
COUNTING THE BACK-AND-FORTH TYPES

ANTONIO MONTALBÁN

Abstract. Given a class of structures K and n ∈ ω, we study the dichotomy between there
being countably many n-back-and-forth equivalence classes and there being continuum many.
In the latter case we show that, relative to some oracle, every set can be weakly coded in the
(n− 1)st jump of some structure in K. In the former case we show that there is a countable
set of infinitary Πn relations that captures all of the Πn information about the structures in
K. In most cases where there are countably many n-back-and-forth equivalence classes, there
is a computable description of them. We will show how to use this computable description
to get a complete set of computably infinitary Πn formulas. This will allow us to completely
characterize the relatively intrinsically Σ0

n+1 relations in the computable structures of K, and
to prove that no Turing degree can be coded by the (n − 1)st jump of any structure in K
unless that degree is already below 0(n−1).

1. Introduction

This paper is part of the study of the interactions between the structural properties of a
structure and the computational properties of its presentations. Given a class of structures
K and n ∈ ω, we study the interaction between three different types of properties of the nth
Turing jump of the structures in K.

(1) Relations that can be recognized by n jumps. We will work with the notion of a
complete set of Πc

n formulas, which is a set of formulas that capture all of the structural
information about K that can be recognized by n jumps. (The superscript “c” in Πc

n

stands for computable infinitary.) When there is such a set and the formulas are
somewhat natural, we can find a relatively simple description of all the relations on a
structure that are always c.e. in the nth jump of the structure. Another application of
complete sets of Πc

n formulas is the Jump Inversion Theorem for Structures (Theorem
1.3). We will study when is that such a set of formulas exists.

(2) Structures that cannot be distinguished by n jumps. Intuitively, two structures are
n-back-and-forth equivalent if they are indistinguishable using just n Turing jumps.
We will study the dichotomy between there being countably many n-back-and-forth
equivalence classes and there being continuum many. In cases where there are count-
ably many n-back-and-forth equivalence classes, we will get a classification of all the
relatively intrinsically Σ0

n+1 relations as in the paragraph above, possibly relative to
some oracle. In the continuum case, we will see that any set of numbers can be, in
some way, coded in the (n− 1)st jump of some structure in K.

(3) Information coded in n jumps. The dichotomy here is that, relative to some fixed
oracle, either no non-trivial information can be coded by the (n − 1)st jump of any
structure in K, or otherwise, every infinite binary sequence can be so coded.

Let A be a structure and R a relation on it. A common way of measuring the computational,
or arithmetical, complexity of the relation R is in terms of the following hierarchy. We say that

0 Saved: Sept 18th, 2010. Corrected version
Compiled: October 1, 2010

This research was partially supported by NSF grant DMS-0901169 and the AMS centennial fellowship.

1

2 ANTONIO MONTALBÁN

R is relatively intrinsically Σ0
n+1 if for every presentation (B, Q) of (A, R), we have that Q is

computably enumerable in the nth Turing jump of B. These relations are exactly the relations
that we have available when we are working with a certain number of Turing jumps. This
is why the question of what relations on a given structure are relatively intrinsically Σ0

n+1 is
important and useful in the area of computable structure theory. A very satisfactory answer
was given by Ash, Knight, Mennasse and Slaman [AKMS89], and independently Chisholm
[Chi90]. They produced a characterization of these relations in syntactic terms.

Theorem 1.1 ([AKMS89, Chi90], see [AK00, Theorem 10.1]). Let A be a computable struc-
ture, and let R be a relation in A. The following are equivalent.

• R is relatively intrinsically Σ0
n+1.

• R is definable in A by a computable infinitary Σc
n+1 formula with finitely many pa-

rameters from A.

This theorem shows the importance of the computable infinitary Σc
n formulas, which are

one of the main focuses of this paper. (For background information on infinitary languages,
see Section 1.1 or [AK00, Chapters 6 and 7].)

Complete sets of Πn formulas. For certain kinds of structures, one can find a much better
characterization of the relatively intrinsically Σ0

n+1 relations than the one given in Theorem
1.1. For example, the relatively intrinsically Σ0

2 relations on a computable linear ordering are
exactly the 0′-computable unions of relations defined by finitary existential formulas in the
language with ≤ and successor (and finitely many parameters). In general, this type of charac-
terization exists when there is a natural list of computably infinitary Πc

n formulas {P0, P1, ...}
that captures all of the Πc

n structural information about the structure. The following definition
extends the one in [Mon09].

Definition 1.2. Let K be a class of L-structures. Let {P0, P1, ...} be a finite or infinite
computable list of Πc

n formulas. We say that {P0, P1, ...} is a complete set of Πc
n formulas for

K if every Σc
n+1 L-formula is equivalent in K to a Σc,0(n)

1 formula in the language L∪{P0, P1, ...},
and there is a computable procedure to find this equivalent formula. What this says is that
every computable infinitary Σc

n+1 formula can be written as a 0(n)-computable disjunction of
finitary existential formulas that may use the predicates P0, P1,

Note that to show that {P0, P1, ...} is a complete set of Πc
n formulas for K, it suffices to show

that every Πc
n L-formula is equivalent to a Σc,0(n)

1 L∪{P0, P1, ...}-formula (in a uniform way).
We will see examples of complete sets of Πc

n formulas in Section 4. For instance, for the class
of linear orderings and n = 1, the successor relation, together with relations that recognize
the first and last elements, form a complete set of Πc

1 formulas. Therefore, to understand the
relations on a linear ordering recognized by one Turing jump, we only need to understand the
successor relation, and have parameters for the first and last elements.

The main application of having a complete set of Πc
n formulas is the following theorem.

Theorem 1.3 (Jump Inversion Theorem). [Mon09] Let {P0, P1, ...} be a complete set of Πc
n

formulas for K, let A be a structure in K, and let Y ≥T 0(n). Then if (A, PA0 , PA1 , ...) has a
copy computable in Y , there exists X with X(n) ≡T Y such that A has a copy computable in
X.

For instance, from the example above we get that if a linear ordering A has a copy com-
putable in 0′ where the successor relation is also computable in 0′, then A has a low copy.
(This particular case was recently proved, independently, by Frolov [Fro].)

COUNTING THE BACK-AND-FORTH TYPES 3

In our discussion thus far, and also in the 6-page paper [Mon09], we have argued that it
is useful to have natural complete sets of Πc

n formulas. The question that remains is, for
which classes of structures do we have them? Note that we always have at least one countable
complete set of Πc

n formulas, namely the set of all Πc
n formulas. However, we are interested

in finding sets of Πc
n formulas that are simple and natural. One could argue that a natural

complete set of Πc
n formulas should also be complete in the non-effective setting. Thus we

introduce the notion of a complete set of infinitary Πin
n formulas, where we look at formulas

in Lω1,ω which are not necessarily computable. (The superscript “in” in Πin
n stands for

infinitary.)

Definition 1.4. Let K be a class of L-structures. Let {P0, P1, ...} be a finite or infinite set of
Πin
n formulas. We say that {P0, P1, ...} is a complete set of Πin

n formulas for K if every Σin
n+1

L-formula is equivalent in K to a Σin
1 (L ∪ {P0, ...})-formula.

Note that considering the set of all Πin
n formulas as a complete set of Πin

n formulas is not very
manageable, as there are continuum many such formulas. We will investigate the question of
when a countable complete set of Πin

n formulas exists. We will take the non-existence of such
a countable set as an indication of the non-existence of a natural complete set of Πc

n formulas.
The reason for this is that one would expect that a natural complete set of Πc

n formulas is also
Πc
n complete relative to any oracle, and hence Πin

n complete too.

Back-and-forth relations. The back-and-forth relations measure how hard it is to differen-
tiate two structures, or two tuples from the same structure or from different structures. The
idea is that two tuples are n-back-and-forth equivalent if we cannot differentiate them using
only n Turing jumps. Basic model-theoretic information about these relations may be found
in [Bar73], and computability-theoretic information in the work of Ash and Knight [AK00].

Before giving the formal definition, we need a bit of notation. If L is a language with
infinitely many symbols, let L � k denote only the first k symbols in L. Without loss of
generality, assume L is a relational language. If A ∈ K and ā is a tuple of elements of A, we
abuse notation and write ā ∈ A and also (A, ā) ∈ K.

