
A NEW GAME METATHEOREM FOR ASH-KNIGHT STYLE PRIORITY

CONSTRUCTIONS

ANTONIO MONTALBÁN

Abstract. We develop a new metatheorem for 0(η)-priority constructions for transfinite
ordinals η. Our metatheorem simplifies previous metatheorems by Ash, Ash–Knight and the
author. A drawback of this simplification is that its applications are more limited: It can
only be used when the object being built is an ω-presentation of a structure. However, in
practical terms, this is not a huge limitation and the majority of proofs in the literature that
use the Ash–Knight metatheorem can be done using our metatheorem.

Often in computability theory we need to build a computable object using non-computable
information — sometimes even non-computable information about the very same object we
are building. The main tool for such constructions is the priority method, which has become
increasingly more involved and sophisticated since the 1950s. Priority arguments are classified
in terms of how much non-computable information is needed to verify the construction. The
most common priority constructions are the finite-injury ones [Fri57, Muc56]. They are used
when the information needed is 0′-computable. Infinite-injury priority constructions [Sho61,
Sac63] are used when 0′′-computable guesses are needed. There are various zero-triple priority
constructions [Lac76] in the literature, but they are very complicated, and far less common.
Beyond that point, humans cannot keep track of the combinatorics anymore. Well, that is
unless the level-by-level combinatorics of the proof is uniform and one can describe the work
done at all the levels by a single procedure. There have been various proposals for general
0(n)-injury constructions: Harrington’s worker’s method [Har76], Lempp and Lerman’s trees of
strategies [LL95, Ler10], Ash’s [Ash86] and Ash–Knight’s [AK00] η-systems, and Montalbán’s
systems of true stages [Mon14]. Among these methods, the Ash–Knight’s η-system is the only
one that contains a clear metatheorem, where if a certain combinatorial machinery can be
put in place, one can then apply the metatheorem as a black box and produce the desired
computable object out of ∆0

η-information. The proof of the metatheorem is complicated.
But the whole point of the metatheorem is that one does not need to know its proof to
use it. A disadvantage for the metatheorem is that it is applicable in a limited number of
situations. It has only been used in computable structure theory, where the combinatorial
features needed for the metatheorem often occur naturally. Let me emphasize, though, that
despite its limitations, it has been extremely useful in computable structure theory, and has
been applied to a wide range of situations.

In this paper we propose a new metatheorem. The advantage of the new metatheorem is
that it is much easier to use than the Ash–Knight’s metatheorem. The disadvantage is that
it is more limited. However, in most of the constructions from the computable-structure-
theory literature where Ash–Knight’s metatheorem is useful, our metatheorem is too. So the
restriction in applicability does not seem to be too limiting in practice, while the simplification

Saved: December, 2019
Compiled: December 9, 2019

The author was partially supported by NSF grant DMS-1363310.

1

2 ANTONIO MONTALBÁN

is considerable. At a meta-level, we believe that our metatheorem exhibits the interplay
between the η-back-and-forth relations and ∆0

η-information in the clearest possible way.
Montalbán’s η-true stages method provides a different angle to view Ash’s construction,

giving it a more hands-on feeling, while adding some flexibility. For instance, Montalbán
used his method in [Mon14] to prove the tree of structures theorem, a version of the pair-of-
structures theorem which cannot be proved with Ash and Knight’s system. It was also used
by Greenberg and Turetsky [GT], and Day and Marks (in preparation).

The metatheorem we introduce here is not more but less flexible: it can only be used to build
ω-presentations of structures. There are many proofs in computable structure theory that
require exactly this: to build a ω-presentations with a particular property. After presenting
the metatheorem in Section 2, we showcase its applicability by present proofs of various results
from the literature using our metatheorem. We claim that these proofs are much simpler than
the original ones, though we will let the reader be the judge on that. ‘Simpler’ might not
be the right word, as what it actually does is to black box more the computational part of
the construction, leaving only the key combinatorial steps that are pertinent to the situation.
The proofs we will go through are: Ash and Knight’s pair of structures theorem (Section 3);
Watnick’s and Ash-Jockusch-Knight’s theorem that a linear ordering L has a ∆0

2α+1 copy if
and only if ωα · L has a computable copy (Section 4); and Ash’s theorem that, under enough
effectiveness conditions, ∆0

α-categoricity implies relative ∆0
α-categoricity (Section 5). We will

also discuss how the copy-vs-diagonalizer constructions introduced by the author in [Mon13]
to prove the lown property can be viewed as a particular case of the metatheorem (Section 6).

We leave the proof of the metatheorem to the end of the paper. We use Section 7 to reveiew
η-true stage systems, and then use them to prove the metatheorem in Section 8.

1. Background and notation

Before stating the metatheorem in the next section, we need to lay down some basic back-
ground and notation.

1.1. Diagrams. Throughout this article we assume we have a computable vocabulary τ and
all our structures are τ -structures. For simplicity, and without loss of generality, we may
assume τ is relational. An ω-presentation is just a copy of a structure with domain ω. Given
an ω-presentation A, we use D(A) ∈ 2N to denote its atomic diagram, where D(A)(i) gives
the truth value of ith atomic formula. That is, D(A)(i) = 1 if and only if A |= ϕati [xj 7→ j],
where {ϕati : i ∈ N} is some effective enumeration of the atomic formulas on the variables
x0, x1, Given a finite tuple ā = 〈a0, ..., a|ā|−1〉 ∈ A<N, we define the atomic diagram of ā in
A to be the finite binary string DA(ā) of length `|ā|, where, for i < `|ā|,

DA(ā)(i) = 1 ⇐⇒ A |= ϕati [xj 7→ aj : j < |ā|],
and where `s is the number of atomic formulas using the variables x0, ..., xs−1 and the first s
symbols from τ . We assume that in our enumeration {ϕati : i ∈ N} of the atomic formulas,
those atomic formulas come first. It follows that D(A) =

⋃
s∈NDA(〈0, ..., s − 1〉), where the

union is a union of strings. Also, if g : ω → A is a bijection and B is the pull-back of A through
g (i.e., g is an isomorphism B → A), then D(B) =

⋃
s∈NDA(g � s).

