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Determinacy

With Richard A. Shore, we obtained the precise limit of how much determinacy can be proved without
the use of uncountable objects.

Theorem. (Montalbán, Shore 2009) Given a fixed number n, second-order arithmetic can prove that every
Boolean combination of n Gδσ

-sets is determined. However, for each n a different proof is needed and no
single proof works for all n: second-order arithmetic cannot show that all Boolean combinations of any
number of Gδσ

-sets are determined.

Consider a set A of binary sequences, or equivalently, a subset of Cantor set. Players I and II play
binary bits alternatively for infinitely many turns, forming an infinite binary sequence; player I wins if
the sequence is in A, and, otherwise, player II wins. We say that A is determined if one of the players
has a winning strategy for this game. Statements about determinacy of games have attracted logicians for
many decades because of the high complexity of the winning strategies, and also because they have been a
useful combinatorial tool in a wide range of areas. Martin’s celebrated theorem says whenever A is a Borel
subset of Cantor set, A is determined. But, as noticed by Friedman, Martin’s proof requires unusually
large cardinals almost never used in mathematics.

Second-order arithmetic, a widely studied logical system, captures all mathematics that can be done in
the realm of countable objects. Countable objects include real numbers, continuous functions, real analysis,
countable algebra, etc.. Almost all of mathematics that can be modeled with, or coded by, countable objects
can be carried out in second-order arithmetic.

For the statement above we also need the following definitions: A subset of Cantor space is Gδσ if it
is the countable union of countable intersections of open sets (i.e. it is in the third level of the Borel
hierarchy); a set is a Boolean combination of n sets A1, ..., An if it can be defined form them using (finite)
intersections, unions and complements.

The study of the determinacy of Gδσ
sets seemed intractable for a long time, and so did the study of

results at the boundary of second-order arithmetic. Our result broke those two barriers.
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Linear orderings

In 1955, Clifford Spector proved a central result in hyperarithmetic theory: that every hyperarithmetic
well ordering is isomorphic to a computable one. In less technical terms this says that if an ordinal has
a representation of a certain complexity (hyperarithmetic, which is quite high) then it also has a very
simple (computable) representation. (The hyperarithmetic sets are an effective analog of the Borel sets:
they are the smallest non-trivial class of sets of natural numbers which is closed under countable effective
intersections and unions.) I proved the following unexpected generalization to all countable linear orderings:

Theorem. (Montalbán 2005) Every hyperarithmetic linear ordering is bi-embeddable with a computable
one.

The proof of this Theorem requires a deep analysis of the structure of the countable linear orderings
and the embeddability relation. This analysis led me to define equimorphism invariants, given by finite
trees labeled by ordinals, for the class of scattered linear orderings of any size. The invariants provide a
new description for the partial orderings induced by the embeddability relation on the class of scattered
(and of all countable) linear orderings.

Fräıssé’s conjecture (proved by Laver in 1971) is the statement that says that the countable linear
orderings form a well-quasi-ordering with respect to embeddablity. It has interested logicians for many
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years because of the difficulty of its proof in terms of reverse mathematics; it uses constructions which are
computationally more complicated than most of the theorems of mathematics. From my work, it follows
that Fräıssé’s conjecture is a sufficient and necessary assumption to develop a reasonable theory linear
orderings and the embeddability relation. This means that statement has a robustness property in the
sense that it is equivalent to most statements talking about embeddability of linear orderings.
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Boolean Algebras

With K. Harris we obtained a complete characterization of the relations on a Boolean algebra that are
defined within a certain number of Turing jumps. Studying the definable relations on a structure is an
important theme all throughout logic, and for the computability view point, it is useful to understand
how many Turing jumps it takes to compute a certain relation. Researchers have been looking for a result
of this sort for some time, as it is the first step to solve the well-known open question of whether every
lown Boolean algebra has a computable isomorphic copy. We achieved our characterization by getting a
very good understanding of the back-and-forth relations on Boolean algebras, and we believe this is a key
step towards the solution of this open problem, and will also be a useful tool for other work on Boolean
Algebras.
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Turing Degrees

Theorem. (Montalbán 2003) Every countable jump upper semilattice can be embedded into the Turing
Degrees (D,≤T ,∨,′ ) (of course, preserving join and jump).

The Turing degrees form an upper semilattice; that is, every pair of elements a, b has a least upper
bound a∨b. Intuitively, a∨b contains all the information that a and b have toghether. The other naturally
defined operation is called the Turing jump. The jump of a degree a, denoted a′, is given by the degree
of the Halting Problem relativized to some set in a. It can be shown that the jump operation is strictly
increasing (i.e., ∀a(a <T a′)) and monotonic (i.e., a <T b =⇒ a′ <T a′). A jump upper semilattice is an
upper semilattice together with a strictly increasing, monotonic function. The result above shows that the
Truing degree structure is universal for countable jump upper semilattices, a result that gives us valuable
information about the the shape of the Turing Degree Structure.

Another interesting result I proved along these lines is that the question of whether it is possible to embed
every jump upper semilattice of size ℵ1 satisfying the countable predecessor property into (D,≤T ,∨,′ ) is
independent of ZFC.
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