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COMPUTABLE LINEARIZATIONS OF WELL-PARTIAL-ORDERINGS

ANTONIO MONTALBÁN

Abstract. We analyze results on well-partial-orderings from the viewpoint of com-
putability theory, and we answer a question posed by Diana Schmidt. We obtain the
following results. De Jongh and Parikh showed that every well-partial-order has a
linearization of maximal order type. We show that such a linearization can be found
computably. We also show that the process of finding such a linearization is not
computably uniform, not even hyperarithmetically.

1. Introduction

We are interested in the following kind of orderings.

Definition 1.1. A well-quasi-ordering, or wqo, is quasi-ordering which has no infinite
strictly descending sequences and no infinite antichains.

This notion has been discovered independently many times, as it is a concept that
appears in several areas of mathematics and computer science, and has many equivalent
definitions (see [Kru72]). For instance, given a quasi-ordering Q = (Q,≤

Q
),

Q is a wqo ⇐⇒ for every sequence {xn : n ∈ ω} ⊆ Q, ∃i < j (xi ≤Q
xj).

This equivalence can be proven using Ramsey’s theorem. Some well known examples of
wqo’s are as follows: the set of finite strings over a finite alphabet (Higman’s theorem
[Hig52]), the set of finite trees (Kruskal’s theorem [Kru60]), the set of labeled trans-
finite sequences with finite labels (Nash-Williams [NW65]), the set of scattered linear
orderings (Laver’s theorem [Lav71], also known as Fräıssé’s conjecture), and the set of
finite graphs (Robertson and Seymour [RS04]). The ordering in all these examples is
some kind of embeddability relation.

If Q = (Q,≤
Q
) is a quasi-ordering, we consider the partial-ordering associated to it in

the usual way: Let x ≡Q y ⇐⇒ x ≤
Q

y & y ≤
Q

x, and let W be the quotient partial-
ordering Q/≡Q, where the ordering on equivalence classes is defined in the obvious way.
Note that W is also a well-quasi-ordering. We are interested in the following kind of
structures.

Definition 1.2. A well-partial-ordering, or wpo, is a partial-ordering which is well-
quasi-ordered.

Associated to each wpo is its length or maximal order type. This is a notion that is
frequently used when studying wpo’s. First, we notice that every linearization of a wpo
is well-ordered. (A linearization of a partial-ordering (P,≤

P
) is any linear ordering ≤

L

of P such that x ≤
P

y =⇒ x ≤
L

y.)
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Definition 1.3. Given a wpo W = (W,≤
W

), we let the length of W be

o(W) = sup{ordTy(W,≤
L
) : where ≤

L
is a linearization of W}.

We are using ordTy(W,≤
L
) to denote the order type of (W,≤

L
). So, in this case,

ordTy(W,≤
L
) is always an ordinal.

De Jongh and Parikh [dJP77] show that every wpo W has a linearization of order
type o(W). This is why o(W) is often called the maximal order type of W . We call
such a linearization, a maximal linearization of W . It can be deduced from de Jongh
and Parikh’s work that o(W) + 1 = rk(Bad(W)), where

Bad(W) = {〈x0, ..., xn−1〉 ∈ W<ω : ∀i < j < n (xi 6≤W
xj)},

ordered by reverse inclusion. (See Lemma 2.5 below.) Note thatW is well-quasi-ordered
if and only if Bad(W) is well-founded. This is one of the reasons why o(W) comes up
often in applications of wpo theory.

Schmidt continued the study of maximal order types in her Habilitationsschrift [Sch79].
There, she computed the maximal order type of the wpo investigated by Higman [Hig52],
and gave upper bounds for the maximal order types of the wpo’s investigated by Kruskal
[Kru60] and Nash-Williams [NW65]. In [Sch79, page 9], Schmidt posed two questions:
Are there any non-trivial relationships between the height of a wpo and its maximal
order type? Is it true that the maximal order type of a computable wpo is always a
computable ordinal? We answer the latter question in this paper. A partial answer to
the first question has been obtained by Malicki and Rutkowski [MR04]. But there is
no known classification of the set of pair of ordinals (α, β) for which there is a wpo W
with rk(W) = α and o(W) = β.