1.2. Back-and-forth relations. The back-and-forth relations measure how hard it is to dis-
tinguish two structures, or two tuples within a structure, or even two tuples from different
structures. The idea is that two tuples are n-back-and-forth equivalent if we cannot differenti-
ate them using only n Turing jumps. Basic model-theoretic information about these relations
may be found in [Bar73] and Karp [Kar65], and computability-theoretic information in the
work of Ash and Knight [AK00].

A NEW GAME METATHEOREM FOR ASH-KNIGHT STYLE PRIORITY CONSTRUCTIONS 3

Definition 1.1. Given structures A and B, tuples ā ∈ A<N, b̄ ∈ B<N, and an ordinal η > 0,
we say that (A, ā) is η-back-and-forth below (B, b̄), and write (A, ā) ≤η (B, b̄), if every Πin

η

formula true about ā in A is also true about b̄ in B. I.e.,

(A, ā) ≤η (B, b̄) ⇐⇒ Πin
η -tpA(ā) ⊆ Πin

η -tpB(b̄),

Here, Πin
η denotes de class of infinitary Πη formulas, and Πin

η -tpA(ā) denotes the Πin
η -type of

ā in A. See [AK00, Chapter 6] and [MonP2] for more background on infinitary formulas.
For η = 0 we only look at finite segment of the quantifier-free types and we let (A, ā) ≤0

(B, b̄) if DA(ā) ⊆ DB(b̄).

An equivalent definition for the back-and-forth relations is given in the following theorem.

Theorem 1.2 (Karp [Kar65]). Consider structures A and B, tuples ā ∈ A<N, b̄ ∈ B<N, and
an ordinal η > 0. Then (A, ā) ≤η (B, b̄) if and only if, for every β < η and every d̄ ∈ B<N,
there exists c̄ ∈ A<N such that

(A, āc̄) ≥β (B, b̄d̄).

See[AK00, 15.1, 18.6] for a proof.
Given a list of computable ω-presentations A = (Ai : i ∈ N) and a computable ordinal η,

we say that the back-and-forth relations in A are computable up to η if the relations ≤β for
β ≤ η are uniformly computable, that is, if the set of five-tuples

{〈β, i, ā, j, b̄〉 : β ∈ η + 1, (Ai, ā) ≤β (Aj , b̄)}

is computable.
This is essentially Ash and Knight’s notion of η-friendliness, except that they required the

set above to be only c.e.
Note that this notion is meaningful even when A consists of a single ω-presentation. That

ω-presentation has to be extremely nice to allow us to compute all the back-and-forth relations
among its tuples. When we understand a structure well, we expect to be able to understand its
back-and-forth relations too. For example, every computable ordinal has an ω-presentation
that is η-friendly. Furthermore, for every computable ordinal α, if we represent ωα in the
standard way using Cantor normal forms, we get an α-friendly ω-presentation of ωα. A
calculation of the back-and-forth relations on ordinals was done by Ash in [Ash86], see [AK00,
Lemma 15.10]. The same applies if we take linear orderings of the form Zα, where α is a
computable ordinal. Ash also calculated the back-and-forth relations on super-atomic Boolean
algebras in [Ash87, Lemma 5].

In [Mon10, Proposition 2.10], the author shows that if a class of structures is Σα-small,
meaning that there are only countably many ≡α-equivalence classes among the tuples within
its structures, and it is Σα-small in an effective way, meaning that we can effectively un-
derstand how the back-and-forth relations work among these ≡α-equivalence classes, then
we can produce a computable list of structures in the class containing representatives of all
≡α-equivalence classes, and where the back-and-forth relations are computable up to α.

Another point to make is that for every countable family of structures there is an oracle,
namely the 2ηth jump of the list of ω-presentations, relative to which the back-and-forth
relations up to η are computable. For many of the results below, we still get a meaningful
result if we relativize to this oracle to be able to assume the back-and-forth relations up to η
are computable.

1.3. ∆0
η+1(X) questions. We will deal with finite and transfinite iterations of the Turing

jumps. The standard notation for these iterates has been set, unfortunately, so that for
finite n, 0(n) is Σ0

n-complete, while for infinite α, it is 0(α+1) who is Σα-complete. One can

4 ANTONIO MONTALBÁN

encapsulate both statements by saying that 0(η+1) is Σ0
1+η complete for all η — though this is

rather cumbersome. Instead, in this paper we avoid using the 0(α) notation, and we only talk
about Σ0

η complete sets or of ∆0
γ Turing complete sets.

Definition 1.3. Given X ∈ 2N, n, e ∈ N and a computable ordinal η, we say that n is the
answer to the eth ∆0

η+1(X) question if

n = Φ
SXη
e (0),

where SXη is a Σ0
η(X) complete set, namely X(η) when η is finite and X(η+1) when η is infinite,

and where Φe is the eth Turing functional.

Let us remark that any finite number of questions of the form ϕ
SXη
e0 (k0), ϕ

SXη
e1 (k1), ..., ϕ

SXη
e` (ek)

can be encoded into a single question using an index e such that ϕ
SXη
e (0) outputs a number

encoding the tuple 〈ϕS
X
η
e0 (k0), ϕ

SXη
e1 (k1), ..., ϕ

SXη
e` (k`)〉.

2. Game constructions

Let η be a computable ω-presentation of an ordinal. The reader may assume η = 1 on a
first read of this section — the case η = 1 is already interesting, and the metatheorem is still
quite useful and meaningful. Suppose we have a list of structures

A = {A0,A1,A2,},

where the back-and-forth relations are computable up to η. Let P be a property of ω-
presentations of structures, or equivalently, let P be a subset of the set Modτ of all τ -ω-
presentations.