Definition 1.5. We now define the n-back-and-forth relations on tuples of structures of K
by induction on n. Let A,B ∈ K, and let ā ∈ A, b̄ ∈ B be tuples of length k. We say that
(A, ā) ≤0 (B, b̄) if ā and b̄ satisfy the same L � k-atomic formulas. We say that (A, ā) ≤n+1

(B, b̄) if for every c̄ ∈ B there exists d̄ ∈ A such that (A, ād̄) ≥n (B, b̄c̄), where c̄ and d̄ are of
equal length.

The following theorem states three equivalent definitions of these relations showing their
naturally. For a tuple ā ∈ A the Πin

n -type of ā in A (denoted by Πin
n -tpA(ā)) is the set of all

infinitary Πin
n formulas true of ā in A.

Theorem 1.6 (Karp; Ash and Knight [AK00, 15.1, 18.6]). For n ≥ 1, the following are
equivalent.

(1) (A, ā) ≤n (B, b̄),
(2) Πin

n -tpA(ā) ⊆ Πin
n -tpB(b̄),

(3) If we are given a structure (C, c̄) that we know is isomorphic to either (A, ā) or (B, b̄),
deciding whether it is isomorphic to (A, ā) is (boldface) Σ0

n-hard. That is, for every
Σ0
n subset X ⊆ 2ω, there is a continuous operator F : 2ω → K such that, F (x) produces

a copy of (A, ā) if x ∈ X, and a copy of (B, b̄) otherwise.

(Statement (3) is not exactly [AK00, Theorem 18.6], but it can be derived from it by
relativizing; see [HMa].)

4 ANTONIO MONTALBÁN

The relation ≤n is a pre-ordering on {(A, ā) : A ∈ K, ā ∈ A}, and it induces an equivalence
relation and a partial ordering on the quotient as usual. We let (A, ā) ≡n (B, b̄) if (A, ā) ≤n
(B, b̄) and (A, ā) ≥n (B, b̄). We define bfn(K) to be the quotient partial ordering:

bfn(K) =
{(A, ā) : A ∈ K, ā ∈ A}

≡n
,

which is partially ordered by ≤n in the obvious way. One of the ideas we wish to impart in
this paper is that the partial ordering (bfn(K),≤n) can give us useful information about K.
To start, we will see that the size of bfn(K) can tell us quite a bit about K.

Theorem 1.7. Let K be a class of structures. The following are equivalent.
(1) There are countably many ≡n-equivalence classes of tuples in K.
(2) There is a countable complete set of Πin

n formulas.

This theorem will allow us to conclude that for certain K and n there is no natural complete
set of Πc

n formulas. For example, this is the case for linear orderings if n ≥ 3, because bf3(LO)
has size 2ℵ0 . We will see this and other examples in Section 4.

In the countable case, we will see how a good understanding of the structure of (bfn(K),≤n)
can be useful to derive properties of K. If K is a somewhat natural class of structures,
then one would expect that if bfn(K) is countable, the partial ordering (bfn(K),≤n) should
have a computable description. In Definition 2.3 we will introduce the notion of K having a
computable n-back-and-forth structure, and then we will show that if K has this effectiveness
condition, then

• there is a complete set of computable Πc
n formulas for K;

• no non-trivial information can be coded by (n− 1) jumps of any structure in K;
• there exists a family of highly effective structures in K, namely an (n + 1)-friendly

family of computable structures in K with a representative for each n-bftype.
Note that since ≡n is a Borel (actually arithmetic) equivalence relation, Silver’s theorem

[Sil80] implies that if K is a Borel class of structures (e.g., if it is axiomatizable by countably
many Lω1,ω sentences), then bfn(K) either is countable or has size continuum.

Reals coded in isomorphism types. We now look at the information that is coded in the
isomorphism type of a structure, possibly by taking a certain number of Turing jumps.

Definition 1.8. We say that a set D ⊆ ω is coded by a structure A if D is computably
enumerable in every presentation of A. We say that a set D is coded by the nth jump of a
structure A if D is computably enumerable in the nth Turing jump of every presentation of
A. Given σ ∈ 2<ω and D ∈ 2ω, we say that σ ≤Q D if for the largest τ with τ ⊆ σ and τ ⊆ D,
we have D(|τ |) = 1. We say that a set D is weakly coded by the nth jump of a structure A if
{σ ∈ 2<ω : σ ≤Q D} is coded by the nth jump of A.

The question of characterizing the sets D that are coded in a structure was studied by Ash
and Knight [AK00, Section 10.6]. Their answer requires the notion of enumeration-reducibility
that we review in Section 1.1.

Theorem 1.9. [AK00, 10.17] Let A be a structure. A set D is coded by A if and only if D
is enumeration-reducible to the finitary-Σ1-type of some tuple ā ∈ A. A set D is coded by nth
jump of A if and only if D is enumeration-reducible to Σc

n+1-tpA(ā) for some ā ∈ A.

Proof. The proof of the first statement is given in [AK00, 10.17]. For the second statement,
one could either modify the proof of [AK00, 10.17], or apply the Jump Inversion Theorem
(Thorem 1.3) to A together with all the Πc

n relations and then apply [AK00, 10.17] to the
Σ1-types in the extended language. �

COUNTING THE BACK-AND-FORTH TYPES 5

Therefore, the class of sets D which are coded by the nth jump of some structure in K is
exactly the class of sets which are enumeration-reducible to Σc

n+1-tp(α) for some α ∈ bfn+1(K).
The connection between the number of sets that can be coded and the size of bfn+1(K) is
immediate:

Observation 1.10. Let K be a Borel class of structures. The following are equivalent.
(1) There are countably many ≡n-equivalence classes.
(2) There are countably many Σc

n-types realized by tuples in K.
(3) There exists an oracle relative to which the only sets of numbers that can be coded by

the (n− 1)st jump of some structure in K are those that are already c.e. in 0(n−1).

That (1) =⇒ (2) and that (2) =⇒ (3) follows from previous observations. That (3) =⇒ (1)
is proved in Theorem 3.1. There we will see that if there are uncountably many ≡n-equivalence
classes, every set can be weakly coded by the (n− 1)st jump of some structure in K, relative
to some fixed oracle.

Structures that have Turing degree. With the intention of measuring the complexity of a
structure, Jockusch and Richter defined the Turing degree of a structure to be the least degree
that can compute a copy of it. When such a least degree exists, we say that the structure has
Turing degree. It was then shown by Richter [Ric81] that very many structures do not have
Turing degree. Nowadays, the degree spectrum is the standard measure the computational
complexity of a structure, and a good deal of research has been devoted to understanding the
possible shapes of degree spectra. However, some structures do have have Turing degree and
researchers are still interested in studying these structures because they have the simplest kind
of degree spectrums, namely upper-cones, which is sometimes useful for other applications.
For instance, it is well known that there are graphs, rings, groups, etc. with any given Turing
degree. Calvert, Harizanov, and Shlapentokh [CHS07] have recently shown that there are also
fields and torsion-free abelian groups with any given Turing degree, and in their introduction
they mention previous work by others.

Definition 1.11. A structure A has degree D ⊆ ω, if for every oracle X, X can compute a
copy of A if and only if X can compute D. A structure A has nth jump degree D ≥ 0(n) if,
for every oracle X ≥ 0(n), X can compute the nth jump of a presentation of A if and only if
X can compute D.

Note that ifA has degree D, then both D and D are coded byA (where D is the complement
of D). Thus it is not hard to prove that A has degree D if and only if D can compute a copy
of A and D ⊕ D is coded by A, in which case it follows from Theorem 1.9 that D ⊕ D is
enumeration-equivalent to the finitary-Σ1-type of some tuple in A. Furthermore, if D is the
nth jump enumeration degree of A, then D ⊕D is enumeration-equivalent to the Σc

n+1-type
of some tuple of A. This implies Richter’s old result [Ric81] that if a structure A has the
computable extensions property, and it has Turing degree, this degree must be zero. In terms
of the notions considered in this paper, the computable extensions property says that each
finitary-Σ1-type realized in A is computable.

The following definition is due to Jockusch and Soare [JS94]: A class of structures has
Turing ordinal α if every Turing degree d ≥T 0(α) is the αth jump degree of some structure
in the class and, for every β < α, 0(β) is the only possible βth jump degree of any structure
in K. From Observation 1.10, we get the following result.

Theorem 1.12. Let K be a class of structures with countably many ≡n-equivalence classes
but uncountably many ≡n+1-equivalence classes. Suppose that K has Turing ordinal m. Then
n ≤ m.

6 ANTONIO MONTALBÁN

For most of the natural classes K that satisfy they hypothesis of this theorem, we will get
that K has Turing ordinal n.

