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RESEARCH STATEMENT

ANTONIO MONTALBÁN

I am interested in studying the complexity of mathematical practice. In mathematics, as we all know,
some structures are more complicated than others, some constructions more complicated than others,
and some proofs more complicated than others. I am interested in understanding how to measure
this complexity and in measuring it. The motivations for this come from different areas. Form a
foundational viewpoint, we want to know what assumptions we really need to do mathematics (ZFC
is way much more than we usually use), and we are also interested in knowing what assumptions are
used in the different areas of mathematics. Form a computational viewpoint, it is important to know
what part of mathematics can be done by mechanical algorithms, and, even for the part that can’t be
done mechanically, we want to know how constructive are the objects we deal with. Furthermore, it is
sometimes the case that this computational analysis allows us to find connections between constructions
in different areas of mathematics, and in many cases to obtain a deeper understanding of mathematical
objects being analyzed.

My work is quite diverse in terms of the techniques I have used, the approaches I have taken, and the
areas of mathematics that I have analyzed. However, my background area is Computability Theory,
and most of my work can be considered as part of this branch of Mathematical Logic.

Inside computability theory, I have worked in various different areas. I have been particularly
interested in the programs of Computable Mathematics, Reverse Mathematics and Turing Degree
Theory. The former studies the computability aspects of mathematical theorems and structures.
The second one analyzes the complexity of mathematical theorems in terms of the complexity of
the constructions needed for their proofs. The latter studies the partial ordering induced by the
relation “computable from” in an abstract way. I have also written papers in other areas like effective
randomness, automata theory, the lattice of Π0

1-classes, etc..
If I had to choose favorites, tools that are recurrent over my work are the iterations of the Turing

jump and hyperarithmetic theory. Structures that are recurrent over my work are linear orderings,
well-quasi-orderings and Boolean algebras.

In the next three sections I describe my work in each of the areas of Computable Mathematics,
Reverse Mathematics, and Turing Degree Theory. The fourth section is dedicated to the part of my
work that does not fit in this classification. Each of these sections starts by describing the general
ideas of the subject and becomes more technical inside each subsection; for the most part, the reader
can skip sections and subsections without loosing in understanding.

All my papers are available on my web page at www.math.uchicago.edu/∼antonio.

Computable Mathematics

Effective mathematics is concerned with the computable aspects of mathematical objects and con-
structions. I have been interested on general questions like the following: When can a algebraic
structure be represented computably? How difficult is it to recognize a certain structure? Can in-
formation be encoded into the isomorphism type of a structure? We search for answers that connect
computational properties with structural or algebraic properties.

The Jump of a structure. The jump of a structure A is another structure A′ (only dependent
on the isomorphism type) which contains all the Σ0

1 information about A. I defined this notion in
[Mon09b], and then noticed that similar notions had already been independently defined in Bulgaria
[Bal06, Sos07, SS09] and in Russia [Puz09, Stu09, Stu10]. We say that a relation R on a structure A
is r.i.c.e. (relatively intrinsically c.e.) if in every copy (B, RB) of (A, R), RB is c.e. in B. We define A′
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by adding to A a complete set of r.i.c.e. relations, as, for instance, the set of all computably infinitary
Σ1-definable relations. Even though this notion is new, it is behind many ideas and constructions in
computable model theory from the last few decades. We have showed various results about the jump
of a structure that show it is indeed a good analog of the Turing jump. One question that was open
for a few years is whether there is a structure equivalent to its own jump. Puzarenko [Puz11] and
me [Mona] have recently, independently show that such a fixed point for he jump exists. Puzarenko’s
proof is an elaborate construction that works in ZFC; my proof is quite simple, but uses the existence
of 0#. But, for me, even more interesting than the question itself, was the complexity of its answer:

Theorem 1 (Montalbán [Mona]). The existence of a fixed point for the jump of a structure (that is,
of structure A such that an oracle computes a copy of A if and only if it computes a copy of A′) cannot
be proved in full n-order arithmetic for any n.

Recall that almost all of classical mathematics outside set theory or model theory can be developed
in n-order arithmetic for some n (usually n = 2, or at most 3 or 4). So, this results can be read as
saying that none of the structures that occur in mathematics outside logic can be the fixed point for
the jump.

Structure simplicity versus coding. Let K be a nice (Borel for instance) class of countable struc-
tures and n ∈ ω. Following the theme of the questions mentioned above, we want to know what can
be said about the structures in K if we only have n Turing jumps available. (For simplicity, the reader
may only consider the case n = 1, which is already interesting enough.) In [Monb] I prove the following
dichotomy result.