We will now describe a type of construction that we will call an η-A-game. This game
involves three characters, the engineer, the extender, and the oracle. Together, when the
game ends, they build an ω-presentation L, which we call the limit structure. The goal of the
engineer is for the limit structure L to satisfy property P. The extender is in charge of making
L computable — he will not, in any way, coordinate his work with the engineer. The job of
the oracle is to answer ∆0

η+1(L) questions posed by the engineer. The game has infinitely

many stages. At each stage j ∈ N, first, the engineer plays a triple 〈ij , āj , ej〉 where ij , ej ∈ N
and āj ∈ A<N

ij
, and second, the extender plays a tuple b̄j ∈ A<N

ij
extending āj and the oracle

plays a number nj which must be the answer to the ejth ∆0
η+1(D(L)) question.

engineer i0, ā0, e0 i1, ā1, e1 i2, ā2, e2 · · ·
extender b̄0 b̄1 b̄2 · · ·
oracle n0 n1 n2 · · ·

At each stage j > 0, the tuple āj played by the engineer must satisfy:

(Aij , āj) ≥η (Aij−1 , b̄j−1).

The tuple b̄j played by the extender must be in the same structure just played by the engineer
and must satisfy:

b̄j ⊇ āj .

After ω many moves we get

DA0(ā0) ⊆ DA0(b̄0) ⊆ DA1(ā1) ⊆ DA1(b̄1) ⊆ DA2(ā2) ⊆ · · ·

A NEW GAME METATHEOREM FOR ASH-KNIGHT STYLE PRIORITY CONSTRUCTIONS 5

and hence we get a limit ω-presentation L whose atomic diagram is the union of the diagrams
of the tuples played:

D(L) =
⋃
j∈N

DAij (āj).

The numbers ej represent ∆0
η+1(L) questions as in Definition 1.3.∗ The engineer must ensure

that all these questions converge. The numbers nj played by the oracle must be the answers
to these questions.

A strategy for the engineer is a function that tells the engineer what to play next given
the previous moves by the extender and the oracle. We say that a strategy is valid if, on all
possible plays by the extender, all the ∆0

η+1(L) questions ej converge.

Theorem 2.1. Given A and η as described above, for every computable valid strategy for the
engineer in the η-A-game, there is a ∆0

α+1 sequence of moves by the extender so that, if the
engineer follows her strategy, the limit ω-presentation L is computable.

Furthermore, we will prove that there is a uniform effective procedure that, given the
strategy for the engineer, produces the ω-presentation L which comes from some sequence of
moves by the extender.

To apply this theorem, one needs to describe a computable valid strategy for the engineer
that, with the help of the oracle who is answering our ∆0

η+1 questions, will build an ω-
presentation with property P independently of what the extender does. One can then cite the
theorem to conclude that, even if the construction relied on the ∆0

η+1 information provided
by the oracle, the resulting ω-presentation is computable.

3. Pairs of structures

The pair of structures theorem of Ash and Knight [AK90] is one of the most useful applica-
tions of Ash and Knight’s metatheorem. It gives a complete answer to the question of when
are two structures hard to distinguish in a Σ0

α way — under enough effectiveness conditions.
Two of its main applications are the construction of the αth jump inversion [GHK+05] and of
a structure whose degree spectrum is exactly the non-hyperarithmetic degrees [GMS13].

Theorem 3.1. Let η be a computable ordinal and let A0 and A1 be a pair of ω-presentations
with their back-and-forth relations computable up to η.

If A0 ≥η+1 A1, then, for every Σ0
η+1 set S ⊆ ω, there is a computable list {Ci : i ∈ ω} of

computable structures such that

Ci ∼=

{
A0 if i 6∈ S
A1 if i ∈ S.

Proof. Let S be a Σ0
η+1 subset of N. Uniformly computably in i ∈ N, we need to define a

strategy for the engineer to build a structure that is isomorphic to A1 if i ∈ S, and to A0 if
i 6∈ S. Theorem 2.1 will then guarantee that, also uniformly computably in i, we can choose a
∆0
η+1 sequence of moves by the extender so that the limit structure Ci is uniformly computably

in i. The strategy must be computable, but the engineer is allowed to ask ∆0
η+1 questions

along the way, and it will be the extender who, through Theorem 2.1, will guarantee that Ci
is computable.

The question of whether i ∈ S or not is not a ∆0
η+1 question, so we cannot ask the oracle

directly about it. Instead, we use a computable list of indices e0, e1,... of ∆0
η+1 questions

∗From now on we write ∆0
η+1(L) instead of ∆0

η+1(D(L)).

6 ANTONIO MONTALBÁN

whose answers n0, n1, are either all zeros if i 6∈ S or start with zeros and then change to
all ones if i ∈ S.†

Fix i ∈ N. We define a strategy for the engineer for the η-A-game where A = {A0,A1}
as follows: In its first move, play the empty tuple in A0, and ask about e0 — i.e., play
the triple 〈0, 〈〉, e0〉. In the j + 1st move, if nj+1 = nj , then play any tuple āj+1 in Anj of

length at least j extending b̄j , and ask about ej+1 — i.e., play the triple 〈nj+1, āj+1, ej+1〉.
If nj+1 6= nj , we must have nj = 0 and nj+1 = 1. In this case, play a tuple āj+1 ∈ A<N

1

such that (A1, āj+1) ≥η (A0, b̄j). The existence of such āj+1 follows from the hypothesis that
A0 ≥η+1 A1.

At the end of the game we get that, if i 6∈ S, then {āj : j ∈ N} is an increasing sequence
of tuples in A0, and hence the limit structure is isomorphic to A0. If i ∈ S and s0 is the first
stage with ns0 = 1, then {āj : j ∈ N, j ≥ s0} is an increasing sequence of tuples in A1, and
hence the limit structure is isomorphic to A1. �

The theorem above is only the successor-ordinal version of the Ash–Knight pairs-of-structures
theorem. The way we developed our metatheorem in this paper only allows us to prove this
case. To prove the limit-ordinal case, we would need to develop <η-A-game constructions.

