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Abstract. We study a SEIR model considered by Gomes et al. [7] and Aguas et al. [2]
where different individuals are assumed to have different levels of susceptibility or exposure
to infection. Under this heterogeneity assumption, epidemic growth is effectively suppressed
when the percentage of population having acquired immunity surpasses a critical level -
the herd immunity threshold - that is lower than in homogeneous populations. We find
explicit formulas to calculate herd immunity thresholds and stable configuration, and explore
extensions of the model.

1. Introduction

We analyse a SEIR (Susceptible-Exposed-Infectious-Recovered) model considered in [7]
where each of the compartments S, E, I, and R are split into continuum many compart-
ments S(x), E(x), I(x), and R(x) for x ∈ R+. We are modeling a situation where each
individual has a level of susceptibility x. This individual will start in compartment S(x) and
stay within the compartments S(x), E(x), I(x), and R(x) the whole time. They may infect
or be infected by individuals in other compartments. We will consider two types of models:

In the variable susceptibility case the susceptibility of an individual at level x is propor-
tional to x, or, in other words, if you compare an individual at level x and an individual at level
y, the one at level x is x

y times more likely to get infected than the one with susceptibility y.

One may interpret this as variation in biological susceptibility which may be due to genetics,
epigenetics or life history.

In the variable connectivity case the propensities for an individual at level x to acquire
infection and transmit to others are both proportional to x, or, in other words, if you compare
an individual at level x and an individual at level y, the one at level x is x

y times more likely

to get infected than the one in level y and also x
y times more likely to infect someone else once

infected. One may interpret this as variation due to the connectivity, i.e., individuals that
have many contacts are both more likely to get infected and to infect others.

For each x, we have a system of the form:

S(x)
xλ // E(x)

δ // I(x)
γ // R(x)

where λ is the force of infection which is formulated differently in the variable susceptibility
or the variable connectivity cases:

Variable susceptibility: λ = β

∫
I(x) dx,

Variable connectivity: λ = β

∫
x I(x) dx.
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The system is given by the equations:

Ṡ(x) = −xλS(x),(1)

Ė(x) = xλS(x)− δE(x),(2)

İ(x) = δE(x)− γI(x),(3)

Ṙ(x) = γI(x).(4)

We assume that the system has been scaled such that the total population is 1. The initial
condition satisfies S0(x) = (1− ε)q(x), E0(x) = εq(x) and I0(x) = R0(x) = 0, where q(x) is a
distribution with mean 1 and coefficient of variation CV , and 0 < ε � 1 is a small scalar to
seed the epidemic.

We use subindex t to denote the time at which we are considering these compartments:
St(x), Et(x), It(x) and Rt(x). We use St to denote the conjunction of all the compartments

St(x) for x ∈ R+. We thus have St =
∫ +∞

0 St(x)dx. Same with Et, It and Rt.

We will use the first three momenta of St(x), that we denote St, S̄t and St:

St =

∫
St(x)dx, S̄t =

∫
xSt(x)dx, and St =

∫
x2St(x)dx.

When infection is absent (ε = 0), we have S0 = 1, S̄0 = 1 and S0 = 1 + CV 2. But note
that St(x) is not a probability density function for ε > 0 as St becomes less than 1. The
quotient St(x)/St will be a probability distribution for ε > 0 and all t with first and second

momenta S̄t/St and St/St which decrease as time passes. We will see that in the case where
the initial configuration q(x) is a gamma distribution, all the distributions St(x)/St will be
also be gamma distributions with the same coefficient of variation CV but with lower mean.

Similarly, we define the moments Rt, R̄t and Rt for the recovered compartment, and the
same with E and I. Notice for instance that λt is equal to βIt and to βĪt in the variable
susceptibility and variable connectivity cases respectively.