Theorem 2 (Montalbán [Monb]). Relative to some oracle, either
(1) with n jumps, we can distinguish no more that countably many different structures in K; and
(2) no non-trivial information can be encoded in the (n− 1)st jump of the structures in K; but
(3) there is a nice characterization of all the relatively intrinsically Σ0

n+1 relations on the structures
of K;

or
(1) with n jumps, we can distinguish continuum many different structures in K; and
(2) any set can be encoded in the (n− 1)st jump of some structure in K; but
(3) there is no nice characterization of all the relatively intrinsically Σ0

n+1 relation on the structures
of K.

The statements labeled (1) are formalized by counting the number of n-back-and-forth relations on
tuples in the structures of K. For the statements labeled (2), we say that a set D can be coded in the
mth jump of a structure A if D is left-c.e. in the mth jump of every presentation of A. The notions
needed to explain (3) are quite interesting and I will explain them below. Before going further, let me
notice that, even if the theorem states the dichotomy relative to some oracle, when applied to natural
classes of structures this oracle is always 0: I also address this issue in [Monb].

Let me explain now what I mean by a nice characterization of the relatively intrinsically Σ0
2 relations.

First of all, recall that a relation in a structure is relatively intrinsically Σ0
2 if it can be enumerated in the

Turing jump of the structure independently of the presentation of the structure. It was showed by Ash,
Knight, Manasse, Slaman and independently Chisholm (see [AK00, Theorem 10.1]) that the relatively
intrinsically Σ0

2 relations are exactly the ones defined by computably infinitary Σ2 formulas, which
we will denote by Σc

2. Hence, we will restrict our attention to the computably infinitary language.
In [Mon09b] I introduced the notion of complete set of r.i.c.e relations for a class of structures K,
essentially, as a set of formulas that captures all the information that is available with one Turing
jump. When we have that {P0, P1, ...} is a complete set of r.i.c.e formulas for K, we have that every
Σc

2 formula is uniformly equivalent to a 0′-disjunction of finitary existential formulas in the language
that includes {P0, P1, ...}. Thus, if {P0, P1, ...} is a natural class of formulas, then we have nice a
characterization of all Σc

2 relations in K. For example, for the class of linear orderings, it can be shown



RESEARCH STATEMENT 3

that the adjacency relation alone is a complete set of Πc
1 formulas. This says that every relatively

intrinsically Σ0
2 relation on a linear ordering is a 0′-union of relations defined by finitary existential

formulas in the language {≤, adj}. Other natural examples of complete set of Πc
1 formulas are the

linearly independence relations on Q-vector spaces, and the atom relation on Boolean algebras. The
idea of reducing the complexity of a formula by adding predicates is often used in model theory for
the finitary first order language. But the finitary language behaves quite differently and doesn’t reflect
the computational properties we are interested in.

I have obtained the following application of complete sets of Πc
n formulas.

Theorem 3 (Montalbán [Mon09b]). Let {P0, P1, ...} be a complete set of Πc
n formulas for a class K.

If Y ≥T 0′ can compute a structure A in K and all the interpretations in A of the relations Pi, then
there exists an oracle X such that X ′ ≡T Y and X computes a copy A.

A similar result, stated in a very different way, was obtained independently by I. Soskov and A.
Soskova [SS09]. For the particular case of linear orderings and n = 1, Frolov [Fro06] had already
independently observed the following corollary of the theorem above: If for a linear ordering L we
have that 0′ computes a copy of (L,≤, adj), then (L,≤) has a low copy.

The lown conjecture. A question that has captivated my attention is the well-known lown Boolean
algebra question:

Question 1. [DJ94] Does every lown Boolean algebra have a computable copy?
(A set X ⊆ ω is lown if its nth Turing jump is as low as possible, namely X(n) = 0(n).)

This is part of the more general problem of understanding which structures have computable pre-
sentations, and also of understanding the possible shapes of degree spectra. Boolean algebras seem to
have an interesting behavior in this respect.

This question has been answered positively up to n = 4 by Downey and Jockusch; Thurber; and
Knight and Stob [DJ94, Thu95, KS00], and is open for n = 5 and onwards. Kenneth Harris and I
observed that the sets of relations considered in [DJ94, Thu95, KS00] for n = 1, 2, 3, 4 are equivalent by
Boolean combinations to complete sets of Πc

n formulas, and that their results can be restated as follows:
For n = 1, 2, 3, 4, if a Boolean algebra, together with a complete set of Πc

n relations, is computable in
0(n), then the Boolean algebra has a computable copy.

Theorem 4 (Harris and Montalbán [HMa]). For every n ∈ ω, there exists a finite complete set of Πc
n

formulas for Boolean algebras.