4. Linear ordering presentations

Here is another classical application of Ash’s metatheorem. The theorem below was proved
by Watnick [Wat84] for the case η = 1 and then extended to all η by Ash, Jockusch, and
Knight [AJK90] using workers,and by Ash alone [Ash91] using 2η-systems.

Theorem 4.1. Let A be a linear ordering with a first element. Then A has a ∆0
2η+1 copy if

and only if ωη · A has a computable copy.

Proof. Assume that the least element of A is the 0 of its ω-presentation.
The pool A of structures that we use for our game will consists of all the structures of

the form ωη · F , where F is a finite linear ordering whose domain is an initial segment of N.
The back-and-forth relations between these structures are computable up to 2η + 1. Precise
calculations of the back-and-forth relations among ordinals are calculated in [AK00, Lemma
15.10]. These calculations are based on two main lemmas: One, that a tuple is β-back-and-
forth below another if the ordering of the elements within the tuple are the same, and the
intervals in between the elements of the first tuple are β-back-and-forth below the correspond-
ing intervals for the other tuple [AK00, Lemma15.8]; and, two, that for linear orderings B and
C, ωβ · B ≤2β+1 ω

β · C if and only if |B| ≥ |A|.
Another observation we need is that if F0 ⊆ F1 are linear orderings with the same first

element 0, then ωη · F0 is a Σin
2η+1-elementary substructure of ωη · F1, meaning that, for every

tuple b̄ ∈ ωη · F0, we have that (ωη · F0, b̄) ≥2η+1 (ωη · F1, b̄). The reason is that if an interval
(bi, bj) of ωη · F0 changes in ωη · F1, it is because we add a few intervals of the form ωη in
between, that is, it changes from ωη · k0 + β to ωη · k1 + β for 0 < k0 < k1 ∈ N and β < ωη,
and we know from the lemma mentioned above, that ωη · k1 ≤2η+1 ω

η · k0.
We describe a computable strategy for the engineer in the 2η-A-game. At stage j − 1,

the engineer asks the oracle for a full description of A � j, i.e., the ordering A on the first j
natural numbers. At the following stage, stage j, she choses the structure ωη · Fj in A where
Fj = A � j. Note that Fj naturally extends Fj−1. By our observation above that ωη · Fj−1 is
a Σin

2η+1-elementary substructure of ωη · Fj , we know that (ωη · Fj−1, b̄j−1) ≤η (ωη · Fj , b̄j−1),

and hence that the engineer can play any tuple āj extending b̄j−1. All she needs to do is make

†Let W be a c.e. operator such that i ∈ S ⇐⇒ i ∈WSη where Sη is a Σ0
η-complete set. Then let ej be an

index so that Φ
Sη
ej (0) = 1 if i is enumerated in WSη in less than j steps.

A NEW GAME METATHEOREM FOR ASH-KNIGHT STYLE PRIORITY CONSTRUCTIONS 7

sure that she ends up including all members of ωη ·A eventually. The limit structure will then
be isomorphic to ωη · A. �

The theorem is still true if A has no least element. In that case, instead of using the finite
linear ordering A � j to approximate A, we need to use ω∗ as follows. One needs to show that
there is an A-computable sequence of computable embeddings fj : ω∗ → ω∗ whose direct limit
is A. For this, consider the isomorphism between ω∗ and ω∗ + A � j, and embed ω∗ + A � j
into ω∗+A � j + 1 using the inclusion of Aj ⊆ Aj+1 and use the ω∗ part for elements of Aj+1

that are below the least element of Aj .
A similar proof would show that A has a ∆0

2η+1 copy if and only if Zη ·A has a computable
copy.

5. ∆0
η-categoricity

A computable structure A is ∆0
α-categorical if, for every computable copy B of A, there is a

∆0
α isomorphism between A and B. Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky

[DKL+15] proved that this property cannot be characterized structurally. However, a variant
of it, namely the on-a-cone version, can [AKMS89]. Given X ∈ 2N, A is ∆0

α(X)-categorical
if, for every X-computable copy B of A, there is a ∆0

α(X) isomorphism between A and B. A
is relatively ∆0

α-categorical if it is ∆0
α(X)-categorical for all X. A is ∆0

α-categorical on a cone
if there is a C ∈ 2N such that A is ∆0

α(X)-categorical for all X for all X ≥T C. There are
several measures for different aspects of the complexity of a structure that turned out to be
equivalent to ∆0

α-categoricity on a cone, as for example, the structure having a Σin
α+2 Scott

sentence [Mon15]. Because of this robustness, we have proposed that the rank of A should be
defined to be the least α such that A is ∆0

α-categorical on a cone.
Unfortunately, the three notions of plain, relative, and on-a-cone ∆0

α-categoricity are not
equivalent. Examples of this non-equivalence were build by Goncharov, Harizanov, Knight,
McCoy, R. Miller, and Solomon [GHK+05]. However, they are equivalent for most natural
structures one encounters. Ash and Knight proved that these notions are equivalent if we have
enough structural information about A. To understand that result, we need to consider the
notion of α-freeness:

Definition 5.1 (Ash [Ash87], [AK00, Section 17.4]). We say that the Πin
α -type of a tuple

ā ∈ A<N is Σin
α -supported if there is a Σin

α -formula ϕ(x̄) true of ā which implies all Πin
α

formulas ψ(x̄) true about ā. I.e.,

A |= ϕ(ā) & ∀x̄
(
ϕ(x̄)→

∧∧
ψ∈Πin

α -tpA(ā)

ψ(x̄)
)
.

If the Πin
α -type of ā is not supported by a Σin

α formula, we say that ā is α-free. We say that
ā is α-free over p̄ if it is α-free in the structure (A, p̄).