Our results are part of the program of effective mathematics. The objective of this
ongoing program is to analyze theorems and objects that occur in mathematics from a
computable viewpoint. Only a very basic knowledge of computability theory is assumed
in this paper. The proofs should be of interest to non-computability theorists too
because they give us constructive ways of getting maximal linearizations of wpo’s, which
we did not have before. For an introduction to computability theory see the first chapters
of [Soa87] or [AK00].

With respect to Schmidt’s second question, we show, in Section 3, that the maximal
order type of a computable wpo is indeed a computable ordinal. Moreover, we show that
every computable wpo has a maximal linearization which is computable. However, this
process is very much non-uniform. We show, in Section 4, that no hyperarithmetic (and
in particular, computable) process can produce such maximal linearizations uniformly.
The construction of a computable maximal linearization has two steps. First, given a
computable wpo W , we define a computable linearization �W of it in an uniform way.
We will show that this linearization is a maximal linearization of W when o(W) is of the
form ωα. When o(W) is not of the form ωα, it might not be the maximal linearization of
W , but its order type is not too far from the maximal order type of W . Second, given an
arbitrary wpo W , we use the Cantor normal form of o(W) to decompose W into finitely
many pieces, each of which has maximal order type of the form ωβ, for some β, and then
we apply the algorithm defined before to each of the pieces. It is the second step that is
non-uniform. To show that that the process of finding maximal linearizations cannot be
done hyperarithmetically, we show that if f is a function that maps computable indexes
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of wpo’s to computable indexes of their maximal linearizations, then f can compute a
function which decides whether two computable ordinals are isomorphic or not. It is
known that such a function is not hyperarithmetic. Moreover, for a Turing degree a to
be able to compute such a function, it has to be able to uniformly compute 0(β), the
β-th Turing jump of the empty set, for every computable ordinal β. We show that this
is a sufficient and necessary condition for the degree of such a function f .

2. Preliminaries

In this section we define our notation and list some basic results which we will use
further on.

2.1. Orderings. We start by settling our notation for operations on orderings. Knowl-
edge about basic operations on ordinals, like sum, product, exponentiation and Cantor
normal forms, will be assumed. (See [AK00, Chapter 4] or [Ros82, §3.4].)

The sum,
∑

i∈αPi, of a set of partial-orderings {Pi}i∈α indexed by α ≤ ω, is con-
structed by taking the disjoint union of the sets Pi and letting x ≤P

i∈α Pi
y if either for

some i ∈ α, x, y ∈ Pi and x ≤
Pi

y, or x ∈ Pi, y ∈ Pj and i < j.

When α = m ∈ ω, we sometimes write P0 + ... + Pm−1, or
∑

i<mPi instead of∑
i∈mPi. The disjoint sum,

⊕
i∈I Pi, of a set of partial orderings {Pi}i∈I indexed by

a set I, is constructed by taking the disjoint union of the sets Pi and letting elements
from different Pi’s be incomparable.

Given a partial-ordering P = (P,≤
P
), and x ∈ P , we let P(<x) = {y ∈ P : y <

P
x}

and P(<x) = (P(<x),≤P
). Analogously we define P(>x), P(≤x), P(≥x), P( 6≥x), etc..

Given a well-founded-ordering P , the rank function on P is defined by transfinite
recursion: rkP(x) = sup{rkP(y)+1 : y <

P
x}. The rank of P is rk(P) = sup{rkP(x)+1 :

x ∈ P}. We note that for well-founded orderings P and Q, rk(P +Q) = rk(P) + rk(Q)
and rk(P ⊕Q) = max{rk(P), rk(Q)}.