More interesting than the existence of such a set is the analysis that we do of these formulas, which
we expect to be useful in the study of Boolean algebras. From our analysis, we could observe that the
level five of the lown conjecture presents some extra essential difficulties not present at the previous
levels. To show that these difficulties are real, we turned them around and proved the following
theorem:

Theorem 5 (Harris and Montalbán [HMb]). There is a low5 Boolean algebra that is not 0(7)-isomorphic
to any computable one.

This contrasts with previous results, where for each n = 1, 2, 3, 4, every lown Boolean algebra is
0(n+2)-isomorphic to a computable one. The proof uses just a zero-double-jump priority argument,
and it doesn’t deal with 0(7) or anything similar. This is due to a new machinery developed by Harris
and I to build Boolean algebras.

A relation on Boolean algebras that has been particularly studied by computability theorist is the
atom relation. (For a survey see [Rem89].) Stepping on known results, I [Mon08b] proved that for
every computable Boolean algebra with infinitely many atoms, and for every high3 c.e. degree X, there
is a computable copy of the Boolean algebra where the atom relation has degree X.

As we already mentioned, one of the motivations for studying the lown conjecture is that it would
give an example of a class of structures whose degree spectra have a very interesting and unusual
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property. Kach and I [KM] found another class where the lown conjecture holds, namely the class of
linear ordering with finitely many descending cuts. We have also shown that there is such a linear
ordering of intermediate degree with no computable copy.

Hirschfeldt, Kach and I [KHM] studied a class of degrees that is slightly larger than the class of all
lown degrees. We call the degrees in this class low for ∆-Feiner. We say that a set S is ∆0

(n7→n)(X) if
membership of n in S is a ∆0

n(X) question, uniformly in n. So, X ′ can tell if 1 is in S, X ′′ can decide
if 2 is in S, etc.. A set X is low for ∆-Feiner if every set S that is ∆0

(n7→n)(X) is also ∆0
(n7→n)(∅).

One of the motivations for this definition comes from results in [Kac07] that imply that X it is low
for ∆-Feiner if and only if every depth zero Boolean algebra computable in X has a computable copy.
It is not hard to see that every lown set is low for ∆-Feiner. Hirschfeldt, Kach and I showed that
the converse is not true by constructing a c.e. intermediate degree that is low for ∆-Feiner. We also
studied variations of this notion, like the classes of degrees that are ∆0

(n7→bn+a)(X) or Σ0
(n 7→bn+a)(X),

and the classes of sets that are low, intermediate, and high for them.

Equimorphism types of linear orderings. The study of the ordinals which have computable pre-
sentations has been fundamental for computability theory, higher recursion theory and hyperarithmetic
theory. One of the most important results here is due to Spector [Spe55]: every hyperarithmetic well
ordering is isomorphic to a computable one. (The hyperarithmetic sets form a complexity class that
is quite large. One could say that hyperarithmetic sets are an effective version of Borel sets, as com-
putably enumerable sets are an effective version of open sets.) I proved the following generalization to
all countable linear orderings:

Theorem 6. [Mon05] Every hyperarithmetic linear ordering is equimorphic with a computable one.
(Two linear orderings are equimorphic if they can be embedded in each other.)

The proof of this theorem requires a deep analysis of the structure of the countable linear orderings
modulo equimorphisms. Using this analysis, in [Mon06b], I found equimorphism invariants for the
class of scattered linear ordering of any size. These invariants are finite trees whose nodes are labeled
by ordinals. They are equimorphism invariants in the sense that two linear orderings are equimorphic
if and only if they are assigned the same invariant. One can then study the embeddability relation on
linear orderings using these invariants.

Hausdorff showed that for every cardinality κ, every scattered linear ordering of size κ has a subset
isomorphic to either κ or κ∗. I extended this result from cardinals to all ordinal by providing a
construction, for each ordinal β, of the finitely many linear orderings that are minimal of Hausdorff
rank β [Mon06b].

A third non-computability result that followed from my deep analysis of linear orderings is an answer
to an open question from Rosenstein’s book on Linear Orderings [Ros82, page 178]. I proved that,
given countable linear orderings L and C0 4 C1 4 · · · such that for every C

(
∀n(Cn 4 C) =⇒ L 4 C

)
(where 4 is the embeddability relation), we have that there is some n such that L 4 Cn [Mon06a].

I wrote a paper surveying all these results for the BSL [Mon07b].

