The boundary of determinacy within second order arithmetic.

Antonio Montalbán. U. of Chicago

(with Richard A. Shore) Berkeley, CA, March 2011

Special session in honor of Leo Harrington.

Antonio Montalbán. U. of Chicago The boundary of determinacy within second order arithmetic.

How much determinacy can be proved without using uncountable objects?

Fix a set $A \subseteq \omega^{\omega}$.

Player I a_0 a_2 \cdots Player II a_1 a_3 \cdots

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \setminus A$. A strategy is a function $s \colon \omega^{<\omega} \to \omega$. It's a winning strategy for I if $\forall a_1, a_3, a_5, \dots, (f(\emptyset), a_1, f(a_1), a_3, \dots) \in A$

 $A \subseteq \omega^{\omega}$ is *determined* if there is a strategy for either player I or II.

For a class of sets of reals $\Gamma \subseteq \mathcal{P}(\omega^{\omega})$, let Γ -DET: Every $A \in \Gamma$ is determined.

Г	Γ-DET	remark	
Open (Σ_1^0)	[Gale Stwart 53]		
$G_{\delta} (\Pi_2^0)$	[Wolfe 55]		
$F_{\sigma\delta}$ (Π_3^0)	[Davis 64]		
$G_{\delta\sigma\delta}$ (Π_4^0)	[Paris 72]		
$F_{\sigma\delta\sigma\delta}$ (Π_5^0)		needs Power-set axiom [Friedman 71]	
Borel (Δ_1^1)	[Martin 75]	needs \aleph_1 iterations of Power-set axiom	
		[Friedman 71]	
Analitic (Σ_1^1)	$\forall x(x^{\sharp} exists) \vdash$	Martin's bound is sharp	
	[Martin 70]	[Harrington 1978]	
Full (ω^{ω})	False in ZFC		
	[Gale Stwart 53]		

Sharps: We define the statement: " $x^{\ddagger} exists$ " as "In $\mathbb{L}(x)$, there is an ω_1 -list of indiscernibles." x^{\ddagger} is the the ω -type of this list.

Thm:[Kunen] [Jensen](ZFC) The following are equivalent:

- 0^{\sharp} exists.
- 2 There is a proper embedding of \mathbb{L} into \mathbb{L} .
- **③** There is an uncountable $X \subseteq ON$ such that $\forall Y$

$$Y \supseteq X \& |Y| = |X| \implies Y \notin \mathbb{L}.$$

Theorem ([Harrington 78])

 Σ_1^1 -DET is equivalent to " $\forall x \ (x^{\sharp} \text{ exists})$ ".

Second order arithmetic Z_2 (a.k.a. analysis) consist of

- \bullet ordered semi-ring axioms for $\mathbb N$
- induction for all 2nd-order formulas
- comprehension for all 2nd-order formulas

Most of classical mathematics can be expressed and proved in Z_2 .

Thm: ZFC⁻ is Σ_4^1 -conservative over Z_2 , where ZFC⁻ is ZFC without the Power-set axiom.

(Obs: Borel-DET and Π_k^0 -DET are Π_3^1 -statements.)

Determinacy without countable objects

Thm: [Friedman 71, Martin] $Z_2 \not\models \Pi_4^0$ -DET.

Theorem (essentially due to Martin)

Given $n \in \mathbb{N}$, Z_2 (and also ZFC⁻) can prove that every Boolean combination of $n \Pi_3^0$ sets is determined

where $F_{\sigma\delta} = \Pi_3^0$ = intersection of unions of closed sets

But....

The larger the *n*, the more axioms are needed.

Theorem (MS)

 Z_2 (and also ZFC⁻) cannot prove that every Boolean combination of Π_3^0 sets is determined

Reverse Mathematics in a nutshell

The main question of Reverse Mathematics is: What axioms of Z_2 are necessary for classical mathematics?

Using a base theory as RCA_0 , one can often prove that

- theorems are equivalent to axioms.
- Most theorems are equivalent to one of 5 subsystems.

Most theorems of classical mathematics can be proved in Π_1^1 -CA₀. where in Π_1^1 -CA₀, induction and comprehension are restricted to Π_1^1 -formulas.

No example of a classical theorem of Z_2 needed more than Π_3^1 -CA₀. We provide a hierarchy of natural statements that need axioms all the way up in Z_2 .

