Theories of Hyperarithmetic Analysis.

Antonio Montalbán.
University of Chicago

Columbus, OH, May 2009
Harvey Friedman.

Some Systems of Second Order Arithmetic and Their Use.

Sections:
I. Axioms for arithmetic sets.
II. Axioms for hyperarithmetic sets.
III. Axioms for arithmetic recursion.
IV. Axioms for transfinite induction.
V. Axioms for the hyperjump.
Setting: Second order arithmetic.

Main Question: What axioms are necessary to prove the theorems of Mathematics?

Big Five Axiom systems:

RCA₀. Recursive Comprehension + Σ^0_1-induction + Semiring ax.

WKL₀.

ACA₀. Arithmetic Comprehension + RCA₀

Hyperarithmetic analysis (mostly here in between)

ATR₀. Arithmetic Transfinite recursion + ACA₀

Π^1_1-CA₀.
A model of (the language of) 2nd order arithmetic is a tuple

\[\langle X, \mathcal{M}, +_X, \times_X, 0_X, 1_X, \leq_X \rangle, \]

where \(\mathcal{M} \) is a set of subsets of \(X \).

Such a model is an \(\omega \)-model if

\[\langle X, +_X, \times_X, 0_X, 1_X, \leq_X \rangle = \langle \omega, +, \times, 0, 1, \leq \rangle. \]

\(\omega \)-models are determined by their 2nd order parts \(\mathcal{M} \subseteq \mathcal{P}(\omega) \).
Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω-models of RCA$_0$ \iff
\mathcal{M} is closed under Turing reduction and \oplus

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω-models of ACA$_0$ \iff
\mathcal{M} is closed under Arithmetic reduction and \oplus

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω-models of ATR$_0$ \Rightarrow
\mathcal{M} is closed under Hyperarithmetic reduction and \oplus

The class of HYP, of hyperarithmetic sets, is not a model of ATR$_0$:
There is a linear ordering \mathcal{L} which isn’t an ordinal but looks like one in HYP (the Harrison l.o.), so,
$HYP \models \mathcal{L}$ is an ordinal but $0(\mathcal{L})$ does not exist.
Notation: Let ω_{1}^{CK} be the least non-computable ordinal.

Proposition [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, T.F.A.E.:

- X is $\Delta^1_1 = \Sigma^1_1 \cap \Pi^1_1$.
- X is computable in $0^{(\alpha)}$ for some $\alpha < \omega_{1}^{CK}$.

$(0^{(\alpha)}$ is the αth Turing jump of 0.)

- $X \in L(\omega_{1}^{CK})$.
- $X = \{x : \varphi(x)\}$, where φ is a computable infinitary formula.

(Computable infinitary formulas are 1st order formulas which may contain infinite computable disjunctions or conjunctions.)

A set satisfying the conditions above is said to be hyperarithmetic.
Definition: X is hyperarithmetic in Y ($X \leq_H Y$) if $X \in \Delta^1_1(Y)$, or equivalently, if $X \leq_T Y^{(\alpha)}$ for some $\alpha < \omega_1^Y$.

Let HYP be the class of hyperarithmetic sets. Let $HYP(Y)$ be the class of set hyperarithmetic in Y.

We say that $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is hyperarithmetically closed if it is closed downwards under \leq_H and is closed under \oplus.
The class of ω-models of a theory

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω-models of RCA$_0$ ⇔
\mathcal{M} is closed under Turing reduction and ⊕

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω-models of ACA$_0$ ⇔
\mathcal{M} is closed under Arithmetic reduction and ⊕

Observation: $\mathcal{M} \subseteq \mathcal{P}(\omega)$ is an ω-models of ATR$_0$ ⇒
\mathcal{M} is hyperarithmetically closed.

Question: Are there theories whose ω-models are the hyperarithmetically closed ones?
Theories of Hyperarithmetic Analysis.

Definition

We say that a theory T is a **theory of hyperarithmetic analysis** if

- every ω-model of T is hyperarithmetically closed, and
- for every Y, $\text{HYP}(Y) \models T$.