1.1. Background and Notation.

1.1.1. Infinitary languages. We will use the infinitary language Lω1,ω and its effective version
throughout this paper. We refer the reader to [AK00, Chapters 6 and 7] for background on
infinitary formulas. Let L be a countable computable language, which we fix for the rest of
the paper. Without loss of generality, we assume L is a relational language. Lω1,ω is the set of
first-order L-formulas where countably infinite disjunctions and conjunctions are allowed, but
formulas are allowed to have only a finite number of free variables. These infinitary formulas
are arranged in a hierarchy as follows: Given α < ω1, we say that a formula ϕ(x̄) is Σin

α if it is
of the form

∨
i∈ω ∃ȳiϕi(x̄ȳi) where each ϕi(x̄ȳi) is Πin

β for some β < α. Of course, Πin
α formulas

are the negations of Σin
α formulas, and Σin

0 formulas are the finitary quantifier free formulas
to be able to talk about c.e. sets of Σc

n formulas. When we consider computable infinitary
formulas, we require the infinite disjunctions and conjunctions to be computably enumerable.
The hierarchy of computable infinitary formulas is defined in a similar way as for Lω1,ω, but
keeping track of ordinal notations and indices for formulas. In this paper we will deal only
with finite ordinals. We denote the classes of formulas in this hierarchy by Σc

n and Πc
n. At

times we will consider computable infinitary formulas relative to some oracle X, in which
case we allow the infinite disjunctions and conjunctions to be X-computably enumerable. We
denote the relativized hierarchies of formulas by Σc,X

n and Πc,X
n . Note that every Σin

n formula
is Σc,X

n for some X.

1.1.2. Back-and-forth relations. Recall that bfn(K) is the set of n-back-and-forth equivalence
classes of tuples of elements from structures in K. We use the term n-bftypes for the elements
of bfn(K). Given α ∈ bfn(K), we use |α| = k to denote that α is the n-bftype of a k-
tuple 〈a1, ..., ak〉, and we define bfn,k(K) as {α ∈ bfn(K) : |α| = k}. We write bf<n(K) for⋃
i<n bfi(K).
Recall that Πin

n -tpA(ā) = Πin
n -tpB(b̄) whenever (A, ā) ≡n (B, b̄). Thus given α ∈ bfn(K),

we use Πin
n -tp(α) to denote the set of Πin

n formulas ϕ(x̄) with |x̄| = |α| such that, for every
—equivalently, some— (A, ā) of n-bftype α, A |= ϕ(ā). This gives us a one-to-one correspon-
dence between bfn(K) and the set of Πin

n -types realized in K. We define Πc
n-tp(α) to be the

set of computable infinitary formulas in Πin
n -tp(α). For a Πin

n formula ϕ(x̄) with |x̄| = |α|,
we write α |= ϕ if ϕ ∈ Πin

n -tp(α). Given a class of formulas Γ ⊆ Πin
n , we define Γ-tp(α) as

{ϕ ∈ Γ|α |= ϕ}. If α is a 0-bftype, we define α |= ϕ only for quantifier-free formulas which
use only the first |α| symbols of the language. Note that the 0-bftypes of length k are in
one-to-one correspondence with the L � k-atomic diagrams of tuples of length k, and hence
bf0,k(K) is finite for every k (recall that L is relational).

Given α, β ∈ bfn(K) with |α| ≤ |β|, we say that α ⊆ β if for every —equivalently,
some— (A, b1, ..., b|β|) of n-bftype β, (A, b1, ..., b|α|) has n-bftype α. If τ is a permutation of
{0, 1, ..., |α| − 1}, we use α =τ β to denote that every —equivalently, some— (A, a0, ..., a|α|−1)
of n-bftype α, (A, aτ(0), ..., aτ(|α|−1)) has n-bftype β.

Given α ∈ bfn(K), we define extn(α) ⊆ bfn−1(K) to be the set of δ ∈ bfn−1(K) such that,
for every —equivalently, some— (A, ā) of n-bftype α, there is some d̄ ∈ A such that (A, ād̄)
has (n − 1)-bftype ≥n−1 δ. Observe that extn(α) is closed downwards under ≤n−1. More
importantly, note that α ≤n (B, b̄) if and only if, for every c̄ ∈ B, (B, b̄c̄) has (n− 1)-bftype in
extn(α). It follows that for α, β ∈ bfn(K), α ≤n β if and only if extn(β) ⊆ extn(α).

COUNTING THE BACK-AND-FORTH TYPES 7

1.1.3. Enumeration reducibility. A set D is enumeration-reducible to a set E, which we write
as D ≤e E, if there is an effective procedure that, given an enumeration of E, produces an
enumeration of D. We say that D and E are enumeration-equivalent if D ≤e E and E ≤e
D. We call the equivalence classes e-degrees. (See [Coo90] for background on enumeration
degrees.) We recall Selman’s theorem [Sel71] that says that D ≤e E if and only if whenever E
is c.e. in a set X, so is D. The map D 7→ D⊕D gives an embedding of the Turing degrees into
the e-degrees (where D is the complement of D). An e-degree is said to be total if it is in the
image of this embedding. For instance, the image of 0(n) under this embedding is 0(n) ⊕ 0(n),
which is enumeration-equivalent to 0(n+1) and also to 0(n).

2. Countably many n-bf types

We start this section by proving Theorem 1.7 and Observation 1.10. Then, we will study
the case where the back-and-forth relations are computably describable.

Theorem 2.1. Let K be a Borel class of structures. The following are equivalent.
(1) There are countably many ≡n-equivalence classes of tuples from K.
(2) There is a countable complete set of Πin

n formulas.
(3) There exists an oracle relative to which the only sets of numbers that can be coded by

the (n− 1)st jump of some structure in K are the ones computable in the oracle.

Before proving this theorem, we prove the following lemma.

Lemma 2.2. If bfn−1(K) is countable, then for each α ∈ bfn(K) there exists a Πin
n formula

ϕα(x̄) with |x̄| = |α| such that, for all (B, b̄) ∈ K,

α ≤n (B, b̄) ⇐⇒ B |= ϕα(b̄).

Proof. The idea of this proof comes from [HMb].
For every m < n, bfn−1(K) is countable, so by induction we can assume that for each

δ ∈ bfn−1(K) there exists such a Πin
n−1 formula ϕδ. Recall that extn(α) ⊆ bfn−1(K) is the set

of δ such that every (A, ā) of n-bftype α has an extension (A, ād̄) of (n − 1)-bftype ≥n−1 δ.
Also recall that extn(α) is closed downward under ≤n−1, and that α ≤n (B, b̄) if and only if,
for every c̄ ∈ B, (B, b̄c̄) has (n− 1)-bftype in extn(α). Therefore α ≤n (B, b̄) if and only if, for
every c̄ ∈ B and every δ ∈ bfn−1(K), if δ ≤n−1 (B, b̄c̄) then δ ∈ extn(α). The contrapositive
says that if δ 6∈ extn(α), then δ 6≤n−1 (B, b̄c̄) for any c̄ ∈ B. We can now let

ϕα(x̄) =
∧

δ∈bfn−1(K),
δ 6∈extn(α)

∀ȳ¬ϕδ(x̄ȳ),

where the tuple of variables ȳ in each disjunct has length |δ| − |α|. �

Now we have that ϕα ∈ Πin
n -tp(α) — and that, for every (B, b̄), if B |= ϕα(b̄) then b̄ realizes

Πin
n -tp(α). In other words, we have that

Πin
n -implK(ϕα) = Πin

n -tp(α),

where Πin
n -implK(ϕ) is the set of Πin

n implications of ϕ in K. That is, Πin
n -implK(ϕ) is the

set of Πin
n formulas ψ(x̄) such that, for every (B, b̄) ∈ K, if B |= ϕ(b̄) then B |= ψ(b̄). We can

read this lemma as saying that if bfn−1(K) is countable, then every Πin
n -type realized in K is

principal.

Proof of Theorem 2.1. Assume (1) holds, and let us prove (2). From (1), we get that bfn−1(K)
is countable. From the lemma, we know that for each α ∈ bfn(K) there exists a Πin

n formula
ϕα(x̄) with |x̄| = |α| such that, for all (B, b̄) ∈ K, α ≤n (B, b̄) ⇐⇒ B |= ϕα(b̄).

8 ANTONIO MONTALBÁN

To get (2), we will show that the set of formulas ϕα for α ∈ bfn(K) is a complete set of Πin
n

formulas: Given a Πin
n formula ψ(x̄) with |x̄| = k, we claim that

ψ(x̄) ⇐⇒
∨

α∈bfn,k(K),
α|=ψ

ϕα(x̄).