2.2. Indecomposable ordinals and commutative sums. An ordinal δ is said to be
indecomposable (or additively indecomposable) if for every α, β < δ, α + β < δ. A well
known fact is that δ is indecomposable if and only if δ = ωγ for some ordinal γ.

The Cantor normal form of an ordinal α is a tuple 〈α0, ..., αn〉 such that α ≥ α0 ≥
α1 ≥ ... ≥ αn ≥ 0 and α = ωα0 + ... + ωαn . Given two ordinals α = ωα0 + ... + ωαn−1

and β = ωβ0 + ... + ωβm−1 , we define the commutative sum between α and β to be

α =‖ β = ωγ0 + ωγ1 + ... + ωγn+m−1 ,

where γ0, ..., γn+m−1 are such that γ0 ≥ γ1 ≥ ... ≥ γn+m−1, and there exists a partition
{{a0, ..., an−1}, {b0, ..., bm−1}} of {0, ..., n + m− 1} such that γai

= αi and γbi
= βi. The

commutative sum, sometimes called natural sum or Hessenberg sum, was introduced in
[Hes06]; see [dJP77, §3] for more information on Hessenberg based operations.

There are only a few well known properties of the commutative sum that we will use:

(CS1) α + β ≤ α =‖ β,
(CS2) α =‖ β = β =‖ α = o(α⊕ β),
(CS3) if α, β < ωγ, then α =‖ β < ωγ,
(CS4) if α0 ≤ α1 and β0 < β1, then α0 =‖ β0 < α1 =‖ β1,
(CS5) if β < ωγ, then α =‖ β < α + ωγ.
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The proofs of these facts are not hard.
Given a sequence {αξ : ξ ∈ δ}, we define =‖ξ∈δ αξ by transfinite induction in the

usual way. That is, let =‖ξ∈δ+1 αξ = (=‖ξ∈δ αξ) =‖ αδ, and if δ is a limit ordinal, let

=‖ξ∈δ αξ = limζ<δ =‖ξ∈ζ αξ.

2.3. Well-partial-orderings and their linearizations. One of the main results in
de Jongh and Parikh [dJP77] is that every wpo W has a maximal linearization. We cite
some lemmas that they used in that proof and some other results that we will use later.

Lemma 2.1. [dJP77, 2.3, 2.14, 2.6 and 2.15] Let W and Q be a wpo’s.

(1) If W ⊆ Q, then o(W) ≤ o(Q).
(2) For every x ∈ W , o(W( 6≥x)) < o(W).
(3) o(W) = sup{o(W( 6>x)) : x ∈ W} = sup{o(W( 6≥x)) + 1 : x ∈ W}.
(4) If o(W) = ωα0 + ... + ωαk with α0 ≥ ... ≥ αk, then ∀x ∈ W (o(W(≥x)) ≥ ωαk).

For part (3), de Jongh and Parikh only showed that if o(W) is a limit ordinal, then
o(W) = sup{o(W( 6≥x)) : x ∈ W}. If o(W) is not a limit ordinal, then there is a maximal
element x in W (the maximal one in a maximal linearization of W). For that element
we have o(W ) = o(W( 6≥x)) + 1 = o((W( 6>x)).

It is also true that if o(W) is a limit ordinal, then W has no maximal elements. This
follows from part (4).

The following lemma is an extension of [dJP77, 2.17].

Lemma 2.2. Let W be a wpo and let α ≤ o(W). Then, there exists an ideal I ⊆ W
such that o(I,≤

W
) = α.

By ideal we mean downward closed subset.

Proof. The proof is by transfinite induction on o(W). Of course, if α = o(W), take
I = W . So, assume α < o(W). Let x be such that α ≤ o(W6≥x) < o(W). By the
inductive hypothesis, there exists an ideal I ⊂ W( 6≥x) such that o(I,≤

W
) = α. �

Lemma 2.3. Let W and Q be wpo’s. Then

(1) o(W +Q) = o(W) + o(Q), and
(2) [dJP77, 3.4] o(W ⊕Q) = o(W) =‖ o(Q).

