Theories of Classes of Structures

Antonio Montalbán

University of Chicago (Joint Work with Asher M. Kach)

March 2012

Ketonen's question

Let BA be the class of countable Boolean algebras, and \oplus the product operation

Question ([Ketonen 78])

Is the theory of $(BA; \oplus)$ decidable?

Tarski's Cube Problem (1950's):

Is there $A \in BA$ with $A \cong A \oplus A \oplus A \not\cong A \oplus A$

Thm: [Ketonen 78] Any commutative semigroup embeds into (BA; \oplus).

Corollary: The \exists -theory of (BA; \oplus) is decidable.

Th(BA; ⊕) is undecidable

Theorem ([Kach, M])

The theory of $(BA; \oplus)$ is 1-equivalent to true 2nd-order arithmetic.

Proof:

- We encode $(\mathbb{N}, \mathcal{P}(\mathbb{N}^3); \leqslant)$ instead of $(\mathbb{N}, \mathcal{P}(\mathbb{N}); \leqslant, +, \times)$.
- Encode an integer $n \in \mathbb{N}$ by the interval algebra of $\omega^n \cdot (1 + \eta)$.
- Given $\mathcal{B} \in \mathsf{BA}$, we define $S_3(\mathcal{B}) \subseteq \mathbb{N}^3$ as follows:

$$S_3(\mathcal{B}) = \{(n_1, n_2, n_3) \in \mathbb{N}^3 : \\ \operatorname{IntAlg}\left(\sum_{i \in 1+\eta} \left(\omega^{n_1} \cdot (1+\eta) + \omega^{n_2} \cdot (1+\eta) + \omega^{n_3} \cdot (1+\eta)\right)\right).$$

is a direct summand of \mathcal{B} .

More Questions About $\mathbb{B}\mathbb{A}_{\aleph_0}^{\oplus}$...

Conjecture

The theory of $(BA_{\kappa}; \oplus)$, for $\kappa > \aleph_0$, computes true 2nd-order arithmetic.

Remark The theories of (BA; \oplus) and (BA $_{\kappa}$; \oplus) differ for $\kappa > \aleph_0$: The former has exactly two [nontrivial] minimal elements, namely the atom and the atomless algebra; the latter has more.

Our proof is not known to work for $\kappa > \aleph_0$.

Question

Is the structure $(BA; \oplus)$ bi-interpretable with 2nd-order arithmetic?

(LO; +) is undecidable.

Let LO be the class of countable linear orderings, and + the concatenation operation

Theorem ([Kach, M])

The theory of (LO; +) is 1-equivalent to true 2nd-order arithmetic.

Proof:

- We encode $(\mathbb{N}, \mathcal{P}(\mathbb{N}^3); \leqslant)$.
- Encode $n \in \mathcal{N}$ by the linear ordering **n** with *n* elements.
- Every lin. ord. \mathcal{A} encodes a set $S_3(\mathcal{A}) = \{(n_1, n_2, n_3) \in \mathbb{N}^3 : \zeta^2 + \mathbf{n_1} + \zeta + \mathbf{n_2} + \zeta + \mathbf{n_3} + \zeta^2 \text{ is a segment of } \mathcal{A}\}$

Bi-interpretability

Theorem

The structure (LO; +) is bi-interpretable with 2nd-order arithmetic.

That is, the set

$$\{(\mathcal{A},\mathcal{L}): \textit{S}_{2}(\mathcal{A}) \subseteq \mathbb{N}^{2} \text{ codes a lin.ord. isomorphic to } \mathcal{L}\} \subseteq LO^{2} \\ \text{is definable in (LO; +)}.$$

Corollary: The structure (LO; +) is rigid.

Corollary: Every $K \subseteq LO^n$ definable in 2nd-order arithmetic is definable in (LO; +).

Examples The following are definable in 2nd-order arithmetic:

- The set of scattered LO.
- The set of triples (x, y, z) of order types such that $x \cdot y = z$.
- The set pairs (x, y) such that x has Hausdorff rank y.

Answers for \mathbb{LO}_c^+ ...

Let LO_c be the set of all computable order types.

Theorem ([Kach, M])

The theory of $(LO_c; +)$ is 1-equivalent to the ω th jump of Kleene's \mathcal{O} .

Proof:

- For \leq_1 , note that \mathcal{O} suffices to determine if two computable order types are isomorphic. So, \mathcal{O} computes a presentation of $(LO_c; +)$.
- For \geqslant_1 , we code (\mathbb{N} ; \leqslant , +, \times , \mathcal{O}) in (LO_c; +).

Answers for $\mathbb{GR}_{\kappa}^{\times,\leqslant}$...

Let GR be the class of countable groups,

 \times the product operation, and \leq the sub-group relation.

Theorem ([Kach, M])

The theory of (GR; \times , \leq) is 1-equivalent to true 2nd-order arithmetic.

Proof

- Let z be a minimal group. I.e. $z \cong \mathbb{Z}$ or $z \cong \mathbb{Z}_p$.
- Encode the integer $n \in \mathbb{N}$ by the group z^n .
- Coding sets of triples becomes tricky.
- Decoding using Kurosch's Theorem about the sub-groups of a free produce.

Further results

Theorem ([Tamvana Makuluni])

The theory of $(GR; \leq)$ is 1-equivalent to true 2nd-order arithmetic.

Theorem ([Tamvana Makuluni])

The first-order theory of countable fields with the subfield relation is 1-equivalent to true 2nd-order arithmetic.