For the direction from left to right, suppose that A |= ψ(ā). Then if α is the n-bftype of
(A, ā), we have that α |= ψ and A |= ϕα(ā). Thus (A, ā) satisfies the right-hand side. For
the other direction, suppose that (A, ā) satisfies ϕα for some α with α |= ψ. It follows that
α ≤n (A, ā) and —since ψ is Πin

n — A |= ψ(ā).
Assume (2) holds, and let us prove (1). Let R1, R2, ... be a countable complete set of Πin

n

formulas. We will not use the fact that the formulas R1, R2, ... are Πin
n themselves, but just that

every Σin
n+1 L-formula is equivalent to a Σin

1 (L∪{R1, ...})-formula. The proof is by induction
on n. Since we know that every Σin

n L-formulas is equivalent to a Σin
1 (L∪ {R1, ...})-formula,

we get, by the induction hypothesis, that there are countably many (n−1)-bftypes. Therefore,
by Lemma 2.2, for each α ∈ bfn(K) there exists a Πin

n formula ϕα(x̄) with |x̄| = |α| such that,
for all (B, b̄) ∈ K, α ≤n (B, b̄) ⇐⇒ B |= ϕα(b̄).

The goal is to show that for each α ∈ bfn(K) there is a finitary-Σ1-(L ∪ {R1, ...})-formula
ψα whose set of Πin

n implications (Πin
n -implK(ψα)) is Πin

n -tp(α). This would imply that to
each α corresponds a different formula ψα, and since there are only countably many finitary-
Σ1-(L ∪ {R1, ...})-formulas, we would get that bfn(K) is countable. By assumption, ϕα is
equivalent to a Σin

1 (L ∪ {R1, ...})-formula ∨
j

ψα,j ,

where each ψα,j is a finitary-Σ1-(L∪{R1, ...})-formula. Let (A, ā) ∈ K have n-bftype α. Since
A |= ϕα(ā), there is some j (call it jā) that A |= ψα,jā(ā); let us write ψα for ψα,jā . Using the
fact that ψα implies ϕα, we get that

Πin
n -tp(α) = Πin

n -implK(ϕα) ⊆ Πin
n -implK(ψα).

And using the fact that A |= ψα(ā), we get that

Πin
n -implK(ψα) ⊆ Πin

n -tpA(ā) = Πin
n -tp(α).

It then follows that Πin
n -implK(ψα) = Πin

n -tp(α), as desired.
To see that (1) implies (3), recall that a set D is coded by the (n − 1)st jump of some

structure A if, for some ā ∈ A, D can be enumerated from Σc
n-tpA(ā). This means that the

class of sets coded by the (n− 1)st jump of some structure in K is exactly

{D ⊆ ω : ∃α ∈ bfn(K)
(
D ≤e Σc

n-tp(α)
)
}.

If bfn(K) is countable, so is this class of sets, hence there exists some oracle that computes
every set in the class.

That (3) implies (1) follows from the implication (1) =⇒ (3) in the statement of Theorem
3.1. We defer the proof until then. �

We remark that the equivalence between (1) and (2) did not use the hypothesis that K is
Borel.

2.1. Effective case. We now look at the statements in Theorem 2.1 in an effective context.
If bfn(K) is countable and K is a somewhat natural class of structures, we conjecture that the
partial ordering (bfn(K),≤n) should have a computable description.

COUNTING THE BACK-AND-FORTH TYPES 9

Definition 2.3. We refer to the following family of structures, together with a map that
assigns to each 0-bftype α, it’s L � |α|-atomic diagram, as the n-back-and-forth structure of K:

{(bfi(K);≤i, exti(·),⊆,=τ) : i ≤ n} .

We say that K has a computable n-back-and-forth structure if all the structures in this family
have computable presentations and the map that assigns to each 0-bftype α, it’s L � |α|-atomic
diagram is computable.

By =τ we mean the ternary relation {(α, β, τ) : α, β ∈ bfi,k(K), k ∈ ω, τ a permutation of {0, 1, ..., k−
1}, α =τ β}. Note that |α| can be defined using ⊆. By exti we mean the binary relation
{(α, δ) : δ ∈ exti(α)}. Recall that δ ∈ exti(α) if for every (A, ā) of i-bftype α, there exists
d̄ ∈ A with (A, ād̄) ≥i−1 δ.

We will show that this property implies the existence of a complete set of Πc
n formulas, the

existence of highly effective structures in K, and the non-existence of non-trivial sets coded
by the (n− 1)st jump of the structures in K.

Lemma 2.4. If K has a computable n-back-and-forth structure, then for i ≤ n,
(1) given a Σc

i formula ψ and α ∈ bfi(K), deciding whether α |= ψ is c.e. in 0(i−1),
uniformly in α and ψ. For i = 0, deciding whether α |= ψ for the appropriate ψ is
computable.) ;

(2) for each α ∈ bfi(K) there is a Πc
i formula ϕα(x̄) such that, for every (B, b̄) ∈ K,

B |= ϕα(b̄) if and only if α ≤i (B, b̄). ;
(3) {ϕα : α ∈ bfn(K)} is a complete set of Πc

n relations for K.

The proof of this lemma is essentially due to Harris and Montalbán [HMb]. They proved it
only for the case of Boolean algebras, but the idea generalizes.

Proof. For (1) and i = 0, if α is a 0-bftype and ψ is a finitary, quantifier-free formulas that
uses relation symbols in L � |α|, then deciding whether α |= ψ is easily computable since we
have a map that assigns to each 0-bftype α, its L � |α|-atomic diagram. The rest of the proof
is by induction on i. Consider a Σc

i+1 formula ψ(x̄) =
∨
j ∃ȳψj(x̄ȳ), where the ψj ’s are Πc

i ,
and consider an (i+ 1)-bftype α. We claim that

α |= ψ ⇐⇒ ∃j ∈ ω ∃β ∈ exti+1(α)
(
β |= ψj

)
.

This would imply that deciding whether α |= ψ is c.e. in 0(i) because, by the induction
hypothesis, deciding whether β |= ψj is co-c.e. in 0(i−1). For the direction from left to right,
we have that if (A, ā) has (i + 1)-bftype α and A |= ψ(ā), then there exists j ∈ ω and b̄ ∈ A
such A |= ψj(āb̄). Let β be the i-bftype of (A, āb̄); then β ∈ exti+1(α) and β |= ψj . For
the direction from right to left, let (A, ā) have (i+ 1)-bftype α, and suppose that, for some j
and some β ∈ exti+1(α), we have β |= ψj . Since β ∈ exti+1(α), there exists b̄ ∈ A such that
β ≤i (A, āb̄). Since ψj is Πc

i , we get that A |= ψj(āb̄), and hence that A |= ψ(α), as desired.
We have already essentially proved (2) in the proof of Lemma 2.2. There, for α ∈ bfi(K)

we defined
ϕα(x̄) =

∧
β∈bfi−1(K),
β 6∈exti(α)

∀ȳ¬ϕβ(x̄, ȳ),

where ϕβ is Πin
i−1 and was defined inductively. This time we use that exti(α) is computable

to get a computable conjunction and get a Πc
i formula. In addition we use the fact that

exti(·, ·) is computable to get the definition of ϕα to be uniform in α, which is necessary for
the induction step.

10 ANTONIO MONTALBÁN

For (3) we use the same idea as in the proof of Theorem 2.1. Given a Πc
n formula ψ, we get

that
ψ(x̄) ⇐⇒

∨
α∈bfn(K),
α|=ψ

ϕα(x̄).

Note that, by part (1), 0(n) can effectively list all the disjuncts on the right-hand side, so the
formula is Σc,0(n)

1 in the language with relation symbols for {ϕα : α ∈ bfn(K)}. �

Remark 2.5. In Lemma 2.2 and in part (2) of Lemma 2.4 we proved not only that, for every
α ∈ bfi(K), ϕα is Πc

i , but also that ϕα is a Πc
1 formula in the language L∪{ϕβ : β ∈ bfi−1(K)}.

Also, observe that every Πc
n formula ψ is equivalent to a disjunction of a 0(n)-computable

subset of {ϕα : α ∈ bfn(K)}. Thus, if we want to show that a certain set of formulas {R1, ...}
is complete Πc

n, we only need to show that each ϕα is equivalent to a Σc,0(n)

1 formula in the
language with {R1, ...}.