Corollary 2.4. Let W, A and B be wpo’s such that W = A t B and ∀x ∈ A ∀y ∈
B (y 6≤

W
x). Then

o(A) + o(B) ≤ o(W) ≤ o(A) =‖ o(B).

Proof. Any linearization of A+ B is a linearization of W and any linearization of W is
a linearization of A⊕ B. �

Lemma 2.5. Let W be a wpo. Then o(W) + 1 = rk(Bad(W)) = rkBad(W)(∅) + 1.

Proof. We use transfinite induction on o(W). So, we have that for every x ∈ W ,
o(W( 6≥x)) = rkBad(W( 6≥x))(∅), where ∅ is the empty string. Then

rkBad(W)(∅) = sup
x∈W

rkBad(W)(〈x〉) + 1 =

sup
x∈W

rkBad(W( 6≥x))(∅) + 1 = sup
x∈W

o(W( 6≥x)) + 1 = o(W).

�
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2.4. Computable Orderings. We say that a partial ordering P = (P,≤
P
) is com-

putably presented if P ⊆ ω and ≤
P

is a computable subset of ω×ω, or in other words, if
there is a computer program that, on imput 〈p, q〉 ∈ ω×ω, returns Yes or No depending
on whether p ≤

P
q or not. We say that (P,≤

L
) is a computable linearization of P if it is

a linearization ≤
P

and ≤
L
⊆ P ×P ⊆ ω×ω is computable. For the reader familiar with

these notions, we remark that this notion depends on the presentation of P = (P,≤
P
)

and not only on its isomorphism type.
We say that an ordinal α is computable, if there is a computably presented linear

ordering isomorphic to α. It is not hard to see that computable ordinals form a countable
initial segment of the class of ordinals.

3. Maximal Order Types

In this section we show that every computable wpo has a computable maximal lin-
earization.

3.1. Indecomposable norm of an ordinal. We start by introducing the concept of
indecomposable norm.

Definition 3.1. Given an ordinal α, let the indecomposable norm of α, JαK, be the
greatest indecomposable ordinal which is less than or equal to α.

Lemma 3.2. Let α and β be ordinals. Then Jα =‖ βK = Jα + βK = max{JαK, JβK}.

Lemma 3.3. Let {αi : i ∈ ω} be a sequence of ordinals. Then J=‖i∈ω αiK = J
∑

i∈ω JαiKK.

Proof. It is clear that the right-hand-side is less than or equal to the left-hand-side:∑
i∈ω

JαiK ≤
∑
i∈ω

αi ≤ =‖
i∈ω

αi.

Let us now prove the other inequality. Let J=‖i∈ω αiK = ωβ. We need to show that∑
i∈ω JαiK ≥ ωβ. Suppose first that β is a limit ordinal. Then, for every δ < β,

there exists αi such that ωδ ≤ JαiK. Because otherwise, =‖i∈ω αi ≤ ωδ < ωβ. So,∑
i∈ω JαiK ≥ supi∈ω JαiK ≥ ωβ. Suppose now that β = γ + 1. Then, there are infinitely

many αi’s such that ωγ ≤ JαiK. Because if there were only finitely many such αis, say
m many, then =‖i∈ω αi ≤ ωγ · (m + 1) < ωβ. So,

∑
i∈ω JαiK ≥ ωγ · ω = ωβ. �

3.2. A Computable linearization. Let W = (W,≤
W

) be a countable wpo. We
assume W comes equipped with an enumeration of itself {x0, x1, ...}. For example, we
can assume that always W ⊆ ω and that x0 ≤N x1 ≤N · · · . We mention this because we

will define a linearization �W of W , which depends on the enumeration of W .