Note that T is a theory of hyperarithmetic analysis \iff
for every set Y, $\text{HYP}(Y)$ is the **least ω-model** of T containing Y, and every ω-model of T is closed under \oplus.

Hence, HYP, and the relation \leq_H can be **defined in terms of T**.
The following are theories of hyperarithmetic analysis

[Kreisel 62]
Σ_1^1-AC$_0$ (Σ_1^1-choice):
\[\forall n \exists X (\varphi(n, X)) \Rightarrow \exists X \forall n (\varphi(n, X[n])), \]
where φ is Σ_1^1.

[Kleene 59]
Δ_1^1-CA$_0$ (Δ_1^1-comprehension):
\[\forall n (\varphi(n) \iff \neg \psi(n)) \Rightarrow \exists X = \{ n \in \mathbb{N} : \varphi(n) \}, \]
where φ and ψ are Σ_1^1.

Theorem: [Steel 78]
Δ_1^1-CA$_0$ is strictly weaker than Σ_1^1-AC$_0$.

Pf: Steel’s forcing with Tagged trees.
The following is a theory of hyperarithmetic analysis

\[\Sigma^1_1-\text{DC}_0 \ (\Sigma^1_1\text{-dependent choice}): \]
\[\forall Y \exists Z (\varphi(Y, Z)) \implies \exists X \forall n (\varphi(X[n], X[n+1])), \]
where \(\varphi \) is \(\Sigma^1_1 \).

Theorem: [Friedman Ph.D. thesis 1967]
\(\Sigma^1_1\text{-DC}_0 \), is \(\Sigma^0_2 \)-conservative over \(\Sigma^1_1\text{-AC}_0 \).
\(\Sigma^1_1\text{-DC}_0 \) is strictly stronger than \(\Sigma^1_1\text{-AC}_0 \).

Thm: [Simpson 82]
\(\Sigma^1_1\text{-DC}_0 \) is equivalent to \(\Pi^1_1 \)-Transfinite induction.
The following is a theory of hyperarithmetic analysis

\[\text{weak-}\Sigma^1_1\text{-AC}_0 \quad \text{(weak } \Sigma^1_1\text{-choice):} \]
\[\forall n \exists ! X(\varphi(n, X)) \Rightarrow \exists X \forall n(\varphi(n, X[n])), \quad \text{where } \varphi \text{ is arithmetic.} \]

Theorem: [Van Wesep 77]

weak-\(\Sigma^1_1\text{-AC}_0\) is strictly weaker than \(\Delta^1_1\text{-CA}_0\).

Pf: Steel’s forcing with Tagged trees.
The bad news

There is NO theory T whose ω-models are exactly the hyperarithmetically closed ones.

Theorem: [Van Wesep 77]

For every theory T whose ω-models are all hyp. closed, there is a weaker one T' whose ω-models are all hyp. closed and which has more ω-models than T.
Obs: ACA₀ is implied by all examples of theories of HA.

Thm: [Barwise, Schlipf 75]
Σ₁¹-AC₀ is Π₂¹-conservative over ACA₀.

Corollary: [Friedman, Barwise, Schlipf]
All examples of theories of HA are equi-consistent with PA.

Thm: [Friedman 67] ATR₀ ⊢ Σ₁¹-AC₀

Thm: [Friedman 67] ATR₀ ⊬ Σ₁¹-DC₀
Definition

S is a **sentence of hyperarithmetic analysis** if RCA$_0$ + S is a theory of hyperarithmetic analysis.
Hyperarithmetic analysis in the 70’s
Hyperarithmetic analysis in the 00’s

Background
Known theories

Statements of hyperarithmetic analysis

[Friedman ICM 74] **Arithmetic Bolzano-Weierstrass**

ABW: Every arithmetic bounded infinite class in \mathbb{R} has an accumulation point.

Σ^1_1-$AC_0 \Rightarrow$ ABW

More on ABW later.

