On the jump of a structure.

Antonio Montalbán. U. of Chicago

CiE - Heidelberg, July 2009

Antonio Montalbán. U. of Chicago On the jump of a structure.

In computable mathematics we want to understand the interaction between computational notions and structural notions.

We want to consider the Turing jump.

Def: The *degree spectrum* of a structure \mathcal{L} is

 $DegSp(\mathcal{L}) = \{ deg(\mathcal{A}) : \mathcal{A} \cong \mathcal{L} \} = \{ \mathbf{x} : \mathbf{x} \text{ computes copy of } \mathcal{L} \}.$

We want the *jump of* \mathcal{L} to be a structure \mathcal{L}' such that

$$DegSp(\mathcal{L}') \cap \mathcal{D}_{(\geq 0')} = \{ \mathbf{x}' : \mathbf{x} \in DegSp(\mathcal{L}) \}.$$

Let \mathcal{A} be a linear ordering. Let $Succ = \{(a, b) \in \mathcal{A}^2 : a < b \& \exists c \ (a < c < b)\}.$

Obs: If $\mathcal{A} \leq_T \mathbf{x}$, then $(\mathcal{A}, Succ) \leq_T \mathbf{x}'$.

Thm: If $0' \ge_T \mathbf{y}'$ and $\mathbf{y} \ge_T (\mathcal{A}, Succ)$, then $\exists \mathbf{x} \text{ s.t. } \mathbf{x}' \equiv_T \mathbf{y}$ and \mathbf{x} computes copy of \mathcal{A} .

So, $DegSp(\mathcal{A}, Succ) \cap \mathcal{D}_{(\geq 0')} = \{\mathbf{x}' : \mathbf{x} \in DegSp(\mathcal{A})\}$

We would like to set $\mathcal{A}' = (\mathcal{A}, Succ)$.

Let \mathcal{B} be a Boolean algebra. Let $At = \{a \in \mathcal{B} : 0 < a \& \not\exists c \ (0 < c < a)\}.$

Obs: If $\mathcal{B} \leq_T \mathbf{x}$, then $(\mathcal{B}, At) \leq_T \mathbf{x}'$.

Thm[Downey, Jockusch 94]: If $(\mathcal{B}, At) \leq_T \mathbf{x}'$ then \mathbf{x} computes copy of \mathcal{B} .

So, $DegSp(\mathcal{B}, At) \cap \mathcal{D}_{(\geq 0')} = \{\mathbf{x}' : \mathbf{x} \in DegSp(\mathcal{B})\}$

We would like to set $\mathcal{B}' = (\mathcal{B}, At)$.

Atomless and inftinite on Boolean algebras

Let \mathcal{B} be a Boolean algebra. Let $Atless = \{a \in \mathcal{B} : 0 < a \& \not\exists c \ (c < a \& c \in At)\}.$ Let $Inf = \{a \in \mathcal{B} : \exists^{\infty}c \ (c < a)\} = \{a : a \text{ is not a finite sum of atoms}\}.$

Obs: If $(\mathcal{B}, At) \leq_T \mathbf{x}$, then $(\mathcal{B}, At, Atless, Inf) \leq_T \mathbf{x}'$.

Thm[Thurber 95]: If $(\mathcal{B}, At, Atless, Inf) \leq_T \mathbf{x}'$ then **x** computes a copy of (\mathcal{B}, At) .

So,

 $\textit{DegSp}(\mathcal{B},\textit{At},\textit{Atless},\textit{Inf}) \cap \mathcal{D}_{(\geq 0')} = \{ \textbf{x}': \ \textbf{x} \in \textit{DegSp}(\mathcal{B},\textit{At}) \}$

We would like to set $(\mathcal{B}, At, Atless, Inf) = (\mathcal{B}, At)' = \mathcal{B}''$.

Complete set of Π_1^c relations

A $\Pi_1^c \mathcal{L}$ -formula is of the form $\bigwedge_{j \in \omega} \forall \bar{y} \ \psi_j(\bar{z}, \bar{y})$ where $\{\psi_j : j \in \omega\}$ is a comp. list of finitary quantifier-free \mathcal{L} -formulas.