Well-quasi-orderings and linear orderings. Well-quasi-orderings have been widely studied by
combinatorists, computer scientists, proof theorists, etc.. A quasi-ordering, P , is a well-quasi-ordering
(abbreviated wqo) if, for every sequence {xn}n∈N of elements of P , there exist i and j such that i < j
and xi ≤P xj , or equivalently, if P has no infinite descending sequences and no infinite anti-chains.

The length of a wqo is used to measure its well-quasi-orderedness: The length of a wqo is defined
to be the supremum of the order types of its linearizations. Note that this definition makes sense
because every linearization of a wqo is a well ordering. Moreover, this supremum is actually reachable:
De Jongh and Parikh [dJP77] showed that every wqo has a linearization of maximal order type. The
length can also be obtained as the well-founded rank of the tree of finite sequences 〈x0, ..., xk〉 of
elements of P such that there no i < j ≤ k with xi ≤P xj . Notice that P is wqo if and only if this tree
has no infinite paths. So far, people have computed lengths of various wqos for different applications,
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but always using different methods and new ideas, and it was unknown whether the length of a wqo
could be found computably. Diana Schmidt posed this question in [Sch79]. I showed [Mon07a] that
computable wqos have computable maximal linearizations. However, I showed that the process of
finding such linearizations is not computably uniform, not even hyperarithmetically.

Other work in computable mathematics.

Elementary equivalence of Boolean algebras. With Csima and Shore [CMS06] we studied the complex-
ity of the question: Given two computable Boolean algebras, are they elementarily equivalent? This
work included a complete analysis of the complexity of index sets of Boolean algebras with a certain
Tarski invariant.

Fräıssé limits. Fräıssé studied countable structures S through analysis of the age of S, i.e., the set
of all finitely generated substructures of S ([Fra86], see also [Hod97]). B. Csima, V. Harizanov, R.
Miller, and I [CMHM] investigated the effectiveness of his analysis. We provide sufficient and necessary
conditions for the Fräıssé limit to be computable. (Let me notice that the interesting case is when
the finitely generated structures aren’t necessarily finite, as otherwise, under reasonable effectiveness
hypothesis, it is easy to see that the Fräıssé limit is always computable.) One interesting result we get
is that degree spectra of relations on a sufficiently nice Fräıssé limit are always upward closed unless
the relation is definable by a quantifier-free formula.

Torsion-free Abelian groups and Vector Spaces. With Downey, Hirschfeldt, Kach, Lempp, and Mileti
[DHK+07], we studied the computational complexity of finding proper subspaces of a given computable
vector space. With Downey [DM08a], we studied the complexity of the isomorphism problem for
Torsion free abelian groups, topic that had been studied by Descriptive Set theorists like Hjorth,
Kechris and Thomas. Both papers were published in the Journal of Algebra.

Equivalence relations on computable structures. With Fokina, S. Friedman, Knight and McCoy [FFH+],
we studied the equivalence relations given by isomorphism and by-embedabillity on a class of com-
putable structures. The idea is to translate the question from the study of equivalence relations on the
reals ordered by Borel reducibilities, to the study of equivalence relations on natural numbers (usu-
ally representing indices for computable structures) ordered by either computable or hyperarithmetic
reducibilities. We show, for instance, that the isomorphism relation on computable torsion Abelian
groups is complete among all Σ1

1 equivalence relations on ω, while in the classic case it is know to be
incomplete among isomorphism relations on classes of countable structures [FS89].

A Countably categorical theory with a complicated theory. With Khoussainov [KM10], we build a
computable ℵ0-categorical structure whose theory is 1-equivalent with true arithmetic. Before this
result, all known computable ℵ0-categorical structures had arithmetic theories, and most of them
were actually decidable. Because of the homogeneity of these structures it was conceivable that the
complexity of their theories couldn’t get much higher; Our result shows that, unfortunately, they can.

Reverse Mathematics

Introduction. The questions of which axioms are necessary to do mathematics is of great importance
in Foundations of Mathematics and is the main question behind Friedman and Simpson’s program
of Reverse Mathematics. To analyze this question formally it is necessary to fix a logical system.
Reverse Mathematics deals with the system of second-order arithmetic. Second-order arithmetic,
though much weaker than set theory, is rich enough to be able to express an important fragment
of classical mathematics. This fragment includes number theory, calculus, countable algebra, real
and complex analysis, differential equations, separable metric spaces and combinatorics among others.
Almost all of mathematics that can be modeled with, or coded by, countable objects can be done in
second-order arithmetic. Notice that, for instance, a real number or a continuous function on the reals
can be coded by a countable object.
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The idea of Reverse Mathematics goes as follows. We start by fixing a basic system of axioms as a
base. The most commonly used base system is called RCA0, that more or less says that the natural
numbers are an ordered semi-group (which satisfy a bit of induction) and that computable sets exists.
Now, given a theorem of “ordinary” mathematics, the question we ask is what axioms do we need
to add to the base system to prove this theorem. It is often the case in Reverse Mathematics that
we can show that a certain set of axioms is necessary to prove a theorem by showing, using the base
system, that the axioms follow from the theorem. Because of this idea, this program is called Reverse
Mathematics.