Using ideas from [AKMS89, AK00], one can show that a structure A is ∆0
α-categorical on

a cone if and only if there is a tuple p̄ ∈ A<N such that every tuple ā ∈ A<N is α-free over p̄
(see [Mon15]). It can be shown using [Mon10, Lemma 2.2] that a tuple ā is (η+ 1)-free if and
only if, for every b̄ ⊇ ā, there exist tuples ā′ ⊆ b̄′ such that

b̄ ≤η b̄′ but ā 6≤η+1 ā
′.

In practice, when we understand the back-and-forth relations on a structure very well we can
effectively decide which tuples are α-free over which tuples, and we can effectively find witness
for the tuples that are not α-free. When that is the case we say that α-freeness is computable
in A. Under this assumptions, and the computability of the back-and-forth relations, is that
Ash [Ash87] proved that plain, relative, and on-a-cone ∆0

η categoricity coincide. That proof

8 ANTONIO MONTALBÁN

has a structural part and a computably-theoretic part. The computably-theoretic part can be
captured in the next lemma, which we state only for the successor case.

Lemma 5.2. Let A be a computable ω-presentation where the back-and-forth relations up to
η+1 and η+1-freeness are computable. If over every tuple p̄ there is a tuple that is η+1-free,
then A is not ∆0

η+1-categorical.

This is essentially the η-A-game version of the proof that computable categoricity implies
relative computable categoricity for 2-decidable structures (i.e., the case η = 0 due to Gon-
charov following ideas of Nurtazin; see for instance [MonP1, Section VIII.4]). We recommend
the reader to read that proof before reading the following argument.

Proof. We build A by defining a computable strategy for the engineer in an η-A-game con-
struction (i.e. A = {A}). We want to end up defining a copy of A, so we will make sure that
the tuples āj stabilize in the limit. i.e., that for each n ∈ N, limj→∞ āj(n) exists — call it
g(n). We will then end up with a function g : ω → A and we will get that the limit structure
L is exactly the pull-back of A through g (see [MonP1, Section I.1.7]). The objective is to
build L so that it is not ∆0

η+1 isomorphic to A.
We use a finite-injury priority construction with infinitely many requirements Re for e ∈ N.

Requirement Re ensures Φ
S0
η
e is not an isomorphism from L to A, where S0

η is 0(η) if η is finite

and is 0(η+1) if η is infinite, or in other words, S0
η is a Σ0

η-complete set. In practical terms, Re

will try to guarantee that Φ
S0
η
e ◦ g−1 is not an automorphism of A by finding a tuple c̄′e so that

its image c̃e through Φ
S0
η
e ◦ g−1 is not η+ 1-back-and-forth equivalent to c̄′e, and in particular,

not automorphic to c̄′e. Since we do not know when or where Φ
S0
η
e converges, we cannot ask

about its values directly to the ∆0
η+1 oracle. All we can ask is, given a tuple n̄ and a number

s, whether Φ
S0
η
e converges on the numbers in n̄ within s steps.

At each step j, an initial segment R0,...,Rkj of the list of requirements are active. The
engineer goes through them one at the time checking if they require attention (defined below).
Each requirement Re−1 outputs a tuple p̄e[j] ⊆ b̄j−1, which lower priority requirements are
not allowed to modify. The tuple p̄e[j] is then given to Re as input, and Re’s output must
extend it. (We will usually omit the [j] from the notation when the stage is understood from
context.) When a stronger priority requirement acts, the weaker requirement is deactivated
and its p̄e becomes undefined to be re-defined later. We will see, however, that for each e,
p̄e[j] will stabilize as j →∞ and hence we will end up with a limit function g : ω → A, where
g(n) = limj→∞ p̄e[j](n).

If none of the requirements Re for e ≤ kj requires attention, the engineer initializes the first
inactive requirement, namely, Rkj+1: That means, for e = kj + 1, the engineer looks for a

tuple c̄e that is η-free over p̄e and adds it to the tuple, say on position n̄e ∈ N<N. That is, she

plays the tuple āj = b̄j−1
ac̄e
ad and asks the oracle whether Φ

S0
η
e (n̄e) converges within j steps,

where d is the least element in A not yet played, and n̄e = 〈|b̄j−1|, |b̄j−1 + 1|, ..., |b̄j−1
ac̄e| − 1〉.

(As we will see, we will have p̄e ⊆ b̄j−1.) She will keep on asking about this convergence, but
with larger time bounds, at every later stage j′ > j until she gets an answer. Actually, it

is for all e ≤ kj + 1 simultaneously that she asks whether Φ
S0
η
e (n̄e) converges within j steps,

encapsulating all questions into one question as in the last paragraph of Section 1.3.
What do we mean by requiring attention, and what does the engineer do then? If the oracle

answered that for some e < kj , Φ
S0
η
e (n̄e) converges within j−1 steps, we say that the least such

e requires attention. Suppose that Φ
S0
η
e (n̄e) = c̃e. So we have that p̄e+1 maps n̄e to c̄e while Φ

S0
η
e

A NEW GAME METATHEOREM FOR ASH-KNIGHT STYLE PRIORITY CONSTRUCTIONS 9

maps n̄e to c̃e. Then, she checks if c̄e ≤η c̃e. If not, she does not need to do anything, as we

then know that c̄e and c̃e are not non-automorphic. She plays āj = b̄j−1
ad where d is the least

element in A not yet played, declares Re satisfied (unless is later deactivated), deactivates
lower priority requirements, and lets kj+1 = e − 1. If yes, that is if c̄e ≤η c̃e, she will switch
c̄e by a tuple c̄′e 6≥η+1 c̄e, getting that c̄′e and c̃e are non-automorphic. To find such c̄′e, we use
the (η + 1)-freeness of c̄e over p̄e, applied to the tuple b̄j−1 ⊇ p̄ec̄e. By (η + 1)-freeness, we
then know there is a tuple c̄′e and a tuple ā′j ⊇ p̄ec̄

′
e such that b̄j−1 ≤η ā′j but p̄ec̄e 6≤η+1 p̄ec̄

′
e.