Construction of �W : Order 2W (the set of functions from W to {0, 1}) with
the lexicographic ordering with respect to the enumeration of W . More precisely, given
σ, τ ∈ 2W , let σ ≤

lex
τ if and only if either σ = τ or for the first i such that σ(xi) 6= τ(xi)

we have that σ(xi) = 0 and τ(xi) = 1. Now, for each y ∈ W define σWy ∈ 2W as follows.

Given x ∈ W , let σWy (x) = 1 if x ≤
W

y and σWy (x) = 0 otherwise. Finally, let y �W z if

and only if σWy ≤
lex

σWz . ♦
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Note that �W is uniformly computable from W .
It is not hard to prove that the construction above defines a linearization of W . The

reason is that if y ≤
W

z, then for every i, σWy (xi) ≤ σWz (xi).

Lemma 3.4. If W ⊆ Q are wpo’s and W is downward closed in Q, then �W coincides
with the restriction of �Q to W . We are assuming here that elements of W and the
elements of Q are enumerated in the same order.

Proof. Let v, w ∈ W . Assume that v ≺Q
w. There is a first i, such that σQv (qi) 6= σQ

w (qi),
and for that i, σQv (qi) = 0 and σQw (qi) = 1, where {q0, q1, . . . } = Q. So qi ≤Q

w ∈ W ,

and hence qi ∈ W . It follows that qi is also the first place where σWv and σWw differ, and

since σWv (qi) < σWw (qi), v ≺W w. �

Now, we start analyzing the order type of �W . We prove that the linearization �W ,
which is uniformly computable in W , is relatively close to the maximal linearization of
W . However, it will follow from Theorem 4.3 that �W cannot always be the maximal
linearization of W .

Proposition 3.5. Let W ⊆ Q be wpo’s. Then JordTy(W,�Q)K = Jo(W)K.

Proof. Note that one of the inequalities is immediate: JordTy(W,�Q)K ≤ Jo(W)K.
To prove the other inequality, we will use transfinite induction on o(W). If o(W) is

not indecomposable, then, by Lemma 2.2, there is an ideal I of W such that o(I) =

Jo(W)K < o(W), where I = (I,≤
W

). By the induction hypothesis, JordTy(I,�Q)K =

Jo(I)K = Jo(W)K. So JordTy(W,�Q)K ≥ Jo(W)K.
Assume now that o(W) is indecomposable and infinite. If o(W) is finite the result

is trivial. By Lemma 3.4, we can assume without loss of generality that Q is the
downwards closure of W . Let {q0, q1, ...} be the enumeration of Q. For each i, let

Ri = {x ∈ W : qi 6≤Q x & ∀j < i(qj ≤Q x)}

and R<i =
⋃

j<i Rj. So, x ∈ Ri if and only if σQx starts with i many ones and then has a

zero. Since o(W) is a limit ordinal, W has no maximal elements and hence every x ∈ W

belongs to some Ri. Notice that (W,�Q) =
∑

i∈ω(Ri,�
Q
). Note that for each w ∈ W ,

if w = qi, then W6≥w ⊆ R≤i. It follows that o(W) = supw∈W o(W6≥w) ≤ supi∈ω o(R<i) ≤
o(W). So o(W) = supi∈ω o(R<i). Now, for each i we have that o(R<i) ≤ =‖j<i o(Rj).

Therefore, =‖j∈ω o(Rj) ≥ o(W).
For each i ∈ ω, let

αi = o(Ri,≤W
) and βi = ordTy(Ri,�

Q
).

Then ordTy(W,�Q) =
∑

i∈ω βi and o(W) ≤ =‖i∈ω αi. For every i ∈ ω, we have that
Ri ⊆ Q( 6≥qi) and hence Ri ⊆ W( 6≥x) for some x ∈ W , x ≥Q qi. Using Lemma 2.1.(1)
and (2), it follows that αi ≤ o(W( 6≥x)) < o(W). So, by the inductive hypothesis, we can
assume that JαiK = JβiK. Then,

ordTy(W,�Q) =
∑
i∈ω

βi ≥ J
∑
i∈ω

JαiKK = J =‖
i∈ω

αiK ≥ Jo(W)K = o(W),

where the middle equality follows from Lemma 3.3. �
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Now, we use �W to construct a computable maximal linearization of W .