Many different systems of axioms have been defined, and many theorems from all over mathematics
have been analyzed. A very interesting fact is that most of the theorems that have been analyzed
have been proved equivalent to one of five systems, which we will call the main five. The reason for
this is not known. It could be that for some reason mathematicians find it easier to prove theorems
that are equivalent to one of the main five systems. Or it could be that is easier for logicians to show
something is equivalent to one of these five systems than proving it’s not, and therefore our sample of
theorems successfully analyzed is biased. For sure, there is something special about these five main
systems, and I am interested knowing what it is. I believe that studying the notion of robust system,
as a system that is equivalent to small perturbations of itself, could help to find an answer.

I’m currently writing a paper on open questions on Reverse Mathematics.

0.1. Determinacy. Statements about determinacy of games have attracted logicians for many decades
because of the high complexity of the winning strategies, and also because they have been a useful
combinatorial tool in a wide range of areas. Consider a set A of sequences of natural numbers. We
define a game G(A) played as follows. Players I and II play natural numbers alternatively for infinitely
many turns, forming an infinite sequence of natural numbers; player I wins if the sequence is in A,
and, otherwise, player II wins. We say that G(A), or just that A, is determined if one of the players
has a winning strategy for G(A). Not every game G(A) is determined, but most of the games we
might encounter are. It requires a simple proof to show that if A is open, then G(A) is determined.
Martin’s celebrated theorem says whenever A is a Borel set, G(A) is determined. (We’re referring to
the natural topology on the space of sequences of natural numbers given by the product topology of
the discrete topology on IN .) H. Friedman showed that to prove that all Borel sets are determined
one needs and unusual large amount of ZFC, and that even the fifth level in the Borel hierarchy (Σ0

5)
is not provable in second-order arithmetic. This is quite remarkable, as almost all the theorems about
countable objects can be proved in second-order arithmetic. With Shore, we obtained the precise limit
of how much determinacy can be proved in second-order arithmetic. To state our result, we need a
couple definitions: A set of sequences is Gδσ if it is the countable union of countable intersections of
open sets (i.e. it is in the third level of the Borel hierarchy); a set is a Boolean combination of n sets
A1, ..., An if it can be defined form them using (finite) intersections, unions and complements.

Theorem 7 (Montalbán, Shore [MS]). Given a fixed number n, second-order arithmetic can prove
that every Boolean combination of n Gδσ -sets is determined. However, for each n a different proof
is needed and no single proof works for all n: second-order arithmetic cannot show that all Boolean
combinations of any number of Gδσ -sets are determined.

Linear orderings. My work in Reverse Mathematics started when trying to find the proof-theoretic
strength of Jullien’s Theorem, which is a classification of the countable extendible linear orderings
[Jul69]. It is a theorem that seems to require more complex axioms than most of the theorems in
classical mathematics. Without finding its exact proof-theoretic strength in terms of logical axioms,
I ended up finding that it is equivalent to many other statements about embeddability of linear
orderings. The proof-theoretic strength of one of these statements, Fräıssé’s conjecture, have been
studied before. Fräıssé’s conjecture (also known as Laver’s Theorem [Lav71]) is the statement that
says that the countable linear orderings form a wqo with respect to embeddablity. (Recall that a well-
quasi-ordering, or wqo, is a quasi-ordering without infinite descending sequences or infinite antichains.)
Fräıssé’s conjecture has interested logicians for many years also because of the difficulty of its proof in
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terms of reverse mathematics. From my work, it follows that this statement has a robustness property
in the sense that it is equivalent to many other statements talking about the same type of objects.
So far, the only systems with this robustness property were the main five (and WWKL0), but we do
not know that Fräıssé’s conjecture is equivalent to one of these five. Furthermore, from my work, one
could conclude the following claim.

Claim 1. [Mon06c] Fräıssé’s conjecture is a sufficient and necessary assumption to develop a reasonable
theory of linear orderings and the embeddability relation.

Question 2. Is Fräıssé’s conjecture equivalent to Arithmetic Transfinite Recursion?

