} : \forall i < j < n (x_i \not\leq_W x_j)\},$$

Since $\text{Bad}(W)$ is computable and well-founded, it has rank $< \omega^1_{\text{CK}}$. So, $\alpha(W)$ is a computable ordinal.

Q: Does every computable wpo have a computable maximal linearization?
Uniformly computable linearization

Given \mathcal{W}, we computably uniformly define a linearization $\preceq^\mathcal{W}$ of it.

Theorem

If $\omega^\delta \leq o(\mathcal{W}) < \omega^{\delta+1}$, then

$$\omega^\delta \leq \text{ordTy}(\mathcal{W}, \preceq^\mathcal{W}) \leq o(\mathcal{W}) < \omega^{\delta+1}.$$

In particular, if $o(\mathcal{W}) = \omega^\delta$, then $\text{ordTy}(\mathcal{W}, \preceq^\mathcal{W}) = \omega^\delta$.

Construction:

- We define a map $y \mapsto \sigma_y : \mathcal{W} \to 2^\mathcal{W}$:

 Let $\sigma_y(x) = \begin{cases} 1 & \text{if } x \preceq^\mathcal{W} y \\ 0 & \text{otherwise} \end{cases}$, for $y, x \in \mathcal{W}$.

- Order $2^\mathcal{W}$ lexicographically, w.r.t. the enumeration of \mathcal{W}.

- let $y \preceq^\mathcal{W} z \iff \sigma_y \preceq_{\text{lex}} \sigma_z$.
Theorem

Every computable wpo has a computable maximal linearization.

Sketch of the Proof:

- Write \(o(W) \) as \(\omega^{\alpha_n} + \ldots + \omega^{\alpha_0} \).
- Find a partition \(J_0, \ldots, J_k \) of \(W \) such that \(o(J_i) = \omega^{\alpha_i} \) and if \(x \in J_i, y \in J_j \) and \(i \leq j \) then \(y <_{W} x \).
- Then, we note that any such partition is computable.
- Linearize each of the \(J_i \)'s and put one after the other.

Q: Can we uniformly find computable maximal linearizations?
Theorem

Let \(a \) be a Turing degree. TFAE:

1. \(a \) uniformly computes maximal linearizations of comp. wpos.
2. \(a \) can decide whether two computable ordinals are isomorphic.
3. \(a \) uniformly computes \(0(\beta) \) for every \(\beta < \omega_1^{CK} \).

That (2) ⇔ (3) follows from results of Ash and Knight. For (3) ⇒ (1) we note that \(a \) can do our construction of computable maximal linearizations.
Proof of (1) ⇒ (2):

- **a** unif. computes maximal linearizations of comp. wpos.
- Let α and β be computable ordinals.
- Consider $\mathcal{W} = (\omega^\alpha + \{a\} + \omega^\alpha) \oplus (\omega^\beta + \{b\} + \omega^\beta)$.
- Use **a** to get a maximal linearization \preceq of \mathcal{W}.
- If $\alpha < \beta$, we have that $\text{ordTy}(\mathcal{W}, \preceq) = \omega^\beta + \omega^\beta + \omega^\alpha + \omega^\alpha$.
- Let $h(\alpha, \beta) = \begin{cases} 0 & \text{if } a \preceq b \\ 1 & \text{if } b \preceq a. \end{cases}$.
- If $\alpha < \beta$, then $h(\alpha, \beta) = 1$, and if $\alpha > \beta$, then $h(\alpha, \beta) = 0$.
- To tell whether $\alpha = \beta$ check if $2\alpha < 2\beta + 1$ and $2\beta < 2\alpha + 1$.