Aspects of Computability Theory

Antonio Montalbán. University of Chicago

Kyoto, August 2006

1 Pure Computability Theory

- Background
- JUSL Embeddings
- 2 Computable Mathematics

3 Reverse Mathematics

- Main question
- The System \mathcal{Z}_2
- The Main Five systems

4 Effective Randomness

Computable Sets

Definition: A set $A \subseteq \mathbb{N}$ is *computable* if there is a computer program that, on input *n*, decides whether $n \in A$.

Church-Turing thesis: This definition is independent of the programing language chosen.

Examples: The following sets are computable:

- The set of even numbers.
- The set of prime numbers.
- The set of stings that correspond to well-formed programs.

Recall that any finite object can be encoded by a natural number.

Examples of non-computable sets

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations), of **non-trivial** groups is **not** computable.

Simply connected manifolds: The set of finite triangulations of **simply connected** manifolds is **not** computable.

The Halting problem: The set of programs that **halt**, and don't run for ever, is **not** computable.

Basic definitions

Given sets $A, B \subseteq \mathbb{N}$ we say that A is computable in B, and we write $A \leq_T B$, if there is a computable procedure that can tell whether an element is in A or not using B as an oracle.

We say that A is Turing equivalent to B, and we write $A \equiv_T B$ if $A \leq_T B$ and $B \leq_T A$.

Example: The following sets are Turing equivalent.

- The set of pairs (set-of-generators, relations), of non-trivial groups;
- The set of finite triangulations of simply connected manifolds;
- The set of programs that halt.

The set of true arithmetic formulas is $>_T$ than the previous sets.

Background JUSL Embeddings

1 Pure Computability Theory

- Background
- JUSL Embeddings

2 Computable Mathematics

3 Reverse Mathematics

- Main question
- The System \mathcal{Z}_2
- The Main Five systems

Effective Randomness

Background JUSL Embeddings

Basic definitions

Given sets $A, B \subseteq \mathbb{N}$ we say that A is computable in B, and we write $A \leq_T B$, if there is a computable procedure that can tell whether an element is in A or not using B as an *oracle*.

This defines a quasi-ordering on $\mathcal{P}(\mathbb{N})$.

We let $\mathbf{D} = (\mathcal{P}(\mathcal{D}) / \equiv_{\mathcal{T}})$, and $\mathcal{D} = (\mathbf{D}, \leqslant_{\mathcal{T}})$.

Question: How does \mathcal{D} look like?

Background JUSL Embeddings

Some simple observations about ${\mathcal D}$

- There is a least degree **0**. The degree of the computable sets.
- \mathcal{D} has the *countable predecessor property*, i.e., every element has at countably many elements below it. Because there are countably many programs one can write.
- Each Turing degree contains countably many sets.
- So, D has size 2^{ℵ0}.
 Because P(N) has size 2^{ℵ0}, and each equivalence class is countable.

Background JUSL Embeddings

Operations on \mathcal{D}

Turing Join

Every pair of elements \mathbf{a}, \mathbf{b} of \mathcal{D} has a least upper bound (or *join*), that we denote by $\mathbf{a} \cup \mathbf{b}$. So, \mathcal{D} is an upper semilattice.

Given $A, B \subseteq \mathbb{N}$, we let $A \oplus B = \{2n : n \in A\} \cup \{2n + 1 : n \in B\}$. Clearly $A \leq_T A \oplus B$ and $B \leq_T A \oplus B$, and if both $A \leq_T C$ and $B \leq_T C$ then $A \oplus B \leq_T C$.

Turing Jump

Given $A \subseteq \mathbb{N}$, we let A' be the *Turing jump of A*, that is, $A' = \{ \text{programs, with oracle } A, \text{ thatHALT} \}.$ For $\mathbf{a} \in \mathbf{D}$, let \mathbf{a}' be the degree of the Turing jump of any set in \mathbf{a}

- a <_T a'
- If $\mathbf{a} \leqslant_{\mathcal{T}} \mathbf{b}$ then $\mathbf{a}' \leqslant_{\mathcal{T}} \mathbf{b}'$.

Background JUSL Embeddings

Operations on \mathcal{D} .

Definition

A jump upper semilattice (JUSL) is structure $(A, \leq, \lor, \mathfrak{j})$ such that

- (A, \leqslant) is a partial ordering.
- For every $x, y \in A$, $x \lor y$ is the l.u.b. of x and y,
- $x < \mathfrak{j}(x)$, and
- if $x \leq y$, then $\mathfrak{j}(x) \leq \mathfrak{j}(y)$.

$$\mathcal{D} = (\mathbf{D}, \leq_{\mathcal{T}}, \lor, ')$$
 is a JUSL.