Here we describe key epidemiological quantities when system of equations (1)-(4) is adopted.
The basic reproductive number R0 is the number of new infections expected to be caused
by an infected individual in a totally susceptible population. It depends on characteristics
of both the pathogen and the population. When this number is above 1, the introduction
of infection in a virgin population is expected to generate an epidemic. This is followed by
almost exponential growth in cumulative infections which decelerates gradually as susceptibles
are depleted. The effective reproduction number Reff is a time-dependent quantity that defines
the average number of new infections caused by an infected individual at time t. Reff coincides
with R0 at the beginning of an epidemic but declines as individuals are removed from the
susceptible subpopulation by infection and immunity. When Reff crosses 1 towards lower
values, we say that herd immunity H has been attained.

We obtain precise formulas for the effective reproductive number Reff and the herd immunity
threshold H in terms of the momenta of the susceptible population. We will see that in the
case when q(x) is a gamma distribution, we can calculate this momenta in terms of St and
get an exact formula for H in terms only of the basic reproductive number R0 and CV .

In the variable susceptibility case we will get that

R0 =
β

γ
and Reff = S̄t

β

γ
.

This implies that herd immunity is achieved when S̄t < 1/R0. If we assume that q(x) is a
gamma distribution the proportion of individuals that have been infected by the time herd
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Figure 1. Herd immunity threshold. Curves generated using formulas (5) for
variable susceptibility and (6) for variable connectivity, with R0 = 3.

immunity is reached is

H = 1− R
−1

1+CV 2

0 .(5)

In the variable connectivity case we will get that

R0 = (1 + CV 2)
β

γ
and Reff = St

β

γ
.

This implies that herd immunity is achieved when St < (1 + CV 2)/R0. If we assume that
q(x) is a gamma distribution the proportion of individuals that have been infected by the time
herd immunity is reached is

H = 1− R
−1

1+2CV 2

0 .(6)

We call this model, the basic model, and provide graphical representations for the corre-
sponding H formulas in Figure 1 (variable susceptibility in black and variable connectivity in
grey), showing a monotonic decrease as CV increases ([7], [4], [12]). We will see now a few
variations.

1.1. The model with reinfections. In Aguas et al. [2], the authors consider an extension
of the model where immunity after recovery is not fully protective, but only partially. A factor
σ is added to represent the quotient of the probability of getting reinfected after recovery over
the probability of getting infected while fully susceptible.

The model now looks like this:

S(x)
xλ // E(x)

δ // I(x)
γ // R(x)

σxλ

ff

with λ as above. The extended system is given by the equations:

Ṡ(x) = −xλS(x),(7)

Ė(x) = xλ(S(x) + σR(x))− δE(x),(8)

İ(x) = δE(x)− γI(x),(9)

Ṙ(x) = γI(x)− σxλR(x).(10)
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The basic reproductive number is calculated exactly as in the no-reinfections case, but the
effective reproductive now depends not only on the distribution of St(x), but also on the
distribution of Reff(x). We will see that

• Reff = (S̄t + σR̄t) · β/γ in the variable susceptibility case, and

• Reff = (St + σRt) · β/γ in the variable connectivity case.

The system exhibits newer dynamics in comparison with the basic case. Depending on
whether σ is below or above 1/R0 (known as the reinfection threshold [9, 8]) we get that
either the disease dies out after a while and a certain proportion of the population never
gets infected, or continues endemically and every individual is eventually infected and then
reinfected over and over again. Pursuing these considerations on longer time scales, however,
would require a further extension to the model to account for rates of birth and mortality due
to general causes. This is beyond the scope of the present article.

1.2. A variation with a carrier stage. In the original Gomes et al. model [7], the exposed
compartments are not simply a latent stage but a carrier stage where individuals are infectious
but to a lesser degree than individual in the infectious compartments. What changes is the
force of infection λ:

Variable susceptibility: λt = β

∫
ρEt(x) + It(x)dx = β(ρEt + It),

Variable connectivity: λt = β

∫
x(ρEt(x) + It(x))dx = β(ρĒt + Īt).