It was conjectured by Clote [Clo90], Simpson [Sim99, Remark X.3.31] and Marcone [Mar05] that
that the answer is positive, but the problem is still open. One possible approach is to study the length
of the wqo’s involved, since this usually gives proof-theoretic information. Together with Marcone and
Weiermann, we have recently made some progress on this approach. Marcone and I proved that the
length of the wqo of linear orders of finite Hausdorff rank under embeddability is εεε.. , the first fixed
point of the epsilon-ordinal-function, α 7→ εα (where εα is the αth fixed point of the ordinal function
β 7→ ωβ). We then showed that Fräıssé’s conjecture restricted to linear orders of finite Hausdorff rank
is equivalent to “εεε.. is well-ordered” over ACA+

0 , where ACA+
0 is RCA0+ ∀X (X(ω) exists). We note

that the statement “εεε.. is well-ordered” implies the consistency of ACA+
0 and hence is not provable

in ACA+
0 .

Ordinal Notations. The proof theoretic ordinal of a theory is an extremely useful notion when
trying to measure its consistency strength. Ordinal notations are the main tool to deal with these
ordinals. The proof theoretic ordinal of a theory is the least ordinal that the theory cannot show
is well-ordered. Usually, it is also the least ordinal such that the consistency of the theory can be
proved using transfinite induction along this ordinal. For instance, Gentzen’s proof of the consistency
of Peano Arithmetic used transfinite induction along ε0, and it can be shown that Peano Arithmetic
proves transfinite induction along any ordinal less than ε0. This makes ε0 the proof theoretic ordinal
of Peano Arithmetic. Ordinals are naturally defined in set theory, but to deal with ε0 inside first
or second order arithmetic we use ordinal notations: We use a a string of symbols to represent each
ordinal below ε0. In this representation we should be able to easily compare two strings and decide
which one corresponds to a larger ordinal. This way we have a linear ordering that is representing ε0.
When we refer to the statement that says that ε0 is well-ordered we actually mean the statement that
this particular linear ordering formed of notations is well-ordered.

Statements about the well-orderedness of a certain ordinal are Π1
1 and have no set-existence im-

plications. However, when we use ordinal notation operations we can get set-existence implications.
For instance, Hirst [Hir94] proved that the statement that says “If X is well-ordered, then ωX is also
well-ordered” is equivalent to ACA0, where ωX is a linear ordering whose elements are of the form
ωx0 · n0 + ... + ωxk · nk, with x0, ..., xk ∈ X and n0, ..., nk ∈ N, and the ordering on these elements is
defined in the obvious way.

Theorem 8 (Marcone, Montalbán [MM]). The statement “If X is well-ordered, then εX is also well-
ordered” is equivalent to ACA+

0 , over RCA0, where εX is, in a sense, the X’th fixed point of the function
x 7→ ωx, and ACA+

0 is RCA0+∀X (X(ω) exists).

Even though proofs with ordinal notations usually involve techniques from Proof Theory, the proof
of this theorem is purely computability theoretical. We build a computable linear ordering X such
that εX has a computable descending sequence, but any descending sequence in X computes 0(ω).
Afshari and Rathjen have recently shown the same result using only proof theoretic methods [AR]. It
is remarkable that the same result can be proved using such different methods, and we haven’t yet
fully understand the connection between the two proofs.

Marcone and I then extended this result to all computable ordinals and showed that the statement
“If X is well-ordered, then ϕ(α,X) is also well-ordered” equivalent to the Comprehension Axiom
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scheme for infinitary Π0
ωα formulas. As a corollary of the uniformity in our proof, we obtained a new,

purely computability-theoretic proof of Friedman’s result that the statement “If X is well-ordered,
then ϕ(X, 0) is also well-ordered” is equivalent to ATR0, where ϕ(·, ·) is the Veblen ordinal function
(Veblen 1908 [Veb08], see also [Sch77]). We see our results with Marcone as a way of exhibiting the
already known interesting properties of Veblen functions from a computability viewpoint.

Rathjen has formulated some conjectures on the strength of statements about operators that map
operators that preserve well-orderness into ordinals. Based on these, I have then formulated conjectures
of what statements should be equivalent to Π1

1-CA0, one using the Howard-Bachmann notation system,
and one using Carlson’s patterns of resemblance [Monc].

Arithmetic Transfinite Recursion. With Greenberg, in [GM08] we show how for some type of
structures, ATR0 is the natural system to work with them. These structures are superatomic Boolean
algebras, reduced p-groups, compact countable topological spaces and well-founded trees. This paper
provides a good understanding of what ATR0 is able to prove. It also reinforces the idea that ATR0 is
a robust system.