The next corollaries show that, with these effectiveness conditions, no non-trivial coding
can be done using n− 1 jumps of any structure of K.

Corollary 2.6. If K has a computable n-back-and-forth structure, then 0(n−1) is the greatest
enumeration-degree that can be coded by the (n− 1)st jump of any structure in K.

Proof. The reason is that if D is coded by the (n− 1)st jump of some structure A ∈ K, then
D is enumeration-reducible to Σc

n-tpA(ā) for some ā ∈ A. But part (1) of the lemma above
implies that Σc

n-tp(α) is c.e. in 0(n−1) for every α ∈ bfn(K). Therefore, any such D is also c.e.
in 0(n−1), and hence is enumeration-reducible to 0(n−1). �

Corollary 2.7. If K has a computable n-back-and-forth structure, and A ∈ K has (n − 1)st
jump enumeration degree d, then d is enumeration-equivalent to 0(n−1).

Next, we will show how this effectiveness condition implies the existence of highly effective
structures in K.

Definition 2.8. [AK00, Section 15.2] A computable sequence of structures {Ai : i ∈ ω} is
(n+1)-friendly if the back-and-forth relations ≤j for j ≤ n are all computably enumerable even
between tuples from different structures. That is, the set of quintuples {(j, i0, ā0, i1, ā1) : j ≤
n, i0, i1 ∈ ω, ā0 ∈ Ai0 , ā1 ∈ Ai1 such that (Ai0 , ā0) ≤j (Ai1 , ā1)} is computably enumerable.

Having a family of (n+ 1)-friendly structures is useful for many applications. For instance,
using [AK00, 18.6] we get an effective version of Theorem 1.6: If {A,B} is a family of (n+ 1)-
friendly structures and A ≤n B, then for every Σ0

n set S ⊆ ω, there exists a computable
sequence of structures {Ck : k ∈ ω} such that for k ∈ S, Ck is isomorphic to A, and for k 6∈ S,
Ck is isomorphic to B.

For the following three proofs, we use the following terminology and notation: Given
(A, ā) ∈ K, where ā has length k, we define the 0-type of ā in A to be the L � k-atomic
diagram of ā. If K is a class of structures, we denote the set of 0-types of tuples in K by
Kfin. We think of Kfin as listing the finite substructures A of structures A in K where only
the first |A| many relations are defined in A. Note that saying that K has a computable
0-back-and-forth structure is equivalent to saying that Kfin is computably enumerable.

Lemma 2.9. Let M be a class of structures that is axiomatizable by a Πc
2 sentence in a rela-

tional language, and suppose that Mfin is computably enumerable. Then there is a computable
structure in M.

COUNTING THE BACK-AND-FORTH TYPES 11

Proof. Let L = {R1, R2,}, and let ψ =
∧
i ψi be the Πc

2 axiom for M, where each ψi is of
the form ∀x̄

∨
j ∃ȳψi,j(x̄, ȳ) and ψi,j is quantifier free.

We construct a computable structure A ∈M by stages. At stage s we build As with finite
domain where all the relations R1, ..., R|As| have been decided and As is in Mfin. At stage
s+ 1 = 〈i, k〉, we act to make ψi true in A. We know that As is a finite substructure of some
B ∈ M and that B |= ∀x̄

∨
j ∃ȳψi,j(x̄, ȳ). There must exist some finite extension As+1 of As

which is in Mfin and has the property that ∀x̄ ∈ As
∨
j ∃ȳ ∈ As+1

(
As+1 |= ψi,j(x̄, ȳ)

)
. Since

Mfin is computably enumerable, we will eventually find such an As+1. Define A =
⋃
sAs.

Since we acted for each ψi infinitely often, A |= ψi for every i, so A ∈M. �

Proposition 2.10. Suppose K is axiomatizable by a Πc
2 sentence and has a computable n-

back-and-forth structure. Then there is a computable, (n + 1)-friendly sequence of structures
{Ai : i ∈ ω} in K such that, for every α ∈ bfn(K), there exists i ∈ ω and ā ∈ Ai with n-bftype
α.

Proof. Consider the language L̂ = L ∪ {ϕα : α ∈ bf≤n(K)} ∪ {ψα : α ∈ bf≤n(K)}, where ϕα
is as in Lemma 2.4 and ψα(x̄) is the relation that says that x̄ has bftype exactly α. First, we
note that the L̂-sentences that define the predicates ϕα and ψα are Πc

2: Recall from Lemma
2.4 and Remark 2.5 that, for α ∈ bfi(K), ϕα is equivalent to a Πc

1 formula in the language
L∪ {ϕβ : β ∈ bf<i(K)}. Then, the sentence that says that, for every x̄, ϕα(x̄) is equivalent to
this Πc

1 L̂-formula, is Πc
2. Also, we add the Πc

2 L̂-sentence that says that, for every x̄, ψα(x̄)
is equivalent to the Πc

1 L̂-formula
(
ϕα(x̄) &

∧
β 6≤nα

¬ϕβ(x̄)
)
. We can now add the definitions

of the predicates ϕα and ψα to the axioms of K and stay axiomatizable by a Πc
2 L̂-sentence.

For each α ∈ bfn(K), let Kα be the class of L̂-structures in K which have a tuple of n-bftype
α. Note that this is still Πc

2-axiomatizable, as we have to add only an existential L̂-sentence.
Our goal now is to show that Kα contains a computable structure for which we use the previous
lemma. Let Kfin

α be the set of 0-L̂-types of tuples in Kα; we claim that Kfin
α is computably

enumerable. First, note that to enumerate Kfin
α it suffices to consider the tuples which contain

a sub-tuple of n-bftype α. The key observation is that, given β ∈ bfn(K) with α ⊆ β, we can
compute the 0-L̂-type of any tuple b̄ of n-bftype β by using our computable n-back-and-forth
structure. So, we can enumerate Kfin

α using the set {β ∈ bfn(K) : α ⊆ β}, which is computable.
Therefore, by the previous lemma, we get that Kα contains a computable structure Aα.

Furthermore, the construction of Aα in the proof of Lemma 2.9 is uniform in α. Let M =
{Aα : α ∈ bfn(K)}. Clearly, every n-bftype is represented in M. We claim that M is (n+ 1)-
friendly. For each structure Aα and each j ≤ n, we can uniformly define a computable map
fα,j : A<ωα → bfj(K) by letting fα,j(ā) be the j-bftype of (Aα, ā). (Define fα,j(ā) computably
by searching for β ∈ bfj,|ā|(K) such that Aα |= ψβ(ā) and letting fα,j(ā) = β.) Then given
(Aα, ā) and (Aβ, b̄), we can decide whether (Aα, ā) ≤j (Aβ, b̄) by checking whether fα,j(ā) ≤j
fβ,j(b̄) in bfj(K). �

Remark 2.11. The assumption that L is a relational language is without loss of generality,
since the sentence that says that a relation symbol represents a function is Πc

2.

Proposition 2.12. Let K be a class of structures that is Πc
2 axiomatizable and has a com-

putable n-back-and-forth structure. Given D ≥T 0(n), the following are equivalent:
(1) There is a structure in K which has nth jump degree D.
(2) For some α ∈ bfn+1(K), D ⊕D ≡e Σc

n+1-tp(α).

Proof. We already have that (1) implies (2), as explained in the paragraph immediately fol-
lowing Definition 1.11.

12 ANTONIO MONTALBÁN

For the other direction, suppose that D ⊕D ≡e Σc
n+1-tp(α). We need to show that D can

compute the nth jump of a structure A ∈ K which has a tuple of (n+ 1)-bftype α. We would
then have that A has degree D.

Extend the language to L̂ by adding the relations ϕβ for all β ∈ bf≤n(K), and add the
Πc

2 axioms that define these relations, as in the proof of Proposition 2.10. Note that Σc
n+1-

L-tp(α) is determined by Σ1-L̂-tp(α). Furthermore, since {ϕα : α ∈ bfn(K)} is a complete
set of Πc

n formulas, we can computably translate Σc
n+1 L-formulas into Σc,0(n)

1 L̂-formulas and
vice versa. Therefore, relative to 0(n), we have that Σc

n+1-L-tp(α) is enumeration-equivalent
to Σ1-L̂-tp(α) (i.e., the finitary-Σ1-L̂-type of α).