We will then get that the basic and effective reproductive numbers are as follows:

Variable susceptibility: R0 = β

(
ρ

δ
+

1

γ

)
and Reff = (S̄t + σR̄t)β

(
ρ

δ
+

1

γ

)
,

Variable connectivity: R0 = (1 + CV 2)β

(
ρ

δ
+

1

γ

)
and Reff = (St + σRt)β

(
ρ

δ
+

1

γ

)
.

In analogy with the previous models, we still get Reff = (S̄t + σR̄t) · R0 and Reff = (St +

σRt) · R0/(1 + CV 2) respectively. The formulas for the herd immunity threshold in terms of
R0 remain the same.

1.3. A variation with a death rate. Aguas et al. [2] have one more feature: a death rate φ
meaning that a proportion φ of the individuals that come out of I(x) go to a new compartment
D. The model now looks like this:

S(x)
xλ // E(x)

δ // I(x)
(1−φ)γ//

φγ

""

R(x)

σxλ

xx

D

We will not analyse this model in detail. The inclusion of death causes the total population
to decline over time. This should typically be balanced by births, requiring a more elaborate
model. Let us just say that if the reinfection parameter σ is below the reinfection threshold
1/R0, the infection goes extinct slightly faster than before, and if the reinfection parameter is
above the reinfection threshold, everybody eventually dies due to the infection according to
this model.
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2. Effective reproductive number in the basic model

Let us start by studying the basic model with no reinfections, no carrier stage, and no death
rate.

Definition 2.1. The effective reproductive number Reff at time t is defined to be the average
number of secondary infections caused by an infected individual over their entire infectious
period.

We make an approximation by assuming that while the individual is contagious, the sus-
ceptible population does not change. That is, we disregard the fact that since the susceptible
population declines, this individual infects more people at the beginning than at the end of
their infection. The decline in the susceptible population is usually slow enough compared to
the length of the infectious period so that this does not make a big difference. Formally, we
will use Reff to analyze stable configurations, where this assumption holds, so our results will
be precise.

Here we provide the derivations of the formulas presented in the introduction.

Let’s look first at the variable susceptibility case: Consider an individual who gets
infected at time t (i.e., moving from S to E at time t). They will eventually move to I where
they will then spend, on average 1/γ days. While in I, they will infect β

∫
ySt(y)dy other

individuals each day. We thus get

Reff =
1

γ
β

(∫
y(St(y))dy

)
= S̄t ·

β

γ
.

In particular, we get that R0 = β
γ and that Reff = S̄t · R0.

Let’s look now at the variable connectivity case: Consider an individual who gets infected
at time t (i.e., that enters E at time t). It matters now what kind of individual they are, i.e.,
what connectivity level they have, because individuals at different levels will infect different
numbers of people.

Let p(x) be the probability distribution function measuring the probability that this indi-
vidual has connectivity level x . Their probability of becoming infected (i.e., of entering the
E(x) compartment) is xλ. Thus, the value of p(x) is proportional to xSt(x). We get

p(x) =
xSt(x)∫
ySt(y)dy

= x
St(x)

S̄t
.

As above, an individual who enters E will eventually move to I where they are then going to
spend, on average, 1/γ days, and where they will infect β

∫
ySt(y) dy other individuals each

day. We thus get

Reff =

∫ (
x p(x)

)(∫
ySt(y)dy

)
β/γ dx

=

∫ (x2 St(x)

S̄t

)
S̄t β/γ dx.

Moving things around we get

Reff = St · β/γ.

In particular we get that R0 = q ·β/γ = (1 +CV 2) ·β/γ and that Reff = St ·R0/(1 +CV 2).
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3. Herd immunity

Suppose we have a population with no infected individuals, so that all individuals are either
susceptible or recovered. We say that this population has herd immunity if an introduction
of the disease (i.e., a tiny increase in E) does not trigger an epidemic. Mathematically, this
means that any small enough deviation from the configuration with no infected individuals
will quickly converge back to a configuration with no infected individuals. More formally, a
configuration with E(x) = I(x) = 0 has herd immunity if, for every ε > 0, there is a δ > 0 such
that if we modify the configuration to one that is at a distance less than δ from the original
configuration, the system then converges to a configuration that is at a distance less than ε.1

If we visualize the dynamical system as modeling individuals who move between the com-
partments S(x), E(x), I(x) and R(x), it is not hard to see that a configuration with E(x) =
I(x) = 0 has herd immunity if and only if

Reff ≤ 1.