Let P_0 , P_1 ,... be relations Π_1^c on \mathcal{A} .

Definition ([M])

 $\{P_0, P_1, ...\} \text{ is a complete set of } \Pi_1^c \text{ relations on } \mathcal{A} \text{ if} \\ \text{every } \Pi_1^c \mathcal{L}\text{-formula is equivalent to a } \Sigma_1^{c,0'} (\mathcal{L} \cup \{P_0, ...\})\text{-formula.}$

A $\Sigma_1^{c,0'}$ ($\mathcal{L} \cup \{P_0,...\}$)-formula is of the form $\bigvee_{j \in \omega} \exists \bar{y}_j \ \psi_j(\bar{z},\bar{y})$ where $\{\psi_j : j \in \omega\}$ is a 0'-comp. list of finitary quantifier-free $(\mathcal{L} \cup \{P_0,...\})$ -formulas.

Examples:

On a Boolean algebra, the atom relation is a complete Π_1^c relation. On a linear order, the successor relation is a complete Π_1^c relation.

Complete set of Π_1^c relations

Let P_0 , P_n ,... be relations uniformly \prod_n^c on \mathcal{A} .

Definition ([M])

 $\{P_0, P_1, ...\}$ is a *complete set of* \prod_n^c *relations on* \mathcal{A} if every $\prod_n^{c,Z} \mathcal{L}$ -form. is unif- equivalent to a $\Sigma_1^{c,Z'}$ $(\mathcal{L} \cup \{P_0, ...\})$ form.

Theorem (Harris, M.)

On Boolean algebras,

 $\forall n$, there is a finite complete set of Π_n^c relations.

More examples haven been cooked up for applications. **Q:** What are other natural examples?

Lemma ([M])

Let P_0 , P_1 ,... be a complete set of Π_1^c relations on \mathcal{A} . If $Y \ge_{\mathcal{T}} 0'$ computes a copy of $(\mathcal{A}, P_0, P_1, ...)$, then $\exists X$ that computes a copy of \mathcal{A} and $X' \equiv_{\mathcal{T}} Y$.

So,
$$DegSp(\mathcal{A}, P_0, P_1, ...) \cap \mathcal{D}_{(\geq 0')} = \{\mathbf{x}' : \mathbf{x} \in DegSp(\mathcal{A})\}$$

Definition ([M])

Let \mathcal{A} be an \mathcal{L} -structure. The *jump of* \mathcal{A} is an \mathcal{L}_1 -structure \mathcal{A}' where: \mathcal{L}_1 is $\mathcal{L} \cup \{P_0, P_1, ...\},$ and $\mathcal{A}' = (\mathcal{A}, P_0, P_1, ...).$

Obs: The jump of a structure is not unique, but it is essentially unique in a sense.

restating previous lemma:

Lemma ([M])

 \mathcal{A}' has a Y-comp. copy \Longrightarrow

$$\exists X \ (X' \equiv_T Y) \text{ and } \mathcal{A} \text{ has } X\text{-comp copy.}$$

Proof.

Use Ash,Knight, Mennasse,Slaman; Chisholm ideas to build a 1-generic copy of \mathcal{A} computable in \mathcal{A}' . The point is that \mathcal{A}' has enough information to find conditions deciding Σ_1 -facts of the generic.

Definition ([M])

A structure \mathcal{A} admits Jump Inversion if for every X, \mathcal{A}' has copy $\leq_{\mathcal{T}} X' \iff \mathcal{A}$ has copy $\leq_{\mathcal{T}} X$

Observation If \mathcal{A} admits Jump Inversion and X' = Y', then \mathcal{A} has copy $\leq_{\mathcal{T}} X \iff \mathcal{A}$ has copy $\leq_{\mathcal{T}} Y$.

Let $\ensuremath{\mathcal{B}}$ be a Boolean algebra.