The Picture

Background JUSL Embeddings

• Sets below **0**' are classified from *Low* to *High*.

- Even thought there are no computable completions C of PA there are Low ones, that is $C' \equiv_T 0'$.
- We have $\mathbf{0} <_{\mathcal{T}} \mathbf{0}' <_{\mathcal{T}} \mathbf{0}'' <_{\mathcal{T}} \dots <_{\mathcal{T}} \mathbf{0}^{(\omega)}$.
- A set is *arithmetic* if it is $\leq_T \mathbf{0}^{(n)}$ for some $n \in \omega$.
- $0^{(\omega)}$ is the set of true arithmetic formulas.
- We can continue along computable ordinals α $\mathbf{0}^{(\omega+1)} <_{\tau} \ldots <_{\tau} \mathbf{0}^{(\omega+\omega)} <_{\tau} \ldots <_{\tau} \mathbf{0}^{(\alpha)} <_{\tau} \ldots$
- A set is *hyperarithmetic* if it is ≤_T **0**^(α) for some computable ordinal α.
- *Kleene's O*, the set of Halting Non-deterministic programs (where one is allows to choose natural numbers non-deterministically) computes all the hyperarithmetic sets.

Background JUSL Embeddings

Questions one may ask

- Are there incomparable degrees? YES
- Are there infinitely many degrees such that non of them can be computed from all the other ones toghether? YES
- What about \aleph_1 many? YES
- Is there a descending sequence of degrees $a_0, \geqslant_{\mathcal{T}} a_1 \geqslant_{\mathcal{T}}?$ YES
- A more general question:

Which structures can be embedded into \mathcal{D} ?

Background JUSL Embeddings

Embedding structures into ${\cal D}$

Theorem: The following structures can be embedded into the Turing degrees.

- Every countable upper semilattice. [Kleene, Post '54]
- Every partial ordering of size ℵ₁ with the countable predecessor property (c.p.p.). [Sacks '61] (It's open whether this is true for size 2^{ℵ0}.)
- Every upper semilattice of size ℵ₁ with the c.p.p. Moreover, the embedding can be onto an initial segment. [Abraham, Shore '86] (For size ℵ₂ it's independent of ZFC) [Groszek, Slaman 83]
- Every ctble. jump partial ordering (A, ≤, ').[Hinman, Slaman '91] (For size ℵ₁ it's independent of ZFC) [M. 03]
- Every ctble. jump upper semilattice $(A, \leq, \lor, ')$ [M. '03]

Background JUSL Embeddings

History of Decidability Results.

- $\operatorname{Th}(\mathbf{D}, \leq_{\mathcal{T}})$ is undecidable. [Lachlan '68] • $\exists - \operatorname{Th}(\mathbf{D}, \leq_{\mathcal{T}})$ is decidable. [Kleene, Post '54] Question: Which fragments of $\operatorname{Th}(\mathbf{D}, \leq_{\mathcal{T}}, \lor, ')$ are decidable? • $\exists \forall \exists - \operatorname{Th}(\mathbf{D}, \leq_{\mathcal{T}})$ is undecidable. [Shmerl] • $\forall \exists - \operatorname{Th}(\mathbf{D}, \leq_{\mathcal{T}}, \lor)$ is decidable. [Jockusch, Slaman '93] • $\exists - \operatorname{Th}(\mathbf{D}, \leq_{\mathcal{T}}, \lor)$ is decidable. [Hinman, Slaman '91] • $\exists - \operatorname{Th}(\mathbf{D}, \leq_{\mathcal{T}}, \lor, ')$ is decidable. [M. 03]
 - $\forall \exists \text{Th}(\mathbf{D}, \leq_{\mathcal{T}}, \lor, ')$ is undecidable. [Slaman, Shore '05].

Question: Is $\exists - \text{Th}(\mathbf{D}, \leq_{\mathcal{T}}, \lor, ', 0)$ decidable? Question: Is $\forall \exists - \text{Th}(\mathbf{D}, \leq_{\mathcal{T}}, ')$ decidable?

Background JUSL Embeddings

Two famous open question

Conjecture: [Sacks] There is no computable enumerable operator Φ such that for every $A, B \subseteq \omega$

•
$$A \equiv_T B \Rightarrow \Phi^A \equiv_T \Phi^B$$
,

•
$$A <_T \Phi^A <_T A'$$
.

Conjecture: [Slaman, Woodin] The structure of the Turing Degrees is *rigid*. That is, there are no automorphisms of \mathcal{D} other than id.