We say that a configuration with no infected individuals is at the herd immunity threshold
if Reff = 1. Usually, in SEIR models with no variability, configurations are determined by the
value of 1−S = R, which is the number of people in the recovered compartment, and the herd
immunity threshold is defined as the value of 1 − S, the unique configuration that is at the
herd immunity threshold, a value that is well-know to be equal to 1 − 1/R0 [3]. But, for the
heterogenous models, there are many configurations which are at the herd immunity threshold.
One such configuration is given by S(x) = q(x)/R0 for all x. This would be obtained, for
instance, if one vaccinates a proportion 1 − 1/R0 of the total population randomly without
taking into account susceptibility levels. When immunity is acquired naturally, however,
individuals with higher susceptibility get infected earlier and a configuration which has herd
immunity is reached before a proportion 1− 1/R0 of the total population is infected.

For now, let us observe that in the variable susceptibility case, herd immunity is achieved
when S̄t = 1/R0, and that in the variable connectivity case, herd immunity is reached when

St = (1 + CV 2)/R0

Next, we will see how we can calculate S̄t and St under the assumption that the original
distribution is a gamma distribution.

4. Starting with the gamma distribution

Let us start this section studying how the distribution of susceptible compartments evolves,
and then see how this fits nicely in the case where individual variation in susceptibility or
connectivity is gamma distributed.

4.1. The evolution of the susceptible compartments. We claim that at every t, there
is a number kt ∈ R that only depends on t, such that

(11) St(x) = q(x) · e−x·kt .

This holds in all models: in both the variable susceptibility case and the variable connectivity
case (with different values for kt), in the case with reinfection, with carrier stage, and with a
death rate.

1For a distance in the space of configurations, one may use the L1 distance, i.e., the sum of the integrals of
the differences of the compartments

∫
|S(x)− S′(x)|+ |E(x)− E′(x)|+ |I(x)− I ′(x)|+ |R(x)−R′(x)|dx.
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Let’s start by proving equation (11). From the SEIR equation for ∂St(x)
∂t we get

1

St(x)

∂St(x)

∂t
= x · λt.

Integrate with respect to t: ∫ t

0

1

St(x)

∂St(x)

∂t
dt =

∫ t

0
x · λt dt.

Then by substitution ∫ t

0

1

St(x)
dSt(x) = x ·

∫ t

0
λt dt.

Evaluating the integrals and letting kt = −
∫ t

0 λtdt:

ln(St(x))− ln(q(x)) = −xkt
from which (11) follows.

4.2. The gamma distribution. We use the following notation for the gamma probability
density function:

Gammaa,b(x) =
ba

Γ(a)
xa−1e−bx.

The gamma distribution has mean a/b and coefficient of variation CV = 1/
√
a.

Since our initial distribution q(x) has mean 1, we are using a gamma distribution with
a = b, i.e., q(x) = Gammaa,a(x).

Substituting q(x) for Gammaa,a(x) in (11) we get

St(x) =
aa

Γ(a)
xa−1e−x(a+kt)

=

(
a

a+ kt

)a (a+ kt)
a

Γ(a)
xa−1e−x(a+kt)

St(x) =

(
a

a+ kt

)a
·Gammaa,a+kt(x)

Using that ∫
Gammaa,a+kt(x)dx = 1∫

xGammaa,a+kt(x)dx =
a

a+ kt∫
x2 Gammaa,a+kt(x)dx =

a(a+ 1)

(a+ kt)2
,

we calculate St, S̄t and St:

St =

(
a

a+ kt

)a
·
∫

Gammaa,a+kt(x)dx =

(
a

a+ kt

)a

S̄t =

(
a

a+ kt

)a
·
∫
xGammaa,a+kt(x)dx =

(
a

a+ kt

)a
· a

a+ kt
=

(
a

a+ kt

)a+1

St =

(
a

a+ kt

)a
·
∫
x2 Gammaa,a+kt(x)dx =

(
a

a+ kt

)a
· a(a+ 1)

(a+ kt)2
=

(
a

a+ kt

)a+2 a+ 1

a
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From the above we get

S̄t = (St)
a+1
a and St = (St)

a+2
a · a+ 1

a
.