Lemma ([Harris, M. 09])

$$\begin{split} \mathcal{B}' &= (\mathcal{B}, At^{\mathcal{B}}) \\ \mathcal{B}'' &= (\mathcal{B}, At^{\mathcal{B}}, Inf^{\mathcal{B}}, Atless^{\mathcal{B}}). \\ \mathcal{B}''' &= (\mathcal{B}, At^{\mathcal{B}}, Inf^{\mathcal{B}}, Atless^{\mathcal{B}}, atomic^{\mathcal{B}}, 1\text{-}atom^{\mathcal{B}}, atominf^{\mathcal{B}}). \\ \mathcal{B}^{(4)} &= (\mathcal{B}, At^{\mathcal{B}}, Inf^{\mathcal{B}}, Atless^{\mathcal{B}}, atomic^{\mathcal{B}}, 1\text{-}atom^{\mathcal{B}}, atominf^{\mathcal{B}}, \sim\text{-}inf^{\mathcal{B}}, \\ Int(\omega + \eta)^{\mathcal{B}}, infatomicless^{\mathcal{B}}, 1\text{-}atomless^{\mathcal{B}}, nomaxatomless^{\mathcal{B}}). \end{split}$$
Furthermore, $\forall n \text{ there is a finite complete set of } \Pi_n^c \text{ relations} \end{split}$

These relations for $\mathcal{B}^{(4)}$ where used by Downey, Jockusch, Thurber, Knight and Stob

Lemma: \mathcal{B} admits double-triple-fouth-jump inversion.

Corollary: [KS00] If \mathcal{B} has a low₄ copy, it has a computable copy.

Proof: \mathcal{B} has low₄ copy $\implies \mathcal{B}^{(4)}$ has copy $\leq_{\mathcal{T}} 0^{(4)} \implies \mathcal{B}^{''}$ has copy $\leq_{\mathcal{T}} 0^{''} \implies \mathcal{B}^{'}$ has copy $\leq_{\mathcal{T}} 0^{''} \implies \mathcal{B}$ has copy $\leq_{\mathcal{T}} 0^{'} \implies \mathcal{B}$ has copy $\leq_{\mathcal{T}} 0$

Q: Does every low_n-BA have a computable copy?[DJ 94]Q: Do BAs admit nth jump inversion?[Harris, M]

Example: Linear ordering with few descending cuts

Def: A *descening cut* of a lin. ord. A is a partition (L, R) of A where R is closed upwards and has no least element.

Thm: Ordinals admit α th-jump inversion $\forall \alpha < \omega_1^{CK}$. [Spector 55]

Theorem ([Kach, M])

Lin. ord. with finitely many desc. cuts admit nth-jump inversion. Every low_n lin. ord. with finitely many descending cuts has a computable copy.

There is a lin. ord. of intermediate degree with finitely many descending cuts and no computable copy.

Work in progress [Kach, M.] Scattered linear orderings admit double-jump inversion. Every low₂ scattered linear ord. has a computable copy. [Goncharov, Harizanov, Knight, MaCoy, Miller, Solomon '05] used the following result

For every A and every succ. ordinal α , there exists B such that

 $\mathcal{B}^{(\alpha)} = \mathcal{A}$ essentially.

plus other properties to show the following For successor ord. α ,

- Δ^0_{lpha} -categorical eq relatively Δ^0_{lpha} -categorical
- intrinsically Σ^0_{α} relations \neq explicitly Σ^0_{α} relations

Jump Inversion vs Low property

 \mathcal{A} admits Jump Inversion $\forall X$ \mathcal{A}' has copy $\leq_T X' \iff \mathcal{A}$ has copy $\leq_T X$

Theorem ([M])

Let \mathcal{A} be a structure. TFAE

• For every X, Y with $X' \equiv_T Y'$, A has copy $\leq_T X \iff A$ has copy $\leq_T Y$.

• A admits Jump Inversion.

Corollary: The following questions are equivalent: Does every X-low_n-Boolean algebra have a X-computable copy? [Downey Jockusch 94] Do Boolean algebras admit *n*th jump inversion? [Harris, M.] **Q:** Do Boolean algebras admit *n*th jump inversion?

Q: What are other structures that admit jump inversion?

Q: What are natural structures that have finite complete set of Π_n^c -relations? What are the jumps of other natural structures?

Q: How does $DegSp(\mathcal{A}')$ look outside $\mathcal{D}_{(\geq 0')}$ for the different choices for \mathcal{A}' ?