[Friedman ICM 74] **Sequential Limit system**

SL: Every accumulation point of an arithmetic class in \mathbb{R} is a limit of some sequence of points in that class.

Σ^1_1-$AC_0 \Leftrightarrow$ SL

[Van Wesep 1977] **Determined-Open-Game Axiom-of-Choice.**

DOG-AC: If we have a sequence of open games such that player II has a winning strategy in each of them, then there exists a sequence of strategies for all of them.

Σ^1_1-$AC_0 \Leftrightarrow$ DOG-AC

\[\Sigma^1_1$-$DC_0 \downarrow \Sigma^1_1$-$AC_0 \]

\[\Sigma^1_1$-$AC_0 \downarrow \Delta^1_1$-$CA_0 \]

\[\Delta^1_1$-$CA_0 \downarrow \text{weak-} \Sigma^1_1$-$AC_0 \]}
Hyperarithmetic analysis in the 70's
Hyperarithmetic analysis in the 00's

A weaker statement of HA

[M 04] The Jump Iteration statement:
\[\forall X \forall \alpha (\alpha \text{ an ordinal } \& \forall \beta < \alpha (X^{(\beta)} \text{ exists}) \Rightarrow X^{(\alpha)} \text{ exists}) \]

JI is a statement of hyperarithmetic analysis.

Theorem ([M 04])

\[\text{JI is strictly weaker than weak-} \Sigma^1_1-\text{AC}_0. \]

\textbf{Pf:} Steel’s forcing w Tagged trees.

\[\Sigma^1_1-\text{DC}_0 \quad \downarrow \quad \Sigma^1_1-\text{AC}_0 \quad \downarrow \quad \Delta^1_1-\text{CA}_0 \quad \downarrow \quad \text{weak-} \Sigma^1_1-\text{AC}_0 \quad \downarrow \quad \text{JI} \]
A natural mathematical statement

A, B denote linear orderings. If A embeds into B, we write $A \preceq B$.

Theorem [Jullien ’69] INDEC: If \mathcal{L} is a l.o. such that $\mathbb{Q} \not\preceq \mathcal{L}$ and whenever $\mathcal{L} = A + B$, either $\mathcal{L} \preceq A$ or $\mathcal{L} \preceq B$, then either whenever $\mathcal{L} = A + B$, $\mathcal{L} \preceq A$, or whenever $\mathcal{L} = A + B$, $\mathcal{L} \preceq B$.

Theorem ([M 04])

On ω-models, Δ^1_1-CA$_0 \Rightarrow$ INDEC \Rightarrow JI.

Pf: Uses results of Ash-Knight which use the Ash’s method of α-systems.

INDEC is, so far, the most natural statement of HA as it doesn’t use notions from logic.
Theorem: [Neeman 08]
$\text{RCA}_0 + \Sigma^1_1$-induction $\vdash \Delta^1_1$-$\text{CA}_0 \Rightarrow \text{INDEC} \Rightarrow \text{weak-} \Sigma^1_1$-$\text{AC}_0$.

Moreover, the implications can't be reversed.

Pf: Steel's forcing with Tagged trees.
$L_{\omega_1,\omega}$-Comprehension

$L_{\omega_1,\omega}$ is the set of infinitary formulas or arithmetic where one is allowed to have infinitary disjunctions or conjunctions.

A formula φ is *determined* if there is a map $\nu : \text{Subformulas}(\varphi) \to \{T, F\}$ such that...(the obvious logic rules hold.)

φ is *true* if it is determined by ν and $\nu(\varphi) = T$.

$L_{\omega_1,\omega}$-CA_0: Let $\{\varphi_i : i \in \mathbb{N}\}$ be determined $L_{\omega_1,\omega}$-sentences. Then, there exists a set $X = \{i \in \mathbb{N} : \varphi_i \text{ is true}\}$.

Thm: [M 04] $\text{RCA}_0 \vdash \text{weak-}\Sigma_1^1$-$\text{AC}_0 \Rightarrow L_{\omega_1,\omega}$-$\text{CA}_0 \Rightarrow \text{JI}$. The second implication cannot be reversed.