Using that a = 1/CV 2, we get (a+ 1)/a = 1 + CV 2, and we can rewrite these as:

S̄t = (St)
1+CV 2

and St = (St)
1+2CV 2 · (1 + CV 2).

4.3. Putting all together. Recall that the herd immunity threshold H is 1−St at the time
t when Reff = 1 in the case where there are almost no people infected.

In the variable susceptibility case we had that herd immunity is achieved when Reff =

S̄t · R0. Thus, when Reff = 1, we have R−1
0 = S̄t = (St)

1+CV 2
. It follows that

H = 1− R
−1

1+CV 2

0 .

In the variable connectivity case we had that herd immunity is achieved when Reff =

StR0/(1 + CV 2). Thus, when Reff = 1, we get R−1
0 = St/(1 + CV 2) = (St)

1+2CV 2
. It follows

that

H = 1− R
−1

1+2CV 2

0 .

5. The model with reinfection

5.1. Effective reproductive number. Let’s consider now the model with a reinfection fac-
tor σ as described in the introduction. We will see that Reff depends not only on St(x) but
also on Rt(x). When we consider configurations with no infected individuals, we will have
that Rt(x) = q(x)− St(x) and we will be able to express Reff in terms of St(x) only.

The formulas for the effective reproductive number Reff at time t are

• Reff = (S̄t + σR̄t) · β/γ in the variable susceptibility case, and

• Reff = (St + σRt) · β/γ in the variable connectivity case.

In particular, we get R0 = β/γ and R0 = (1 +CV 2) ·β/γ as in the case with no reinfection.
The derivation of these formulas is essentially the same as the derivations in Section 2. There

are two differences: One, that each level-x individual infects β · (S̄t + σR̄t) or xβ · (S̄t + σR̄t)
other people in each day spent in I, in the respective cases, instead of β · (S̄t) or xβ · (S̄t)
Two, that when we consider an individual that gets infected in the variable connectivity case,
the probability that they are a level-x individual is proportional to xS(x) + σxR(x) instead
of xS(x).

5.2. Herd immunity. Recall that a configuration with no infected individuals has herd im-
munity if and only if Reff ≤ 1. Assuming that no one is infected, that is R(x) = q(x)−S(x), we

get R̄ = 1− S̄ and R = q − S. We can then understand the configurations at herd immunity

in terms of S̄ and S.
In the variable susceptibility case a configuration with no infected individuals is at the

herd immunity threshold if and only if 1/R0 = S̄ + σ(1− S̄), and hence, if and only if

S̄ =
R−1

0 − σ
1− σ

.
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In the variable connectivity case a configuration with no infected individuals is at the

herd immunity threshold if and only if 1/R0 = (S + σ(q − S))/(1 + CV 2), and hence, if and
only if

S = (1 + CV 2)
R−1

0 − σ
1− σ

.

A point worth mentioning is that the behavior of herd immunity differ from the basic model.
When one runs the basic model, herd immunity is achieved when the number of infections
start to decline. In the case with reinfections, the number of infections may decline earlier.
The reason is that when Et and It are non-zero, the individuals in those compartments are
not susceptible to get infected at that moment, but will become partially susceptible once
they recover. In other words, we may have Reff < 1 but if we move all those infected people
instantly to Rt, we could create a situation where Reff > 1. In practical terms, imagine strong
isolation measures are imposed at that moment and all those infected people recover without
infecting anyone else. Then, when the measures are lifted, since Rt becomes larger, Reff is
larger and any reappearance of the disease my trigger a small epidemic. Thus, we need the
condition Reff ≤ 1 evaluated using Rt(x) = q(x)− St(x) to ensure that new introduction will
not trigger epidemics.

