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The Question

How much determinacy can be proved
without using uncountable objects?
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Determinacy

Fix a set A ⊆ ωω.

Player I a0 a2 · · ·
Player II a1 a3 · · · let ā = (a0, a1, a2, a3, ...)

Player I wins is ā ∈ A, and Player II wins if ā ∈ ωω \ A.
A strategy is a function s : ω<ω → ω.
It’s a winning strategy for I if ∀a1, a3, a5, ....(f (∅), a1, f (a1), a3, ...) ∈ A

A ⊆ ωω is determined if there is a strategy for either player I or II.

For a class of sets of reals Γ ⊆ P(ωω), let
Γ-DET: Every A ∈ Γ is determined.
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History

Γ Γ-DET remark

Open (Σ0
1) [Gale Stwart 53]

Gδ (Π0
2) [Wolfe 55]

Fσδ (Π0
3) [Davis 64]

Gδσδ (Π0
4) [Paris 72]

Fσδσδ (Π0
5) needs Power-set axiom [Friedman 71]

Borel (∆1
1) [Martin 75] needs ℵ1 iterations of Power-set axiom

[Friedman 71]

Analitic (Σ1
1) ∀x(x ]exists) `.. Martin’s bound is sharp

[Martin 70] [Harrington 1978]

Full (ωω) False in ZFC
[Gale Stwart 53]
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Harrington’s result

Sharps: We define the statement:
“x ] exists” as “In L(x), there is an ω1-list of indiscernibles.”

x ] is the the ω-type of this list.

Thm:[Kunen] [Jensen](ZFC) The following are equivalent:

1 0] exists.

2 There is a proper embedding of L into L.

3 There is an uncountable X ⊆ ON such that ∀Y
Y ⊇ X & |Y | = |X | =⇒ Y 6∈ L.

Theorem ([Harrington 78])

Σ1
1-DET is equivalent to “∀x (x ] exists)”.
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Countable mathematics

Second order arithmetic Z2 (a.k.a. analysis) consist of

ordered semi-ring axioms for N
induction for all 2nd -order formulas

comprehension for all 2nd -order formulas

Most of classical mathematics can be expressed and proved in Z2.

Thm: ZFC− is Σ1
4-conservative over Z2,

where ZFC− is ZFC without the Power-set axiom.

(Obs: Borel-DET and Π0
k -DET are Π1

3-statements.)
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Determinacy without countable objects

Thm: [Friedman 71, Martin] Z2 6 ` Π0
4-DET.

Theorem (essentially due to Martin)

Given n ∈ N, Z2 (and also ZFC−) can prove that
every Boolean combination of n Π0

3 sets is determined

where Fσδ = Π0
3 = intersection of unions of closed sets

But....
The larger the n, the more axioms are needed.

Theorem (MS)

Z2 (and also ZFC−) cannot prove that
every Boolean combination of Π0

3 sets is determined
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Reverse Mathematics in a nutshell

The main question of Reverse Mathematics is:
What axioms of Z2 are necessary for classical mathematics?

Using a base theory as RCA0, one can often prove that

theorems are equivalent to axioms.

Most theorems are equivalent to one of 5 subsystems.

Most theorems of classical mathematics can be proved in Π1
1-CA0.

where in

Π1
1-CA0, induction and comprehension are restricted to Π1

1-formulas.

No example of a classical theorem of Z2 needed more than Π1
3-CA0.

We provide a hierarchy of natural statements
that need axioms all the way up in Z2.
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Strength of Determinacy in Second order arithmetic

Γ strength of Γ-DET base

∆0
1 ATR0 [Steel 78] RCA0

Σ0
1 ATR0 [Steel 78] RCA0

Σ0
1 ∧ Π0

1 Π1
1-CA0 [Tanaka 90] RCA0

∆0
2 Π1

1-TR0 [Tanaka 91] RCA0

Π0
2 Σ1

1-ID0 [Tanaka 91] ATR0

∆0
3 [Σ1

1]TR -ID0 [MedSalem, Tanaka 08] Π1
1-TI0

Π0
3 Π1

3-CA0` .. ∆1
3-CA0 6 ` .. [Welch 09]

Π0
4 Z2 6` .. [Martin] [Friedman 71]
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Difference hierarchy

Def: A ⊆ ωω is m-Π0
3 if there are Π0

3 sets A0 ⊇ A1 ⊇ ... ⊇ Am = ∅
s.t.: A = (...(((A0 \ A1) ∪ A2) \ A3) ∪ ...)
i.e. x ∈ A ⇐⇒ (least i (x 6∈ Ai )) is odd.

Obs: (Boolean combinations of Π0
3) =

⋃
m∈ω

m-Π0
3.

The difference hierarchy extends through the transfinite.

Thm: [Kuratowski 58] ∆0
4 =

⋃
α∈ω1

α-Π0
3.
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A closer look at our main theorem

Recall:
Π1

n-CA0 is Z2 with induction and comprehension restricted to Π1
n formulas.

∆1
n-CA0 is Z2 with induction and comprehension restricted to ∆1

n sets.

Theorem (MS, following Martin’s proof)

Π1
n+2-CA0 ` n-Π0

3−DET.

Theorem (MS)

∆1
n+2-CA0 6` n-Π0

3−DET.

[Welch 09] had already proved the cases n = 1.

Since Z2=
⋃
n

Π1
n-CA0=

⋃
n ∆1

n-CA0:

Corollary: For each n, Z2 ` n-Π0
3 − DET , but

Z2 6 ` ∀n (n-Π0
3 − DET ).
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Reversals

Theorem (MS)

Reversals aren’t possible: for each n
∆1

n+2-CA0 ( ∆1
n+2-CA0 + n-Π0

3-DET ( Π1
n+2-CA0

Thm: [MedSalem, Tanaka 07] Π1
1-CA0 + Borel-DET 6⇒ ∆1

2-CA0.

Theorem (MS)

Let T be a true Σ1
4 sentence. Then, for n ≥ 2,

∆1
n-CA0 + T 6 ` Π1

n-CA0

Π1
n-CA0 + T 6 ` ∆1

n+1-CA0 (even for β-models)

This also holds if T is a Σ1
n+2 theorem of ZFC.

Obs: Borel-DET and m-Π0
3−DET are Π1

3 theorems of ZFC.
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The techniques

Def: α is n-admissible if there is no unbounded,
Σn-over-Lα-definable function f : δ → α, with δ < α.

α is n-admissible =⇒ 2ω ∩ Lα |= ∆1
n+1-CA0 (for n ≥ 2).

Let αn be the least n-admissible ordinal.

Let Thn =Theory of Lαn .

Thn 6∈ Lαn using Gödel-Tarski undefinability of truth.

Lemma (MS)

For n ≥ 2, there is a (n-1)-Π0
3 game where

each player plays a set of sentences, and

1 if I plays Thn, he wins.

2 if I does not play Thn but II does, then II wins.

A winning strategy for this game must compute Thn.
Hence 2ω ∩ Lαn |= ∆1

n+1-CA0 & ¬(n − 1)-Π0
3−DET
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Ideas in the proof.

M = Lαn

N

Lα − A

Each player has to play a complete, consistent
set of formulas including ZF+V = Lαn .

We consider the term models of these theories:
M and N.

Lαn is the only
well-founded model of ZF+V = Lαn .

Using differences of Π0
3 formulas we need to

identify the player playing a well-founded
model.

Let Lα = N ∩M.
We find a Π0

3 condition Ck and a property Pk s.t.:
If is α is k-admissible and Pk holds, then

If Ck , we find a descending sequence in N.

If ¬Ck , then α is k + 1-admissible and Pk+1
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