Statements of hyperarithmetical analysis. These are statements whose minimal ω-model consists
of the hyperarithmetic sets. They are mostly in between ACA0 and ATR0. These theories have been
studied in the seventies (see [Fri75], [Van77] and [Ste78]), but there was no natural example of a
statement of hyperarithmetic analysis. In [Mon06d] I give the first such natural example, called the
Indecomposability Theorem which is about linear orderings and due to Jullien [Jul69]. Other statements
of hyperarithmetic analysis concerning determinacy of games are also discussed in [Mon06d] and many
questions are left open.

In [Mon08a], answering a question of Tanaka, I showed that the Π1
1-separation axiom scheme

lies strictly in between the ∆1
1-comprehension and Σ1

1-choice axiom schemes. Recently Neeman has
proved that Jullien’s Indecomposability Theorem lies strictly in between weak-Σ1

1-choice and ∆1
1-

comprehension [Nee]. Working with me as a student, Chris Conidis has recently obtain interesting
results comparing a version of the Bolzano-Wierstrass’s theorem with other theories of hyperarith-
metical analysis [Con].

Turing Degree Theory

Introduction. The Turing degree structure is a very natural object introduced by Kleene and Post
in [KP54]. The objective is to study the relation “computable from” abstracting out the interpretation
of the object being computed. It is defined as follows: We say that a set A is computable in a set B,
and write A ≤T B if there is a program that can decide membership in A using information about
membership in B. The relation ≤T is a quasi-ordering on P(IN), the set of subsets of IN . It induces
an equivalence relation (A ≡T B ⇐⇒ A ≤T B & B ≤T A) and a partial ordering on the equivalence
classes. The equivalence classes are called Turing degrees. We use (D,≤T ) to denote this partial
ordering. One of the goals of computability theory is to understand the structure of (D,≤T ).

The Turing degrees form an upper semilattice; that is, every pair of elements a, b has a least upper
bound a∨b. Intuitively, a∨b contains all the information that a and b have. There is another naturally
defined operation called the Turing jump (or just jump). The jump of a degree a, denoted a′, is given by
the degree of the Halting Problem relativized to some set in a. It can be shown that the jump operation
is strictly increasing (i.e., ∀a(a <T a′)) and monotonic (i.e., ∀a,b(a ≤T b =⇒ a′ ≤T b′)). A jump
upper semilattice is an upper semilattice together with a strictly increasing, monotonic function.

Embeddings. One approach to understanding the shape of the Turing Degree Structure has been by
studying the structures that can be embedded into it. I’ve written a survey paper on this approach
for the Logic Colloquium 2006 [Mon09a] Kleene and Post, in the same paper where they introduced
the Turing degree structure [KP54], proved that every finite upper semilattice can be embedded into
(D,≤T ). Since then, various other embeddablity results have been proved. Abraham and Shore [AS86]
proved in that every upper semilattice of size at most ℵ1 with the countable predecessor property can
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be embedded into (D,≤T ,∨), extending a previous result of Sacks [Sac61]. Hinman and Slaman
[HS91] proved that every countable jump partial ordering is embeddable in (D,≤T ,′ ). For countable
structures, the most general result proved so far is the following:

Theorem 9 (Montalbán [Mon06c]). Every countable jump upper semilattice can be embedded into the
Turing Degrees (D,≤T ,∨,′ ) (of course, preserving join and jump).

It follows from my result that the quantifier-free formulas that are always true in (D,≤T ,∨,′ ) are
the exactly the ones that follow from the definition of jump upper semilattice. Therefore, it follows
that the existential theory of (D,≤T ,∨,′ ) is decidable. More results about embeddings into the Turing
degrees of both jump upper semilattices with 0 and uncountable jump upper semilattices can also be
found in [Mon06c]. For example, I proved that the question of whether it is possible to embed every
jump upper semilattice of size ℵ1 satisfying the countable predecessor property into (D,≤T ,∨,′ ) is
independent of ZFC.

Jockusch and Posner [JP78] defined the generalized high/low hierarchy with the intention of classi-
fying the Turing degrees depending on how close a degree is to being computable, and on how close
it is to computing the Halting Problem. This notion has been useful in many results. However, I’ve
showed that, surprisingly, there is no order at all on these classes.

Theorem 10 (Montalbán [Mon06e]). Every finite partial ordering, whose elements are labeled in any
way with classes from the set {GL1, GL2, . . . , GI, . . . , GH2, GH1}, can be embedded into the Turing
degrees preserving labels.