5.3. The reinfection threshold. For the formulas above to make sense, it is necessary that
we have

σ < R−1
0 .

That is, the reinfection factor σ has to be below R−1
0 , a critical value known as the reinfection

threshold [9, 8]. If this is verified, then all configuration with no infected individuals and

satisfying the conditions above (either S̄ = (R−1
0 −σ)/(1−σ) or S = (1+CV 2)(R−1

0 −σ)/(1−σ)
depending on the case) are configurations which have herd immunity in the sense that any
increase of the infected compartments quickly extinguishes as Reff won’t go above 1 again.

If the reinfection factor is above the reinfection threshold, Reff will be greater than 1 in any
such configurations, so there won’t be any configuration with no infected individuals and with
herd immunity. This implies that there will always be a portion of the population infected, and
hence that the population of susceptible individuals will eventually be completely depleted.
The equilibrium configuration will now have S = 0.

Suppose we have an equilibrium configuration when σ > R−1
0 . We will then have S = 0, and

hence E(x) + I(x) +R(x) = q(x) for all x. Setting İ(x) to zero, we get that E(x) = I(x) · γ/δ
and from this we derive that I(x) = (q(x)−R(x))·δ/(δ+γ) and E(x) = (q(x)−R(x))·γ/(δ+γ).

Using that Reff = 1 at any equilibrium configuration, we get that either R̄ = 1
σR0

or R = 1
σR0

.

5.4. Starting with a gamma distribution. Recall from Section 3 that if we start with a
gamma distribution for q(x), we get that St(x)/St remains a gamma distribution for all t, and

that S̄t = S1+CV 2

t and St = S1+2CV 2

t (1 + CV 2). We can then obtain the values of St at the
moment when herd immunity is achieved, and then calculate H = 1− St.

In the variable susceptibility case we get:

H = 1−
(
R−1

0 − σ
1− σ

) 1
1+CV 2

.

In the variable connectivity case we get:

H = 1−
(
R−1

0 − σ
1− σ

) 1
1+2CV 2

.
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Curves assuming a selection of values for σ are represented graphically in Figure 2 alongside
typical epidemic curves. Note the critical behaviour at the reinfection threshold (σ = 1/Ro)
in red, which separates the regime where individual immunity is sufficiently potent for herd
immunity to be achievable from the regime where endemicity will establish without natural
immunity.

6. The model with a carrier stage

Recall that, in this model, individuals in the E compartments are infectious, but by a
factor ρ with respect to the individuals in I. This model is sometimes used when one wants
to differentiate pre-symptomatic form symptomatic stages, which is usually closer to what the
real word data represents, and, at the same time, allow for pre-symptomatic transmission.

The calculation of the effective reproductive number Reff is slightly different. The difference
is that now one has to add the time an individual is in E to the infectious period, multiplied
by the factor ρ. The average time an individual spends in E is 1/δ. We then get

• Reff = (S̄t + σR̄t) · β(ρ/δ + 1/γ) in the variable susceptibility case, and

• Reff = (St + σRt) · β(ρ/δ + 1/γ) in the variable connectivity case,

where S̄t and St are the momenta of St(x) defined above, and the same with Rt.
In particular, we get R0 = β(ρ/δ + 1/γ) and R0 = (1 + CV 2) · β(ρ/δ + 1/γ) respectively

as in the previous case. Also as in the previous cases we get Reff = (S̄t + σR̄t) · R0 and

Reff = (St + σRt) · R0/(1 + CV 2). We then get the same formulas for the herd immunity
threshold in terms of R0 and CV as before.