Pure Computability Theory

- Background
- JUSL Embeddings

2 Computable Mathematics

- 3 Reverse Mathematics
 - Main question
 - The System \mathcal{Z}_2
 - The Main Five systems

Effective Randomness

Computable Mathematics

Study

- how effective are constructions in mathematics;
- I how complex is to represent certain structures;

Various areas have been studied,

- Combinatorics,
- Algebra,
- Analysis,
- Model Theory

In many cases one needs to develop a better understanding of the mathematical structures to be able to get the computable analysis.

Example: effectiveness of constructions.

Theorem: Every Abelian ring has a maximal ideal.

Note: A countable ring $\mathcal{A} = (A, 0, 1, +_A, \times_A)$ can be encoded by three sets $A \subseteq \mathbb{N}$, $+_A \subseteq \mathbb{N}^3$ and $\times_A \subseteq \mathbb{N}^3$. We say that \mathcal{A} is *computable* if A, $+_A$ and \times_A are.

Theorem: Not every computable Abelian ring has a computable maximal ideal. However, maximal ideals can be found computable in $\mathbf{0}'$. Moreover, there are computable rings, all whose maximal ideals compute $\mathbf{0}'$.

Example: Represent Strucutres

Def: A linear ordering $\mathcal{L} = \langle L, \leq_L \rangle$ is *computable* if both $L \subseteq \mathbb{N}$ and $\leq_{\mathcal{L}} \subseteq \mathbb{N} \times \mathbb{N}$ are computable.

Def: The *degree* of the presentation $\langle L, \leq_L \rangle$ is $deg(L) \lor deg(\leq_L)$.

Does every linear ordering have a computable presentation? No. There are 2^{\aleph_0} isomorphism types of countable l.o.s.

Def: An isomorphism type of a structure \mathcal{L} has *Turing Degree* X if X is the least degree of a presentation of \mathcal{L}

This doesn't work for any type of sructure. **Theorem:** Every linear ordering has two isomorphic presentations \mathcal{L}_1 and \mathcal{L}_2 such that if $X \leq_T \mathcal{L}_1$ and $X \leq_T \mathcal{L}_2$ then $X \equiv_T 0$.

Degree Spectrum

Def: The *degree spectrum* of a structure \mathcal{L} is $DegSp(\mathcal{L}) = \{deg(\mathcal{A}) : \mathcal{A} \cong \mathcal{L}\}.$

Q: What are the possible spectrums of different structures.

Thm: For every Turing degree **x** there is a graph \mathcal{G} such that $DegSp(\mathcal{G}) = \{\mathbf{a} : \mathbf{x} \leq_T \mathbf{a}\}.$

Thm:[R. Miller] There is a linear ordering \mathcal{L} such that every $\mathbf{a} <_{\mathcal{T}} \mathbf{0}'$ is in $DegSp(\mathcal{L})$ exept for $\mathbf{0}$.

Thm: [Knight] If \mathcal{L} is a non-trivial structure, then $DegSp(\mathcal{L})$ is closed uppwards.

Example: Represent Strucutres

Theorem: [Spector 55] Every hyperarithmetic well-ordering was a computable copy.

After a sequence of results of Feiner, Lerman, Jockusch, Soare, Downey, Seetapun:

Theorem: [Knight '00] For every non-computable set *A*, there is a linear ordering, Turing equivalent to *A*, without computable copies.

Theorem: [M.] For every hyperarithmetic linear ordering \mathcal{L} , there is a computable linear ordering \mathcal{A} that is equimorphic to \mathcal{L} that is, $\mathcal{A} \preccurlyeq \mathcal{L}$ and $\mathcal{L} \preccurlyeq \mathcal{A}$.

 $\begin{array}{l} \mbox{Main question} \\ \mbox{The System} \ \mathcal{Z}_2 \\ \mbox{The Main Five systems} \end{array}$

Pure Computability Theory

- Background
- JUSL Embeddings

2 Computable Mathematics

3 Reverse Mathematics

- Main question
- The System \mathcal{Z}_2
- The Main Five systems

Effective Randomness

 $\begin{array}{l} \mbox{Main question} \\ \mbox{The System} \ \mathcal{Z}_2 \\ \mbox{The Main Five systems} \end{array}$

Reverse Mathematics

What axioms are necessary to do mathematics?

- Is the fifth postulate necessary for Euclidean geometry?
- Is Peano Arithmetic enough to prove all the true statements about the natural numbers?
- Which large cardinals can be proved to exists in ZFC?