[M 04] used games instead of $L_{\omega_1,\omega}$, and considered various versions...
\[\Pi^1_1\text{-sep: } \forall n (\neg \varphi(n) \lor \neg \psi(n)) \Rightarrow \exists X \forall n (\varphi(n) \Rightarrow n \in X \land \psi(n) \Rightarrow n \notin X) \]

where \(\varphi \) and \(\psi \) are \(\Pi^1_1 \).

Observation [Tanaka] \(\Sigma^1_1\text{-AC}_0 \Rightarrow \Pi^1_1\text{-sep} \Rightarrow \Delta^1_1\text{-CA}_0 \)

Theorem ([M07])

\(\Pi^1_1\text{-sep is strictly in between } \Sigma^1_1\text{-AC}_0 \text{ and } \Delta^1_1\text{-CA}_0 \)
Hyperarithmetic analysis in the 70’s
Hyperarithmetic analysis in the 00’s

A curiosity

\[\Sigma^1_1 \text{-collection} \]
\[\Sigma^1_1 \text{-COL}: \forall n \exists X(\varphi(n, X)) \Rightarrow \exists X \forall n \exists m(\varphi(n, X[m])) \]

where \(\varphi \) is \(\Sigma^1_1 \).

Obs [Tanaka]: ACA\(_0^+\Sigma^1_1\text{-COL} \iff \Sigma^1_1\text{-AC}_0.\)

Thm [M, Tanaka, Yamazaki]:
\(\Sigma^1_1\text{-COL} \) is \(\Pi^1_1 \)-conservative over RCA\(_0^+\).

\[\Sigma^1_1\text{-DC}_0 \]
\[\Sigma^1_1\text{-AC}_0 \]
\[\Pi^1_1\text{-sep} \]
\[\Delta^1_1\text{-CA}_0 \]
\[\text{INDEC} \]
\[\text{weak-}\Sigma^1_1\text{-AC}_0 \]
\[L_{\omega_1, \omega^-}\text{-CA}_0 \]
\[\text{JI} \]
[Friedman ICM 74] *Arithmetic Bolzano-Weierstrass*

ABW: Every arithmetic bounded infinite class in \(\mathbb{R} \) has an accumulation point.

Obs[Conidis 09]: \(G_\delta \)-BW \(\Rightarrow \) weak-\(\Sigma^1_1 \)-AC\(_0\).

Work in progress [Conidis 09]: ABW \(\not\Rightarrow \) INDEC.

Obs[Friedman ICM 74]: \(\Sigma^1_1 \)-AC\(_0\) \(\Rightarrow \) ABW.

Work in progress[Conidis 09]: \(\Delta^1_1 \)-CA\(_0\) \(\not\Rightarrow \) ABW.

Pf: Steel’s forcing w Tagged trees
Necessity of Σ^1_1-induction

Work in progress [Neeman]:
Without Σ^1_1-induction, $\text{RCA}_0 + \text{INDEC}$ $\not\vdash$ weak-Σ^1_1-AC_0.

Pf: Build a non-standard model, using elementary extensions of Steel’s forcing with Tagged trees.

\[
\begin{align*}
\Sigma^1_1\text{-DC}_0 & \downarrow \downarrow \\
\Sigma^1_1\text{-AC}_0 & \downarrow \\
\Pi^1_1 \text{-sep} & \downarrow \\
\Delta^1_1\text{-CA}_0 \times \text{ABW} & \downarrow \\
\text{INDEC} & \downarrow \\
\text{weak-}\Sigma^1_1\text{-AC}_0 & \downarrow \\
L_{\omega_1, \omega}\text{-CA}_0 & \downarrow \\
\text{JI} &
\end{align*}
\]
Questions

Q1: What are other natural statements of HA?

Q2: Does $L_{\omega_1,\omega}$-$CA_0 \Rightarrow$ weak-Σ^1_1-AC_0?