Lemma 3.6. Let W be a wpo and let o(W) = ωα0 + ... + ωαn−1, with α0 ≥ ... ≥ αn−1.
Then, there exists a sequence of ideals ∅ = I0 ⊆ · · · ⊆ In = W such that for each i < n,
o(Ii+1 r Ii,≤W

) = ωαi.

Proof. By Lemma 2.2, there exists an ideal In−1 ⊆ W such that o(In−1,≤W
) = ωα0 +

... + ωαn−2 . Note that o(W r In−1,≤W ) ≥ ωαn−1 , because, by Lemma 2.1.(4), for every
x ∈ W , o(W≥x) ≥ ωαn−1 . Also, we cannot have o(W r In−1,≤W ) > ωαn−1 because
o(W) ≥ o(In−1,≤W ) + o(W r In−1,≤W ). So, o(W r In−1,≤W ) = ωαn−1 . Use the
inductive hypothesis to define a sequence of ideals ∅ = I0 ⊆ · · · ⊆ In−2 ⊆ In−1 such that
for each i < n− 1, o(Ii+1 r Ii,≤W

) = ωαi . �

Theorem 3.7. Every computable wpo has a computable linearization of maximal order
type.

Proof. Let W be a computable wpo, and let o(W) = ωα0 + ... + ωαn−1 . Consider a
sequence of ideals ∅ = I0 ⊆ · · · ⊆ In = W such that for each i < n, o(Ji,≤W

) = ωαi ,

where Ji = Ii+1 r Ii. So, by Lemma 3.5, we have that for every i < n, ordTy(Ji,�
W

) = ωαi = Jo(Ji,≤W
)K. We define (W, E) to be

∑
i<n(Ji,�

W
). In other words, we let

y E x if and only if either there exists i such that y, x ∈ Ji and y �W x, or there exists
i < j such that y ∈ Ji and x ∈ Jj. Observe that the Ji’s form a computable partition
of W : For each i, let Xi be the set of minimal elements of W r Ii. Then, since W is a
wpo, each Xi is finite and for every y in W , y ∈ Ii ⇐⇒ ∀x ∈ Xi(y 6≥W

x). So, using
the Xi’s as parameters, we can decide whether y ∈ Ji or not. Therefore, (W, E) is a
computable linearization of W of order type ωα0 + ... + ωαn−1 . �

4. Non-uniformity of the linearizations

In this section we study the complexity of the procedure of obtaining maximal lin-
earizations of computable wpo’s. In other word we consider the following question: Is
there a single computer program that, given a computable wpo (given by the program
that computes it), returns (the program for) a computable linearization of it, and if
not, how complex is this procedure? It will follow from Theorem 4.3 that this cannot
be done uniformly computably, and not even hyperarithmetically. The source of non-
uniformity in our constructions of computable linearization is in the proof of Theorem
3.7. In Theorem 3.7, finding the Cantor normal form o(W) = ωα0 + ... + ωαn−1 and
finding the sets Xi is what we do non-uniformly. We just proved these finite objects
exists and used them to construct the program that gives the computable linearization.
Theorem 4.3 says that there is no computable procedure to find these finite objects.

We start by giving some basic definitions and stating the facts we will use.

Definition 4.1. Given a set Z ⊆ ω, we use Z ′ to denote the Turing jump of Z, or
equivalently the Halting problem relative to Z. That is Z ′ is the set of programs (or
of numbers that represent computer programs in binary) that when run with oracle Z,
halt and do not run for ever. It is well known that Z ′ can compute Z, but Z cannot
compute Z ′.