The engineer now plays āj = ā′j
ad where d is the least element in A not yet played, declares

Re satisfied (unless it is later deactivated), deactivates lower priority requirements, and lets
kj+1 = e− 1.

If Re is never deactivated, we will end up with p̄e+1[j] ⊆ āj′ for all j′ ≥ j, and hence with

p̄e+1[j] ⊆ g. We would have then satisfied Re as either Φ
S0
η
e is not total or Φ

S0
η
e ◦ g−1 maps

either c̄e or c̄′e to c̃e, and in either case these tuples are not η+1-back-and-forth equivalent. �

6. The lown property

Downey and Jockusch [DJ94] proved that Boolean algebras have the low property, that
is, that every low Boolean algebra has a computable copy. Jockusch and Soare [JS91] had
already shown this is not the case for linear orderings. A year later, Thurber [Thu95] showed
that Boolean algebras have the low2 property, that is, that every low2 Boolean algebra has
a computable copy. A few years later, Knight and Stob showed that Boolean algebras have
the low4 property. We still don’t know whether Boolean algebras have the lown property for
all n ∈ N, or even if they have the low5 property. Harris and Montalbán [HM14] showed that
the low5 problem for Boolean algebras is qualitatively more difficult that the previous ones:
While for n = 1, 2, 3, 4, every lown Boolean algebra is 0(n+2)-isomorphic to a computable one,
they built a low5 Boolean algebra not 0(7)-isomorphic to any computable one.

One of the most interesting examples of a class with the low property is differentially
closed fields of characteristic zero, as recently proved by Marker and Miller [MM17]. This
allowed them to give a full description of the degree spectra of differentially closed fields of
characteristic zero.

In [Mon13], we provided a framework for low-property proofs that separates the combi-
natorial/algebraic part of the proof from the computational part of the proof, hiding the
computational part inside the framework, and letting the prover concentrate only on the com-
binatorial/algebraic part. We called that framework the copy-vs-diagonalizer game. In this
section we just want to observe that the copy-vs-diagonalizer game is, essentially, a particular
case of our new metatheorem.

We proved in [MonP1] that if a class of structures has the low1 property, it must be Σ-
small, meaning that there are countably many 1-back-and-forth equivalence classes among all
tuples among all structures in the class. This can be easily extended to show that if a class
of structures has the lown property, it must be Σn-small. Being Σn-small is not a a sufficient
condition, but a necessary one that helps setting up the constructions. All natural Σn-small
classes are effectively Σn-small (see [Mon10, Definition 2.3][Mon13, Definition 4.1][MonP1,
Definition X.24]) meaning that we have a complete effective understanding of the interactions
between the m-back-and-forth equivalence classes for m ≤ n. We showed in [Mon10] that we
can then build a computable list of structure representing all n-back-and-forth equivalence
classes where the back-and-forth relations are computable up to n. Call it Kn. Actually,
having of such a list of structures is equivalent to having a computable representation of the
n-back-and-forth structure of the class. We thus have a setting to perform an n-Kn-game

10 ANTONIO MONTALBÁN

construction. When the engineer is playing tuples in Kn, all that matters is the n-back-and-
forth type of that tuple. So, if we know the structure of the n-back-and-forth types and we
are given a way to represent them nicely, we may think that instead of playing structures in
Kn, we are playing is n-back-and-forth types.

If we are given a lown structure A in the class, the ∆n+1 oracle has access to its n-jump,
and hence it knows how its tuples are m-back-and-forth related to the tuples of the structures
in Kn — well, kind of: Given a tuple k̄ in a structure Ki in Kn, and a tuple ā ∈ A<N, it is Πn

in the structure to tell if (Ki, k̄) ≤n (A, ā) (see [Mon10, Lemma 2.2]), but it is harder to tell
if (Ki, k̄) ≥n (A, ā).‡ What we showed in [Mon13] is that if we are given the nth jump of a
structure we can produce an n-approximation to it. In the setting of the current paper, an n-
approximation to a structure is a sequence of pairs 〈i0, k̄0〉, 〈i1, k̄1〉, 〈i2, k̄2〉, ... where k̄j ∈ K<N

ij
and

(Ki0 , k̄0) ≤n (Ki1 , k̄1) ≤n (Ki2 , k̄2) ≤n · · · ,

and the given structure A is the limit of this sequence in the sense that D(A) =
⋃
j DKij (k̄j).

The engineer can thus, at stage j, ask the oracle for the pair 〈ij , k̄j〉. The engineer does not
need to play in Kij in the next move, tough that may be a good idea. The engineer would
like to copy A. Her obstacle is that the extender is extending her tuples, and the fact that
(Kij−1 , k̄j−1) ≤n (Kij , k̄j) does not mean that every tuple b̄j−1 extending āj−1 has a matching
tuple in Kij . If she can overcome that obstacle, she will be able to produce a proof of the
lown-property.

7. η-true-stage systems

In this section we review η-true-stage systems, introduced by the author in [Mon14], so we
can use them in the proof of the metatheorem in the next section.

Let η be a computable ω-presentation of an ordinal where we can decide whether an ordinal
is a successor or a limit, and we can calculate successors.

An η-true-stage system is a computable family {≤ξ: ξ ≤ η} of partial orderings on N that
satisfies the following properties:

(TS0) ≤0 is just the standard ordering on N.
(TS1) The sequence of relations is nested (i.e., if γ ≤ ξ and s ≤ξ t, then s ≤γ t).
(TS2) For every ξ, there exist an infinite ≤ξ-increasing sequence t0 <ξ t1 <ξ · · · .
(TS3) The sequence of relations is continuous (i.e., if λ is a limit ordinal, then ≤λ=

⋂
ξ<λ ≤ξ).