 $\begin{array}{l} \mbox{Main question} \\ \mbox{The System} \ \mathcal{Z}_2 \\ \mbox{The Main Five systems} \end{array}$

Second Order Arithmetic

Simpson and Friedman's program of Reverse Mathematic deals with Second Order Arithmetic (\mathbb{Z}_2).

- In \mathcal{Z}_2 we can talk about finite and countable objects.
- \mathcal{Z}_2 is much weaker than ZFC,
- and its much stronger than PA.
- In \mathcal{Z}_2 one can talk about
 - Countable algebra,
 - (non-set theoretic) combinatorics,
 - Real numbers,
 - Manifolds, continuous functions, differential equations...
 - Complete separable metric spaces.
 - Logic, computability theory,...
 -

 $\begin{array}{l} \mbox{Main question} \\ \mbox{The System } \mathcal{Z}_2 \\ \mbox{The Main Five systems} \end{array}$

Main question revisted

• Fix a base theory.

(We use RCA_0 that essentially says that the computable sets exists)

- **2** Pick a theorem T.
- **③** What axioms do we need to add to RCA_0 to prove T.
- **③** Suppose we found axioms $A_0, ..., A_k$ of \mathcal{Z}_2 such that

 RCA_0 proves $A_0 \& \dots \& A_k \Rightarrow T$.

How do we know these are necessary?

- **(3)** It's often the case that RCA_0 also proves $T \Rightarrow A_0 \& \dots \& A_k$
- Then, we know that RCA₀+A₀,..., A_k is the least system (extending RCA₀) where T can be proved.

 $\begin{array}{l} \mbox{Main question} \\ \mbox{The System } \mathcal{Z}_2 \\ \mbox{The Main Five systems} \end{array}$

Axioms of \mathcal{Z}_2

Semi-ring Axioms: \mathbb{N} is a ordered semi-ring.

Induction Axioms: For every formula $\varphi(n)$, $IND(\varphi)$ $(\varphi(0) \& \forall n(\varphi(n) \Rightarrow \varphi(n+1))) \Rightarrow \forall n\varphi(n)$

Comprehension Axioms: For every formula $\varphi(n)$ $CA(\varphi)$ $\exists X \forall n \ (n \in X \Leftrightarrow \varphi(n))$

 RCA_0 consists of: Semi-ring Axioms + Σ_1^0 -IND+ Δ_1^0 -CA.

 Δ_1^0 -CA is equivalent to: for every comp. program p any oracle Y, there is a set X such that

$$n \in X \Leftrightarrow p^{Y}(n) = yes$$

(where p can use information from sets that we know exist)

 $\begin{array}{l} \mbox{Main question} \\ \mbox{The System} \ \mathcal{Z}_2 \\ \mbox{The Main Five systems} \end{array}$

The big five

 $\begin{array}{l} \text{Main question} \\ \text{The System } \mathcal{Z}_2 \\ \text{The Main Five systems} \end{array}$

ACA₀

Def:
A formula is arithmetic if it has no quantifiers over sets. $\Pi_1^1 - CA_0$
 $A CA_0$ is RCA₀+ Arithmetic comprehension. ACA_0 is RCA₀+ Arithmetic comprehension. ACA_0
 ACA_0
 ACA_0 where Arithmetic comprehension is the scheme of axioms
 $CA(\varphi)$ $\exists X \forall n \ (n \in X \Leftrightarrow \varphi(n))$
 $\forall where <math>\varphi$ is any arithmetic formula.

Theorem

The following are equivalent over RCA₀:

- ACA₀
- For every set X, its jump X' exists.
- Every ab. ring has a maximal ideal.

 $\begin{array}{l} \text{Main question} \\ \text{The System } \mathcal{Z}_2 \\ \text{The Main Five systems} \end{array}$

WKL₀

Theorem

The following are equivalent over RCA₀:

- WKL₀
- Every continuous function on [0,1] is uniformly continuous.

 $\begin{array}{l} \text{Main question} \\ \text{The System } \mathcal{Z}_2 \\ \text{The Main Five systems} \end{array}$

Π_1^1 -separation

Def: A formula is Π_1^1 if it has the form $\forall X\psi$, where ψ is an arithmetic formula. $\Pi_1^1 - CA_0 \text{ is } \mathsf{RCA} + \Pi_1^1 \text{ comprehension.}$ $\Pi_1^1 - CA_0 \text{ is } \mathsf{RCA} + \Pi_1^1 \text{ comprehension} \text{ is the scheme of axioms}$ $\mathsf{CA}(\varphi) \exists X \forall n \ (n \in X \Leftrightarrow \varphi(n)) \text{ where } \varphi \text{ is any } \Pi_1^1 \text{ formula.}$ $\Pi_1^1 - CA_0 \text{ is } \mathsf{RCA}_0$

Theorem (The following are equivalent over RCA₀:)

• $\Pi_1^1 - CA_0$

- For every set X, Kleene's O relative to X, O^X , exists.
- Every com. group is a sum of a divisible and a reduced group.