We want a Πin
2 L̂-sentence that says that a structure has a tuple of (n+ 1)-bftype α. Since

we want to keep the language relational, we add one |α|-ary relation Rα to L̂, and then we add
the sentence that says that Rα is non-empty, as well as the Πin

2 sentence that says that, for
every x̄, if Rα(x̄) then x̄ has Σ1-type Σ1-L̂-tp(α). Since Σ1-L̂-tp(α) is c.e. in D, this sentence
is not Πc

2, but it is Πc
2 relative to D. Let Kα be the class of L̂-structures that satisfy these

sentences. We need to show that D can compute a structure in Kα. Since from D we can
enumerate Σ1-L̂-tp(α), we can also enumerate all 0-L̂-types of tuples in Kα (i.e., Kfin

α). Now
from Lemma 2.9 relativized to D, we get that D can compute an L̂-structure Â in Kα. Let A
be the L-structure obtained by restricting Â to the language L. By Theorem 1.3, using the
fact that {ϕα : α ∈ bfn(K)} is a complete set of Πc

n formulas, we get that A has a copy whose
nth jump is computable in D, as desired. �

3. Continuum many n-bftypes

We now turn into looking at the other side of the dichotomy: the case where there are
uncountably many n-bftypes. Recall from the Introduction that if K is a Borel class (for
instance if K is axiomatizable by countably many Lω1,ω sentences) then bfn(K) either is
countable or has size continuum.

Theorem 3.1. Let K be a Borel class of structures, and let n ∈ ω. The following are equiva-
lent.

(1) There are continuum many ≡n-equivalence classes of tuples in K.
(2) There is no countable complete set of Πin

n formulas for K.
(3) Relative to some fixed oracle, every set can be weakly coded into the (n− 1)st jump of

some structure in K.

Proof. By taking negations, we know from Theorem 2.1 that (1) is equivalent to (2), and that
(3) implies (1).

Assume (1); we want to prove (3). Suppose that there are countably many (n− 1)-bftypes.
Otherwise, replace the existing n by the least n such that there are continuum many n-bftypes,
and note that if (3) is true for the new value of n, it is true for all m ≥ n. For some k ∈ ω, we
have that bfn,k(K) has size continuum. We will assume k = 0 to simplify the notation needed
in the proof; the general case is essentially the same.

Extend the language to L̂ by adding the relations ϕα for all α ∈ bf<n(K), and add the
axioms that define these relations, as in the proof of Proposition 2.10. If L̂ is not computable,
relativize the rest of the proof to the Turing degree of L̂. Also, by relativizing to some oracle
if necessary, assume that {ϕα : α ∈ bfn−1(K)} is a complete set of Πc

n−1 formulas (recall that

we do know it is Πin
n−1-complete). Thus, all the Σc

n L-formulas are equivalent to Σc,0(n−1)

1 L̂-
formulas, and the Σin

n -L-types of the tuples in K are determined by their finitary-Σ1-L̂-types.

COUNTING THE BACK-AND-FORTH TYPES 13

Now we define tA ∈ 2ω to be the characteristic function of the finitary-Σ1-L̂ theory of
A. More formally: Enumerate all the finitary-Σ1-L̂ sentences in a list (ψ0, ψ1, ...). For every
structure A let tA ∈ 2ω be such that tA(i) = 1 if A |= ψi and tA(i) = 0 otherwise. Observe
that the set {i : tA(i) = 1} can be coded by the (n − 1)st jump of A (because the (n − 1)st
jump of any presentation of A can compute the relations in L̂ and then enumerate Σ1-L̂-tpA).
Let R = {tA : A ∈ K} ⊆ 2ω. Note that Σin

n -tpA is determined by tA, and hence tA = tB if and
only if A ≡n B. Thus, by (1), R has size continuum. Notice that R ⊆ 2ω is a Σ1

1 class, because
R is the image of K under t, K is Borel, and t is arithmetic. Since R is uncountable and Σ1

1,
Suslin’s theorem (see [Mos80, Corollary 2C.3]) says that R has a perfect closed subset [T],
determined by some perfect tree T ⊆ 2<ω (where [T] is the set of paths through T). In what
follows, we relativize our construction to T , so we assume T is computable. Thinking of T as
an order-preserving map 2ω → 2ω, for X ∈ 2ω we let T (X) be the path through T obtained
as the image of X under this map. For each X, T (X) gives us a Σ1-L̂-type that is consistent
with K and of Turing degree X (modulo all the relativization we have already done). There is
some A ∈ K with Σ1-L̂-type tA = T (X), and hence T (X) can be enumerated by the (n− 1)st
jump of any presentation of A. One can show that {σ ∈ 2<ωX} is enumeration reducible to
T (X). If follows that X is weakly coded by the (n− 1)st jump of A. We chose X arbitrarily,
so any set can be weakly coded into the (n− 1)st jump of some structure A of K. �

4. Examples

In this section we briefly discuss the n-back-and-forth structures of linear orderings for
n = 1, 2, 3 and of equivalence structures for n = 1, 2. We also include references to the work
done on Boolean algebras for all n.

4.1. Linear Orderings. Linear orderings have Turing ordinal 2, as shown by Knight [Kni86].
We will roughly analyze their n-back-and-forth structure for n = 0, 1, 2, and include a proof
that there are uncountably many 3-bftypes. We will then look at the conclusions obtained by
applying the results from the previous sections.

Let LO be the class of linear orderings. For simplicity we will consider only tuples of distinct
elements in the study of bfn(LO). We lose no generality with this assumption.

For each k, the 0-bftype of a tuple ā of length k is given by the order of its elements, so
bf0,k(K) is isomorphic to the set of permutations of {0, ..., k − 1}. A tuple ā of length k has
0-bftype τ if aτ(0) < aτ(1) < · · · < aτ(k−1). Of course, given permutations τ1, τ2, we have that
τ1 ≤0 τ2 if and only if τ1 = τ2.

The following two lemmas are useful tools to calculate the back-and-forth relations on linear
orderings.

Lemma 4.1. [AK00, 15.7] Suppose A and B are linear orderings. Let ā = 〈a0, ..., ak−1〉 and
b̄ = 〈b0, ..., bk−1〉 be increasing tuples from A, B respectively, and let Ai, Bi be intervals such
that

A = A0 + {a0}+A1 + {a1}+ · · ·+Ak−1 + {ak−1}+Ak,
B = B0 + {b0}+ B1 + {b1}+ · · ·+ Bk−1 + {bk−1}+ Bk.

Then (A, ā) ≤n (B, b̄) if and only if for all i ≤ k, Ai ≤n Bi.

It follows that, for each k, bfn,k(LO) is isomorphic to bf0,k(LO)× (bfn,0(LO))k+1 ordered
coordinate-wise. Thus, to understand the back-and-forth relations on tuples of size k, it
suffices to look at these relations on the empty tuple.

14 ANTONIO MONTALBÁN

Lemma 4.2. [AK00, 15.8] Suppose A and B are linear orderings. Then A ≤1 B if and only
if A is infinite or at least as large as B. For n > 1, A ≤n B if and only if for any partition
of B into intervals B0, ...,Bk with endpoints in B, there is a corresponding partition of A into
intervals A0, ...,Ak with endpoints in A, such that Bi ≤n−1 Ai.

The 1-back-and-forth relations. We now analyze bf1,0(LO). All the infinite linear orderings
are ≡1-equivalent to each other. Let us denote this equivalence class of linear orderings by∞.
Note that every finite linear ordering A is >1-greater than any infinite linear ordering. For
each natural number n, let the number n denote the linear ordering with n elements. Two
finite linear orderings are ≡1-equivalent if and only if they have the same size, so we get an ≡1-
equivalence class for each n ∈ ω. Note that n ≤1 m if and only if n ≥N m. Thus, the partial
ordering of 1-bftypes among empty tuples, (bf1,0(LO),≤1), is isomorphic to ω ∪ {∞} with
the reverse ordering ≥N. The relation ext1 can easily be computed, so LO has a computable
1-back-and-forth structure.