We now consider the iteration of the Turing jump along an ordinal, getting sets which
are much more complicated. Given an well-ordering B = (B,≤

B
), with B ⊆ ω, let 0(B)
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be the unique set X ⊆ ω such that for every x ∈ B,

X [x] = (X [B(<x)])′,

where X [x] = {y : 〈x, y〉 ∈ X}, X [B(<x)] = {〈z, y〉 : z ∈ B(<x) & 〈z, y〉 ∈ X}.

Clearly, since B is well-ordered, 0(B) can be defined by transfinite recursion. It can
be shown that if β is a computable ordinal, the the Turing degree of 0(β) is independent
of the computable presentation of β (Spector [Spe55]).

The following lemma is well-known and it follows form the work of Ash and Knight
[AK90, AK00].

Lemma 4.2. Let α be a computable ordinal.

(1) Given two computable ordinals β, δ < α, using 0(2α+2) as an oracle, we can decide
whether β is less δ and whether they are isomorphic.

(2) Suppose g is a function that, given two computable ordinals β, δ ≤ ωα, it decides
whether β and δ are isomorphic. Then g can compute 0(α). Moreover, the
reduction 0(α) ≤ g can be uniformly computed from α.

Proof. Part (1) follows from [AK00, Proposition 7.2 and Theorem 7.4]. Part (1) follows
from [AK90, Example 5]. �

Theorem 4.3. Let A ⊆ ω. The following are equivalent.

(1) A computes a function f which, given an index for a computable wpo W, returns
an index for a computable maximal linearization of W.

(2) A computes a function g which, given indexes for two computable ordinals, re-
turns 1 or 0 depending on whether the two ordinals are isomorphic or not.

(3) A uniformly computes 0(β) for every computable ordinal β.

Proof. The equivalence between (2) and (3) follows from Lemma 4.2.
Let us start proving that (1) implies (2). Let α and β be two given computable

ordinals. Consider W = (ωα +ωα)⊕(ωβ +ωβ), the disjoint sum of ωα +ωα and ωβ +ωβ.
Let a be the first element of the second copy of ωα in ωα + ωα. Let b be the first
element of the second copy of ωβ. Use f to get a maximal linearization E of W . Let
h(α, β) = 0 if a E b and h(α, β) = 1 if b E a. (When we say h(α, β), we actually
mean h(e, d) where e and d are computable indexes for α and β.) If α < β, we have
that ordTy(W, E) = (ωβ + ωβ) =‖ (ωα + ωα) = ωβ + ωβ + ωα + ωα, and hence b / a and
h(α, β) = 1. Analogously, if α > β, then h(α, β) = 0. In the case when α = β, h(α, β)
could be either 0 or 1. Now, we use h, and the fact that ∀α, β(α ≤ β ⇐⇒ 2α < 2β+1),
to compute a function g as wanted: Let g(α, β) = 1 if and only if h(2α + 1, 2β) = 0
and h(2α, 2β + 1) = 1 and g(α, β) = 0 otherwise. Note that g(α, β) = 1 if and only if
α = β.

To show that (3) implies (1), we have to look at the definition of E in Theorem
3.7. First, let β be a well-ordered linearization of Bad(W). For example, β could
be the Kleene-Brouwer ordering of Bad(W) (see [AK00, § 5.3]). So, we have that
β ≥ rk(Bad(W)) > o(W), and using A we can compute 0(2β+ω), and using 0(2β+ω) we
can compute o(W): look at all the computable linearizations of W and take the one of
maximal order type. (Recall that 0(2β+ω) is able to compare ordinals less than β.) Then,

use 0(ωβ), also computable from A, to compute the Cantor normal form of o(W): look
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for a tuple 〈α0, ..., αn−1〉 with o(W) ≥ α0 ≥ ... ≥ αn−1 and o(W) = ωα0 + ... + ωαn−1 .
Then, look for a sequence of ideals 〈I0, ..., In〉 as the one used in Theorem 3.7. Recall
that ideals of a wpo can be coded by finite subsets (the set of minimal elements of the

complement of the ideal). Then, linearize each ideal using �W and construct E as in
Theorem 3.7. �
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