(♣) For every ξ, and every r < s < t, if r ≤ξ+1 t and s ≤ξ t, then r ≤ξ+1 s.

r
<ξ+1

<ξ+1

s
<ξ

t

For each ξ ≤ η, we say that t is a ξ-true stage if it belongs to an infinite ≤ξ-increasing

sequence. We define Tξ ∈ NN to be the sequence of ξ-true stages listed in increasing order.
One could thus define Tξ as the union of all infinite ≤ξ-increasing sequences. One can the prove

using (♣) that Tξ is itself a ≤ξ-increasing sequence. Tξ is thus the maximal ≤ξ-increasing
sequence. For successor ordinals, one can show using (♣) that

t is a ξ + 1-true stage ⇐⇒ t is ξ-true and (∀s ≥ξ t with s ξ-true) s ≥ξ+1 t.

‡The asymmetry comes from the assumption that the back-and-forth relation in Ki are computable, while
in A they probably aren’t.

A NEW GAME METATHEOREM FOR ASH-KNIGHT STYLE PRIORITY CONSTRUCTIONS 11

For limit ordinals λ, t is a λ-true stage if and only if it is a ξ-true stage for all ξ < λ. This
implies that the the set of ξ-true stages is Π0

ξ . Tξ does not have the same m-degree as the Π0
ξ ,

but the theorem below states that it may have the same Turing degree.

Definition 7.1. We say that an η-true-stage system is complete if Tξ is ∆0
ξ+1-Turing-complete

for all ξ ≤ η, uniformly in ξ.

Theorem 7.2. There exists a complete η-true-stage system.

This theorem was proved in [Mon14, Lemma 7.8]. A different construction was later given
by Greenberg and Turetsky in [GT]. In [MonP2] we present yet a different construction which
incorporates ideas from [GT]. In any case, for applications of the η-true-stage method, all that
matters is that such a system exists. Let us now describe the key idea behind these systems.

We say that s is an apparent ξ-true stage at t if s ≤ξ t. Given ξ and t, we define the stage-t

approximation to Tξ, denoted Tξt , as the tuple enumerating the apparent ξ-true stages at t:

Tξt = 〈s : s ≤ξ t〉

Note that

s ≤ξ t ⇐⇒ Tξs ⊆ Tξt ,

where the inclusion is as strings, and that

t is ξ-true ⇐⇒ Tξt ⊆ Tξ.

An η-system thus provides a combinatorial framework to approximate the iterations of the
jumps. The properties (TS1)-(TS3) and (♣) describe the behavior of these approximations.

8. The proof of the game metatheorem

We split the proof in two independent parts by first considering a simplification of the game.
In this simplification, the engineer does not get to choose which ∆0

η+1 question to ask, and

the oracle just plays Tξ � j at stage j, namely the string consisting of the first j many ξ-true
stages. Recall that Tξ is ∆0

η+1 Turing complete, so if the engineer had a ∆0
η+1 question in

mind, she will eventually be able to figure out the answer. Let us call this version of the game,
the simplified game. Let us start seeing how to transform the general version of the game into
an instance of the simplified version.

Proof of Theorem 2.1 from the simplified version of Theorem 2.1. Let σ be a computable valid
strategy for the engineer in the η-A-game from Theorem 2.1. We will build a computable ω-
presentation for a limit-structure obtained from a certain sequence by the extender where the
engineer follows her strategy σ. This construction will use a number ` as a parameter —
so we are actually building a different ω-presentation L` for each ` ∈ N. We will then use
the recursion theorem to find a computable index `0 for the diagram of the limit-structure
computed using `0 as a parameter. I.e.,

D(L`0) = Φ`0 .

Thus, we may assume the parameter ` is an index for the computable diagram we are building.
For this to work, we must produce a computable ω-presentation L` even if the `th computable
function Φ` is not total.

We will build a computable valid strategy σ̂ for engineer in the simplified η-A-game, and
we will do it uniformly in `. We will do it in a way that, for every run of the simplified
game following σ̂, there is a run of the original game following σ that produces the same limit
structure. The simplified version of Theorem 2.1 (which we prove below) will give a sequence

12 ANTONIO MONTALBÁN

of moves by the extender such that, when we follow σ̂, produces a computable ω-presentation
L`. We omit the subindex ` in what follows.

Here is how we define σ̂: Let Γ be a computable operator such that ΓTη(e) is the answer
to the eth ∆0

η+1(Φ`) question. Let σ̂’s first move be the same as σ’s; that is let σ̂(〈〉) = σ(〈〉).
At each following stage, σ̂ may either pass or emulate σ, depending on whether on not the
oracle has given her enough information to answer the last ∆0

η+1-question she asked. At a
stage j + 1, whether she passes or emulates σ gets decided as follows: Suppose the extender
has just played b̄j , and the oracle played the string Tη � j. Let j0 be the last stage at which
σ̂ emulated σ — suppose it was the kth time where σ̂ emulated σ. At that stage, σ asked
a ∆0

η+1(L)-question, say ek. If ΓTη�j(ek) ↓ let σ̂ emulate σ and play the string σ would play

if the extender had played b̄j and the oracle has played nk = ΓTη�j(ek). If ΓTη�j(ek) ↑, let σ̂
pass, that is, let it play ij+1 = ij and āj+1 be any proper extension of b̄j in Aij .