From Lemma 2.4, it follows that LO has a complete set of Πc
1 relations given by {ϕα :

α ∈ bf1(LO)}. We can simplify this set of formulas quite a bit. We claim that the formulas
first(x), last(x), succ(x, y) form a complete set of Πc

1 formulas, where first(x) says that x is
the first element of the linear ordering, last(x) that x is the last element, and succ(x, y) that
x < y and there is no element between x and y. From Remark 2.5, it suffices to show that we
can express each ϕα as a Σc,0′

1 formula that may use ≤, first(x), last(x) and succ(x). First, for
m ∈ bf1,0 = ω ∪ {∞}, let ψ<m(a) be the formula that says that there are at most m elements
below a in the linear ordering, let ψ>m(a) say that there are at most m elements above a, and
let ψm(a, b) say that there are at most m elements between a and b. Then ψ<0 (x) is equivalent
to first(x), ψ>0 (x) to last(x), and ψ0(x, y) to succ(x, y). Also, note that ψm(a, b) says that
the linear ordering between a and b is ≥1 m, and similarly for ψ<m(a) and ψ>m(a). For every
α = (τ,m0, ...,mk) ∈ bf0,k(LO) × (bf1,0(LO))k+1 = bf1,k(LO), it is not hard to see (using
Lemma 4.1) that ϕα(x̄) is equivalent to

(
xτ(0) < xτ(1) < · · · < xτ(k−1)

)
& ψ<m0

(xτ(0)) &

(∧
0<i<k

ψmi(xτ(i−1), xτ(i))

)
& ψ>mk

(xτ(k−1)).

Thus the formulas ψ<m(x), ψ>m(x) and ψm(x, y) for m ∈ ω ∪ {∞} are a complete set of Πc
1

formulas. However, we can do even better than this. First, when m = ∞, we have that
ψ<∞(x), ψ>∞(x) and ψ∞(x, y) are always true, so they are not very useful formulas. Second,
for m ∈ ω, ψm(x, y) is equivalent to

∨
k≤m
∃x1 < ... < xk

(
succ(x, x1) &

(∧
i<k

(succ(xi, xi+1))

)
& succ(xk, y)

)
,

ψ<m(x) is equivalent to

∨
k≤m
∃x1 < ... < xk

(
first(x1) &

(∧
i<k

(succ(xi, xi+1))

)
& succ(xk, y)

)
,

and analogously for ψ>m(x). One can then see how to write each formula ϕα(x̄) for α =
(τ, α0, ..., αk) ∈ bf0,k(LO) using only ≤, succ(x), first(x), and last(x).

We remark that if we consider the empty linear ordering as a structure in LO, we should
also keep the sentence “non-empty” in the complete set of Πc

1 formulas. We also remark that
in [Mon09] we showed that succ(x, y) alone was a complete set of Πc

1 relations. The difference
is that there we were looking at a single linear ordering and not at the whole class LO, so the

COUNTING THE BACK-AND-FORTH TYPES 15

first and last elements were given by two elements, and since we were allowing parameters,
there was no need to consider the relations first(x) and last(x).

It follows from Corollary 2.6 that no non-computable degree can be coded in a linear
ordering, and from Corollary 2.7 that 0 is the only possible degree a linear ordering could
have. This is an old, well-known result by Richter [Ric81].

The 2-back-and-forth relations. The 2-back-and-forth structure of LO is much richer, though
still computable.

Here is a quick sketch of the analysis of bf2(LO); we let the reader fill in the details.
Consider the set of symbols S = {∞} ∪ {∞n : n ∈ ω} ∪ {n ∈ ω}. Let B = S × S<ω × S. We
will define a map t : LO → B such that A ≡2 B if and only if t(A) = t(B), and we will use
the image of t as our computable presentation of bf2(LO). Consider A ∈ LO; we will define
t(A) = 〈t0(A), t1(A), t2(A)〉 as follows. Let t0(A) = n if A = n + A1 where A1 has no first
element, and let t0(A) =∞ if A = ω+A1. Let t2(A) = n if A = A1 +n where A1 has no last
element, and let t2(A) =∞ if A = A1+ω∗. One can show that if A ≤2 B, then t0(A) ≥N t0(B)
and t2(A) ≥ t2(B). If either t0(A) or t2(A) is ∞, we let t1(A) = 〈∞〉; one can prove that, for
such A, A ≤2 B if and only if t0(A) ≥N t0(B) and t2(A) ≥N t2(B), independently of the value
of t1(B). Now, we restrict ourselves to linear orderings of the form A = n0 +A1 + n2 where
A1 has no endpoints. For such linear orderings, we have that n0 +A1 + n2 ≤2 m0 + B1 +m2

if and only if n0 ≥N m0, A1 ≤2 B1, and n2 ≥N m2. We will now define an invariant map t1 on
linear orderings which have no endpoints, and then let t(n0 +A+ n2) = 〈n0, t1(A), n2〉. If for
every n there exists a tuple of n consecutive elements in A, then A is ≤2-below every other
linear ordering without endpoints; we let t1(A) = 〈∞〉. So suppose that for some m there is
no tuple of m + 1 consecutive elements, and that m is the least such. If there are infinitely
many tuples of m consecutive elements, then A is ≤2-below every other linear ordering with
no tuple of m + 1 consecutive elements; we let t1(A) = 〈∞m〉. Otherwise, we can write A
as A0 + m + A1 + m + + m + Ak, where in each Ai there is no tuple of m consecutive
elements; we then let t1(A) = t1(A0)_〈m〉_t1(A1)_〈m〉_ · · ·_ 〈m〉_t1(Ak). The recursion
works because we know that for each i the maximum number of consecutive elements in Ai is
less than m. It is not hard to see that the image of t is a computable subset of B; let us call
it bf2(LO). We leave it to the reader to verify that t is as desired.

That ext2(x, y) is computable requires a little verification, and one would then get that
LO has a computable 2-back-and-forth structure. From Lemma 2.4, it follows that LO has
a complete set of Πc

2 formulas given by {ϕα : α ∈ bf2(LO)}. This set of formulas can be
simplified. However, we do not know whether there is a finite complete set of Πc

2 formulas for
LO.

It follows from Corollary 2.6 that no non-∆0
2 set can be coded in the jump of a linear

ordering, and from Corollary 2.7 that 0′ is the only possible jump degree a linear ordering
could have. This is a well-known result by Knight [Kni86].

The 3-back-and-forth relations. The 3-back-and-forth structure of LO has size 2ℵ0 . Here is a
proof. For each strictly increasing function f : ω → ω, let

Af = Z + f(0) + Z + f(1) + Z + · · · ,

where Z is the ordering of the integers and f(i) represents the linear ordering with f(i)
elements. Given k ∈ ω, there is a Σc

3 sentence ψk such that Af |= ψk if and only if k
is in the image of f . Therefore, we get that Af ≡3 Ag if and only if f = g, and hence
|bf3(LO)| = 2ℵ0 . Every Turing degree ≥T 0(2) is the 2nd jump degree of some linear ordering:
Lerman showed [Ler81] that Af has a presentation computable in X if and only if X(2) can
enumerate the set {〈x, y〉 ∈ ω2 : y ≤ f(x)}. For every Y ⊆ ω, there is a function f such that

16 ANTONIO MONTALBÁN

{〈x, y〉 ∈ ω2 : y ≤ f(x)} is enumeration-equivalent to Y ⊕ Y . It follows that for every Y ⊆ ω
there is a linear ordering Af with 2nd jump degree Y .

Ordinals. The class of ordinals has a computable n-back-and-forth structure for every n. A
complete study of the back-and-forth relations on ordinals was done by Ash [Ash86] (see also
[AK00, Lemma 15.10].)

4.2. Equivalence structures. Let ES be the class of equivalence structures on an infinite
domain; that is, the class of structures (ω,E) where E is an equivalence relation on ω. A partial
analysis of the back-and-forth relations on ES has already been done by Quinn in [Qui08,
Section 3.2] with the purpose of characterizing the classes K which are Turing computable
embeddable in ES.

The 1-back-and-forth structure of ES is computable; we quickly describe what bf1,0(ES)
looks like. Let E be an equivalence relation. We define a non-increasing function KE : ω →
ω ∪ {∞} as follows. For k ∈ ω, let KE(k) be the number of E-equivalence classes of size
at least k. It is not hard to show that E1 ≤1 E2 if and only if, for every k, KE1(k) ≥
KE2(k). Let bf1,0(ES) be the set of non-increasing functions K : ω → ω ∪ {∞}. Order
bf1,0(ES) coordinatewise. Notice that this partial ordering is computably presentable, as all
such functions are eventually constant.

To consider the 1-back-and-forth relations on non-empty tuples, we get that (E1, a1, ..., ak) ≤1

(E2, b1, ..., bk) if and only if for each i ≤ k, the equivalence class of bi has no more elements
than the equivalence class of ai, and E−1 ≤1 E−2 , where E−1 is obtained by removing the
equivalence classes of a1, ..., ak from E1 and similarly for E−2 . One can then find a computable
presentation for bf1,k(ES) and show that the 1-back-and-forth structure of ES is computable.
From Lemma 2.4, it follows that ES has a complete set of Πc

1 relations.
It follows from Corollary 2.6 that no non-computable set can be coded in an equivalence

structure, and from Corollary 2.7 that 0 is the only possible degree an equivalence structure
could have.