Def: A group *G* is *divisible* $\forall a \in G \forall n \in \mathbb{N} \exists b(nb = a)$. **Def:** A group *G* is *reduced* if it has no divisible subgroup. Antonio Montalbán. University of Chicago Aspects of Computability Theory

 $\begin{array}{l} \text{Main question} \\ \text{The System } \mathcal{Z}_2 \\ \text{The Main Five systems} \end{array}$

ATR_0

 ATR_0 is RCA₀+ Arithmetic Transfinite Recursion.

[Simposon] ATR_0 is the least system where one can develop a reasonable theory of ordinals.

WKL₀ RCA₀

 Π_1^1 -CA₀

ATR₀

ACA₀

Theorem

The following are equivalent over RCA₀:

- ATR₀
- For every set X and every X-computable ordinal α, the αth jump of X, X^(α), exists.
- Given two ordinals, one is an initial segment of the other one.

Pure Computability Theory

- Background
- JUSL Embeddings

2 Computable Mathematics

3 Reverse Mathematics

- Main question
- The System \mathcal{Z}_2
- The Main Five systems

Effective Randomness

Motivating question

Consider an infinite sequence X of 0s and 1s. We call such sequences *reals*.

What does it mean to say that X is *random*?

Given two reals, which one is more random?

How does the level of randomness relate to the usual measures of computational complexity?

The measure-theoretic paradigm

Let μ be the usual coin-toasing measure on 2^{ω} . So, if $\sigma \in 2^{<\omega}$, and $[\sigma] = \{X \in 2^{\omega} : \sigma \subseteq X\}$, then, $\mu([\sigma]) = 2^{-|\sigma|}$.

Note: If $\mathcal{U} \subseteq 2^{\omega}$ is open, there is a sequence $\{\sigma_j\}_{j \in \omega}$ s.t. $\mathcal{U} = \bigcup_{j \in \omega} [\sigma_j]$, and if the σ_j are incomparable, then $\mu(\mathcal{U}) = \sum_{j \in \omega} 2^{-|\sigma_j|}$.

Def: When $\{\sigma_j\}_{j \in \omega}$ is computable, U is a *computable open set*.

Def: A set of reals $\mathcal{A} \subseteq 2^{\omega}$ has *effective measure 0* if there is a uniformly computable sequence $\{U_i\}_{i \in \omega}$ of computable open sets such that $\mu(U_i) \leq 2^{-n}$ and $\mathcal{A} \subseteq \bigcup_{i \in \omega} U_i$.

A real $X \in 2^{\omega}$ is *Martin-Löf random*, if it does not belong to any effective measure 0 set.

The unpredictability paradigm

Def: A Martin Gale is a function $d: 2^{<\omega} \to \mathbb{R}^+$ such that $\forall \sigma \in 2^{<\omega} \quad d(\sigma) = d(\sigma^{\frown}0) + d(\sigma^{\frown}1)$. A Martin Gale d succeeds on $X \in 2^{\omega}$ if $\limsup_{n \to \infty} d(X \upharpoonright n) = \infty$.

Def: A *c.e.* Martin Gale is a function $d: 2^{<\omega} \to \mathbb{R}^+$ such that the reals $d(\sigma)$ are uniformly computable enumerable, and $\forall \sigma \in 2^{<\omega} \quad d(\sigma) \ge d(\sigma^{\frown}0) + d(\sigma^{\frown}1).$

Thm[Schnorr 71] $X \in 2^{\omega}$ is Martin Löf random \Leftrightarrow it doesn't succeed on any c.e. Martin Gale.

The incompressibility paradigm

Roughly, given $\tau \in 2^{<\omega}$ let the *Kolmogorov complexity of* τ , $K(\tau)$, be the length of the shortest program that outputs τ (on a universal prefix-free Turing Machine).

Def: $X \in 2^{\omega}$ is *Kolmogorov-Levin-Chatin random* if there is a constant *c* such that

 $\forall n \quad K(X \upharpoonright n) \geqslant n-c.$

Thm:[Shnorr] $X \in 2^{\omega}$ is Kolmogorov-Levin-Chatin random \Leftrightarrow it is Martin Löf random