Extensions of embeddings. Let D(≤0′) be the set of degrees below 0′. We do know this is a
complicated structure; its theory is 1-equivalent to true first order arithmetic [Sho81]. On the other
hand, if we look only at existential sentences, we can decide which sentences are true (as follows from
results in [KP54]). In order to understand where the complexity lies, we ask what fragments of its
theory are decidable. It is known that the ∃∀-theory of (D(≤0′),≤T ) is decidable [LS88], but the one
of (D(≤0′),≤T ,∨,∧) is not [MNS04]. The one quantifier theories of these structures are all decidable
[KP54, LL76], and the three quantifier ones aren’t [Ler83]. The only question left open is whether the
∃∀-theory of (D(≤0′),≤T ,∨) is decidable.

Downey, Greenberg, Lewis and I [DGLM] have found a good number of necessary and sufficient
conditions that we expect will eventually lead to a solution of the problem. Many of the theorems we
proved for this purpose are interesting on their own right, and provide a better understanding of the
structure D(≤0′):

(1) Simultaneous 1-genericity below c.e. sets: For every c.e. set C and every sequence {Ai : i ∈ ω}
of sets uniformly computable in C, there exists a set G ≤T C that is simultaneously 1-generic
relative to each Ai such that Ai <T C.

(2) No-least-join theorem: Consider degrees a,b ≤T c with c c.e. such that a 6≤T b, b 6≤T 0.
Then, b is not the least degree below c that joins a up to a ∨ b.

(3) Join property for non-GL2 degrees: Let c be a non-GL2 degree. Then, for every degree a < c,
there exists x < c such that a ∨ x = c.

(4) There exist c.e. sets A,B,C,D and E such that A,B,D and E are all Turing reducible to C
and pairwise incomparable, and such that any ∆0

2 set X which is computable in C and joins
A above B also joins D above E.

Complexity vs structure. Another way of analyzing (D,≤T ) has been by finding relations between
the computational complexity of a degree a and the structure D(≤T a) = {x ∈ D : x ≤T a}.

Posner [Pos81] asked if for every generalized high degree a, the upper semilattice D(≤T a) has the
complementation property. Greenberg, Shore and I answered this question affirmatively in [GMS04].

Another way of analyzing the structures of (D(≤T a),≤T ) is by studying the complexity of their
theory. Shore [Sho81] proved that Theory(〈D(≤T a),≤T 〉), is 1-equivalent to true first order arithmetic
whenever a is arithmetic and ≥T 0′, c.e., or high. With Greenberg [GM03], we extended this result to
a being n-CEA, 1-generic and below 0′, 2-generic and arithmetic, or arithmetically generic.
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Misselaneous

Effective randomness. I only obtained a few little results in this popular area of computability theory.
With Csima [CM06] we have showed that there is a minimal pair of Kolmogorov degrees. With Kjos-
Hanssen we observed that ranked sets are Never-Continuously-Random. With Slaman, we showed
that every K-trivial is Never-Continuously-Random, result that was later extended by Barmpalias
and Greenberg to all sets computed from incomplete c.e. sets [BGMS]. With Lewis and Nies, we
showed that there is a weakly-2-random set that is not generalized-low [LMN07].

Orbits of the lattice of Π0
1-classes. A Π0

1 class P is called thin if, for every Π0
1 subclass P ′ of P , there

is a clopen C with P ′ = P ∩ C. This property is preserved under automorphisms of the lattice of
Π0

1 classes under inclusion, as it is definable in this structure. Cholak, Coles, Downey and Herrmann
[CCDH01] found sufficient conditions that make two thin Π0

1 classes automorphic: They proved that
if P and Q are thin Π0

1 classes and their lattices of subclasses are isomorphic, and these lattices are a
Boolean algebra with finitely many atoms, then P and Q are automorphic. Downey and I [DM08b]
proved that this is the only case when the lattices of subclasses determine the automorphism orbit of
thin Π0

1 classes: We showed that if P is a thin Π0
1 class and its lattice of subclasses is not a Boolean

algebra with finitely many atoms, then there is another thin Π0
1 class Q whose lattice of subclasses is

isomorphic to the one of P , but such that P and Q are not automorphic. This was conjectured by
Cholak and Downey in [CD04].

Büchi and Borel structures. With Hjorth, Khoussainov and Nies we started to work on the effective
model theory of Büchi and Borel structures [HKMN08],. We analyzed continuum size structures that
can be presented using a Büchi automata. This interaction between automata theorists, computability
theorists and a descriptive set theorist led to interesting results. For example, among our results, we
solved an open question in the area of whether every Büchi structure, where equality is represented
as a Büchi equivalence relation, has a presentation where equality is just the the identity equivalence
relation. To solve this question we use Borel presentable structures, and the fact that the Borel
equivalence relation E0 is not smooth.

Nies and I have written a survey paper on Borel structures [MN].
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