The 2-back-and-forth structure of ES is uncountable. Given an equivalence relation E, let
FE : ω → ω ∪ ∞ be defined as follows. FE(k) is the number of E-equivalence classes of size
exactly k. The isomorphism type of E is then determined by FE , which could be any function
ω → ω ∪ ∞, and the number of infinite equivalence classes (which could be any number or
infinity). We claim that E1 ≡2 E2 if and only if KE1 = KE2 and FE1 = FE2 , and thus, there
are continuum many 2-bftypes.

Every Turing degree ≥T 0′ is the jump degree of some equivalence class: Given f : ω → ω,
let Ef be the equivalence class with FEf

= f and with infinitely many infinite equivalence
classes. Ash and Knight [AK00, Thm 9.1] proved that, given a set X, X can compute a copy
of Ef if and only if X ′ can enumerate {〈x, y〉 ∈ ω2 : y ≤ f(x)}. It follows that every degree
above 0′ is the jump degree of some equivalence structure.

4.3. Boolean algebras. The n-back-and-forth structure of Boolean algebras is a very inter-
esting one. An analysis for every n was done by Harris and Montalbán.

Theorem 4.3. [HMb] Boolean algebras have a computable n-back-and-forth structure for every
n. Moreover, for every n there is a finite complete set of Πc

n formulas.

Before [HMb], Alaev [Ala04] had already studied the n-back-and-forth relations for n ≤ 4
but doing a different type of analysis. Complete sets of Πc

n formulas for n = 1, 2, 3, 4 were
also already known. For the constructions in Downey and Jockusch [DJ94], Thurber [Thu95],
and Knight and Stob [KS00] that ended up showing that every low4 Boolean algebra has a
computable copy, they considered certain relations that happened to be (surely not by chance)
complete sets of Πc

n formulas for n ≤ 4. The sets Rn indicated below are the complete sets

COUNTING THE BACK-AND-FORTH TYPES 17

of Πc
n formulas they considered. The formulas are not all Πc

n, but all of them are Boolean
combinations of Πc

n formulas.

• R1 = {atom}.
• R2 = R1 ∪ {inf, atomless}.
• R3 = R2 ∪ {atomic, 1-atom, atominf}.
• R4 = R3 ∪ {∼-inf, Int(ω + η), infatomicless, 1-atomless, nomaxatomless}.

Definitions of these relations can be found in [KS00] and [HMb]. The proof that these are
complete sets of Πc

n formulas follows from Harris and Montalbán [HMb].
It follows from Corollary 2.6 that no non-∆0

n+1 set can be coded in the nth jump of a
Boolean algebra, and from Corollary 2.7 that 0(n) is the only possible nth jump degree a
Boolean algebra could have. This is an known result by Jockusch and Soare [JS94], and by
Richter [Ric77] for n = 0.

If we were to restrict ourselves to particular classes of Boolean algebras, the study of the n-
back-and-forth structure might become much simpler. A complete study of the back-and-forth
relations on superatomic Boolean algebras was done long ago by Ash [Ash87] (see also [AK00,
Proposition 15.14]). A complete study of the n-back-and-forth relations on saturated Boolean
algebras was done by Csima, Montalbán and Shore [CMS06] using the Tarski elementary
invariants.

References

[AK00] C.J. Ash and J. Knight. Computable Structures and the Hyperarithmetical Hierarchy. Elsevier Sci-
ence, 2000.

[AKMS89] Chris Ash, Julia Knight, Mark Manasse, and Theodore Slaman. Generic copies of countable struc-
tures. Ann. Pure Appl. Logic, 42(3):195–205, 1989.

[Ala04] P. E. Alaev. Computable homogeneous Boolean algebras and a metatheorem. Algebra Logika,
43(2):133–158, 256, 2004.

[Ash86] C. J. Ash. Recursive labelling systems and stability of recursive structures in hyperarithmetical
degrees. Trans. Amer. Math. Soc., 298(2):497–514, 1986.

[Ash87] C. J. Ash. Categoricity in hyperarithmetical degrees. Ann. Pure Appl. Logic, 34(1):1–14, 1987.
[Bar73] J. Barwise. Back and forth through infinitary logic. In M. D. Morley, editor, Studies in model theory,

pages 5–34. The Mathematical Association of America, Buffalo, N.Y., 1973.
[Chi90] John Chisholm. Effective model theory vs. recursive model theory. J. Symbolic Logic, 55(3):1168–

1191, 1990.
[CHS07] Wesley Calvert, Valentina Harizanov, and Alexandra Shlapentokh. Turing degrees of isomorphism

types of algebraic objects. J. Lond. Math. Soc. (2), 75(2):273–286, 2007.
[CMS06] Barbara F. Csima, Antonio Montalbán, and Richard A. Shore. Boolean algebras, Tarski invariants,

and index sets. Notre Dame Journal of Formal Logic, 47(1):1–23, 2006.
[Coo90] S. Barry Cooper. Enumeration reducibility, nondeterministic computations and relative computabil-

ity of partial functions. In Recursion theory week (Oberwolfach, 1989), volume 1432 of Lecture Notes
in Math., pages 57–110. Springer, Berlin, 1990.

[DJ94] Rod Downey and Carl G. Jockusch. Every low Boolean algebra is isomorphic to a recursive one.
Proc. Amer. Math. Soc., 122(3):871–880, 1994.

[Fro] Andrey Frolov. Linear orderings with low degree. to appear in the Siberian Mathematical Journal.
[HMa] Kenneth Harris and Antonio Montalbán. Boolean algebra approximations. submitted for publica-

tion.
[HMb] Kenneth Harris and Antonio Montalbán. On the n-back-and-forth types of boolean algebras. To

appear in the Transactions of the American Math. Soc.
[JS94] Carl G. Jockusch, Jr. and Robert I. Soare. Boolean algebras, Stone spaces, and the iterated Turing

jump. J. Symbolic Logic, 59(4):1121–1138, 1994.
[Kni86] J.F. Knight. Degrees coded in jumps of orderings. Journal of Symbolic Logic, 51(4):pp. 1034–42,

December 1986.
[KS00] Julia F. Knight and Michael Stob. Computable Boolean algebras. J. Symbolic Logic, 65(4):1605–

1623, 2000.

18 ANTONIO MONTALBÁN

[Ler81] Manuel Lerman. On recursive linear orderings. In Logic Year 1979–80 (Proc. Seminars and Conf.
Math. Logic, Univ. Connecticut, Storrs, Conn., 1979/80), volume 859 of Lecture Notes in Math.,
pages 132–142. Springer, Berlin, 1981.

[Mon09] Antonio Montalbán. Notes on the jump of a structure. Mathematical Theory and Computational
Practice, pages 372–378, 2009.

[Mos80] Yiannis N. Moschovakis. Descriptive set theory, volume 100 of Studies in Logic and the Foundations
of Mathematics. North-Holland Publishing Co., Amsterdam, 1980.

[Qui08] Sara B. Quinn. Algorithmic complexity of algebraic structures. PhD thesis, University of Notre
Dame, 2008.

[Ric77] Linda Richter. Degrees of unsolvability of models. PhD thesis, University of Illinois at Urbana-
Champaign, 1977.

[Ric81] Linda Jean Richter. Degrees of structures. J. Symbolic Logic, 46(4):723–731, 1981.
[Sel71] Alan L. Selman. Arithmetical reducibilities. I. Z. Math. Logik Grundlagen Math., 17:335–350, 1971.
[Sil80] Jack H. Silver. Counting the number of equivalence classes of Borel and coanalytic equivalence

relations. Ann. Math. Logic, 18(1):1–28, 1980.
[Thu95] John J. Thurber. Every low2 Boolean algebra has a recursive copy. Proc. Amer. Math. Soc.,

123(12):3859–3866, 1995.

Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL
60637, USA

E-mail address: antonio@math.uchicago.edu

URL: www.math.uchicago.edu/∼antonio

http://www.math.uchicago.edu/~antonio/index.html

	1. Introduction
	Complete sets of n formulas
	Back-and-forth relations
	Reals coded in isomorphism types
	Structures that have Turing degree
	1.1. Background and Notation

	2. Countably many n-bf types
	2.1. Effective case

	3. Continuum many n-bftypes
	4. Examples
	4.1. Linear Orderings
	4.2. Equivalence structures
	4.3. Boolean algebras

	References