7. Discussion

The concept of herd immunity was developed in the context of vaccination programs
([10],[6]). Defining the percentage of the population that must be immune to cause infection
incidences to decline, the herd immunity threshold (H) provides a useful target for vaccina-
tion coverage. In idealized scenarios of vaccines delivered at random and individuals mixing
at random, H is given by a simple formula (H = 1 − 1/R0) which, in the case of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for example, suggests that 60-80%
of subjects chosen randomly from the population would need be immunized to halt spread
considering estimates of R0 between 2.5 and 5. This formula would not apply if vaccination
programmes were designed to prioritize more susceptible or exposed individuals and, similarly,
it does not apply to infection-induced immunity given that natural infection does not occur at
random. Individuals who are more susceptible or more exposed are more prone to be infected
and become immune, providing greater community protection than random vaccination [5].

In our model, the herd immunity threshold becomes H = 1 − (1/R0)1/(1+CV 2) in the case of

variable susceptibility, and H = 1− (1/R0)1/(1+2CV 2) in the case of variable exposure, which
decline sharply when coefficients of variation increase from 0 to 2, remaining below 20% for
more variable populations. The magnitude of the decline depends on what property is het-
erogeneous and how it is distributed among individuals, but the downward trend is robust
provided susceptibility or exposure to infection are variable (Figure 1) and acquired immunity
is efficacious enough to keep transmission below the reinfection threshold (i.e. σ < 1/R0)
(Figure 2).

If immunity was not potent enough to keep the system below the reinfection threshold then
herd immunity would not be attainable and the disease would persist in stable endemicity,
irrespective of individual variation. Respiratory viruses, however, are typically associated
with epidemic dynamics below the reinfection threshold, characterized by seasonal epidemics



HERD IMMUNITY UNDER INDIVIDUAL VARIATION AND REINFECTION 11

Figure 2. Herd immunity threshold and epidemic final size with reinfection.
Curves in the main panels were generated with the SEIR model with reinfection
(7)-(10) assuming R0 = 3 and gamma-distributed susceptibility (top) or con-
nectivity (bottom). Efficacy of naturally acquired immunity is captured by a
reinfection parameter σ, potentially ranging between σ = 0 (100% efficacy) and
σ = 1 (0 efficacy). This illustration depicts final epidemic sizes and associated
herd immunity thresholds H for 5 values of σ: σ = 0 (black); σ = 0.1 (green);
σ = 0.2 (blue); σ = 0.3 (magenta); and σ = 1/3 (red). Above σ = 1/R0 (re-
infection threshold ([9],[8]) the infection becomes stably endemic and there is
no herd immunity threshold. Representative epidemics of the regime σ ≤ 1/R0

are shown in small panels on the right. All depicted dynamics are based on
the rightmost CVs represented on the main panel.

intertwined with quiescent periods. As several candidate vaccines against SARS-CoV-2 are
undergoing clinical trials, we note that the reinfection threshold informs not only the require-
ments on naturally acquired immunity but, similarly, it sets a target for how efficacious a
vaccine needs to be in order to effectively interrupt transmission ([9],[8]). Specifically, given
an estimated value of R0 we should aim for a vaccine efficacy higher than 1 − 1/R0 (60% or
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80% if R0 is 2.5 or 5, respectively) irrespective of whether vaccination programmes prioritize
or not those individuals who are more susceptible or exposed to infection.

Overdispersed infectiousness has been vastly discussed in the context of SARS viruses (e.g.
[11] featuring SARS-CoV-1 and [1] addressing SARS-CoV-2). The otherwise unexplained oc-
currence of explosive outbreaks is often attributed to superspreading events which are largely
due to chance. We emphasize, however, that infectiousness alone does not respond to se-
lection as susceptibility or exposure do, and therefore does not accelerate the acquisition of
herd immunity on a large scale. Models with individual variation in infectiousness perform
equivalently to homogeneous versions when implemented deterministically. They diverge when
stochasticity is added in the sense that disease extinction becomes more likely and outbreaks
become rarer and more explosive, but this an entirely different phenomenon to that presented
in this paper.
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