Strength of Determinacy in Second order arithmetic

Г	strength of F	-DET	base
Δ_1^0	ATR ₀	[Steel 78]	RCA ₀
Σ_1^0	ATR_0	[Steel 78]	RCA ₀
$\Sigma_1^0 \wedge \Pi_1^0$	Π_1^1 -CA ₀	[Tanaka 90]	RCA ₀
Δ_2^0	Π_1^1 -TR ₀	[Tanaka 91]	RCA ₀
Π_2^0	Σ_1^1 -ID ₀	[Tanaka 91]	ATR_0
Δ_3^0	$[\Sigma_1^1]^{TR}$ -ID ₀	[MedSalem, Tanaka 08]	Π^1_1 - TI_0
Π_3^0	Π_3^1 -CA ₀ \vdash	Δ_3^1 -CA ₀ $\not\vdash$ [Welch 09]	
Π_4^0	$Z_2 \not\vdash$	[Martin] [Friedman 71]	

Difference hierarchy

Def: $A \subseteq \omega^{\omega}$ is $m \cdot \Pi_3^0$ if there are Π_3^0 sets $A_0 \supseteq A_1 \supseteq ... \supseteq A_m = \emptyset$ s.t.: $A = (...(((A_0 \setminus A_1) \cup A_2) \setminus A_3) \cup ...)$

i.e.
$$x \in A \iff (\text{least } i \ (x \notin A_i)) \text{ is odd.}$$

Obs: (Boolean combinations of
$$\Pi_3^0$$
) = $\bigcup_{m \in \omega} m \cdot \Pi_3^0$.

The difference hierarchy extends through the transfinite.

Thm: [Kuratowski 58]
$$\mathbf{\Delta}_4^0 = \bigcup_{\alpha \in \omega_1} \alpha \cdot \mathbf{\Pi}_3^0$$
.

A closer look at our main theorem

Recall:

 Π_n^1 -CA₀ is Z_2 with induction and comprehension restricted to Π_n^1 formulas.

 Δ_n^1 -CA₀ is Z_2 with induction and comprehension restricted to Δ_n^1 sets.

Theorem (MS, following Martin's proof)

 $\Pi^1_{n+2}-CA_0 \vdash n-\Pi^0_3-DET.$

Theorem (MS)

 Δ_{n+2}^1 -CA₀ $\not\vdash$ n- Π_3^0 -DET.

[Welch 09] had already proved the cases n = 1.

Since
$$Z_2 = \bigcup_n \prod_n^1 - CA_0 = \bigcup_n \Delta_n^1 - CA_0$$
:

Corollary: For each n, $Z_2 \vdash n - \Pi_3^0 - DET$, but $Z_2 \not\models \forall n (n - \Pi_3^0 - DET).$

Theorem (MS)

Reversals aren't possible: for each n Δ^{1}_{n+2} - $CA_{0} \subsetneq \Delta^{1}_{n+2}$ - $CA_{0} + n$ - Π^{0}_{3} - $DET \subsetneq \Pi^{1}_{n+2}$ - CA_{0}

Thm: [MedSalem, Tanaka 07] Π_1^1 -CA₀ + Borel-DET $\neq \Delta_2^1$ -CA₀.

Theorem (MS)

Let T be a true Σ_4^1 sentence. Then, for $n \ge 2$,

•
$$\Delta_n^1 - CA_0 + T \not\vdash \Pi_n^1 - CA_0$$

•
$$\Pi_n^1 - CA_0 + T \not\vdash \Delta_{n+1}^1 - CA_0$$
 (even for β -models)

This also holds if T is a \sum_{n+2}^{1} theorem of ZFC.

Obs: Borel-DET and m- Π_3^0 -DET are Π_3^1 theorems of ZFC.

The techniques

Def: α *is n-admissible* if there is **no** unbounded, Σ_n -over- L_{α} -definable function $f: \delta \to \alpha$, with $\delta < \alpha$.

- α is *n*-admissible $\implies 2^{\omega} \cap L_{\alpha} \models \Delta_{n+1}^1 \text{-} CA_0$ (for $n \ge 2$).
- Let α_n be the least *n*-admissible ordinal.
- Let $Th_n =$ Theory of L_{α_n} .
- $Th_n \notin L_{\alpha_n}$ using Gödel-Tarski undefinability of truth.

Lemma (MS)

For $n \ge 2$, there is a (n-1)- Π_3^0 game where each player plays a set of sentences, and

- if I plays Th_n , he wins.
- **2** if I does not play Th_n but II does, then II wins.

A winning strategy for this game must compute Th_n . Hence $2^{\omega} \cap L_{\alpha_n} \models \Delta_{n+1}^1 \text{-} CA_0 \& \neg (n-1) \text{-} \Pi_3^0 \text{-} DET$

Ideas in the proof.

- Each player has to play a complete, consistent set of formulas including $ZF+V = L_{\alpha_n}$.
- We consider the term models of these theories: M and N.

$$M = L_{\alpha_n}$$

• L_{α_n} is the only

well-founded model of $ZF+V = L_{\alpha_n}$.

N• Using differences of Π_3^0 formulas we need to identify the player playing a well-founded model.

Let $L_{\alpha} = N \cap M$. We find a Π_3^0 condition C_k and a property P_k s.t.: If is α is k-admissible and P_k holds, then

- If C_k , we find a descending sequence in N.
- If $\neg C_k$, then α is k + 1-admissible and P_{k+1}