If we apply the simplified version of Theorem 2.1 to this strategy σ̂, we end up building a
computable ω-presentation L. The diagram of L is total independently of whether Φ` is total
and of whether we ever get answers to the ∆0

η+1(L)-questions ek. This is because if σ̂ ends
up passing from some point j0 onwards, then the limit structure will end up isomorphic to
Aij0 . Thus, when `0 is given to us by the recursion theorem as above, we get that Φ`0 is total
and is equal to the diagram of the limit structure L`0 we just obtained. Since σ is a valid
strategy, all the ∆0

η+1(L)-questions it asks converge, and hence, for all k, ΓTη�j(ek) eventually
converges. This means that there are infinitely many stages at which σ̂ emulates σ, and we
thus get that for every sequence of moves by the extender in the simplified game, there is a
sequence of moves in the original game which give us the same limit structure. We then get
a run of the original game where the limit structure is computable. �

The following lemma is the key property about the back-and-forth relations that allows
us to simplify the metatheorems of Ash and Knight [AK00] and Montalbán [Mon14] in the
particular case where the object we are building is an ω-presentation of a structure. Those
metatheorems are more general than the one of this paper, and when they are applied in the
literature the lemma below is used in the middle of each of the constructions. One of the ways
in which our metatheorem simplifies the previous ones is by absorbing the lemma inside the
proof of the metatheorem, so that the user of the metatheorem does not have to deal with it.

Lemma 8.1. (Ash [Ash87, AK00]) Suppose we have a finite sequence of τ -structures A0, ...,Ak,
ordinals ξk−1 > · · · > ξ1 > ξ0, and tuples āi ∈ A<N

i for i ≤ k, such that

(Ak, āk) ≤ξk−1+1 (Ak−1, āk−1) ≤ξk−2+1 · · · ≤ξ1+1 (A1, ā1) ≤ξ0+1 (A0, ā0).

There exist a tuple b̄ ∈ A<N
k extending āk such that (Aj , āj) ≤ξj (Ak, b̄) for all j < k.

Proof. We will define a sequence of tuples b̄j ∈ A<N
j extending āj by induction on j ≤ k,

ending with b̄ = b̄k. We will make sure by induction that (Ai, āi) ≤ξi (Aj , b̄j) for all i < j.

(Ak, āk)≤ξk−1+1 (Ak−1, āk−1)≤ξk−2+1 · · · ≤ξ1+1 (A1, ā1) ≤ξ0+1 (A0, ā0)

⊆ ≤
ξ
k−

1+1

⊆ ≤
ξ
k−

2+1

. . .
≤
ξ1+1

⊆ ≤
ξ0+1

=

(Ak, b̄k) ≥ξk−1
(Ak−1, b̄k−1) ≥ξk−2

· · · ≥ξ1 (A1, b̄1) ≥ξ0 (A0, b̄0)

Let b̄0 = ā0. Given b̄j , since (Aj+1, āj+1) ≤ξj+1 (Aj , āj), and āj ⊆ b̄j , there exists b̄j+1 ⊇
āj+1 ∈ A<N

j+1 such that (Aj+1, b̄j+1) ≥ξj (Aj , b̄j). We end up with (Ak, b̄k) ≥ξj (Aj , b̄j) ⊇
(Aj , āj). �

A NEW GAME METATHEOREM FOR ASH-KNIGHT STYLE PRIORITY CONSTRUCTIONS 13

Proof of Theorem 2.1 for the simplified game. We build a computable sequence of pairs 〈is, ās〉
with ās ∈ Ais which satisfies that, for all ξ ≤ η, and r < s ∈ N,

(1) r ≤ξ s implies (Air , ār) ≤ξ (Ais , ās).
In particular we get that if s ≤ t, then (Ais , ās) ≤0 (Ait , āt), which means that DAis (ās) ⊆
DAit (āt), and hence that the limit sequence with diagram

⋃
sDAis (ās) is computable. To

show that this structure is the limit structure under some run of the game following the
engineer’s strategy σ, we will show that if we restrict ourselves to the sequence of η-true
stages t0 ≤η t1 ≤η t2 ≤η · · · , then the sequence 〈it0 , āt0〉, 〈it1 , āt1〉, 〈it2 , āt2〉, ... can be seen as
the sequence of moves by the engineer following σ for some particular sequence of moves by
the extender.

For each s, will also define a tuple b̄s that belongs to Ait for the largest t < s with t ≤η s+1.
(This is the tuple we will use as the move by the extender later.) The tuple b̄s will satisfy
that for every ξ ≤ η and every r < s,

(2) r ≤ξ s+ 1 implies (Air , ār) ≤ξ (Ait , b̄s)
Thus, if we then define is+1 and ās+1 satisfying (Ait , b̄s) ≤η (Ais+1 , ās+1), we will immediately

get property (1). We will define b̄s using the previous lemma, so we first need to find the right
setting to apply it. For each ξ ≤ η, let tξ < s + 1 be the largest t such that t ≤ξ s + 1. (It
does not hurt to assume that 0 ≤ξ s + 1 for all ξ and s, so such a tξ always exists.) Notice
that if r <ξ s + 1, then r ≤ tξ and then by (♣) r ≤ξ tξ ≤ξ s + 1. So, to satisfy property (2),
it is enough to get b̄s so that (Aitξ , ātξ) ≤ξ (Ait , b̄s) for all ξ ≤ η.

There are infinitely many ξ’s, but only finitely many possible values for tξ < s+ 1, so they
must repeat a lot. Since the relations (≤ξ)ξ≤η are nested, if ξ ≤ ζ ≤ η0 then tζ ≤ tξ. We
now want to define stages sk < < s0 < s + 1 so that {sk, ..., s0} = {tξ : ξ ≤ η0} as sets,
but we need to define them effectively. Let s0 = t0 = s. Given sj , let ξj ≤ η0 be the greatest
such that sj = tξj , i.e., the greatest ξ such that sj ≤ξ s + 1. We notice that such a greatest
ordinal exists by the continuity of (≤ξ)ξ≤η. If ξj = η, then we let k = j and that finishes the
definition of s0, ..., sk. Otherwise, let sj+1 = tξj+1. Since we know sj 6≤ξj+1 s, we must have
sj+1 < sj . By (♣) we then have sj+1 ≤ξj+1 sj , and hence (Aisj+1

, āsj+1) ≤ξj+1
(Aisj , āsj). We

now apply Lemma 8.1 to the sequence

(Aisk , āsk) ≤ξk−1+1 (Aisk−1
, āsk−1

) ≤ξk−2+1 · · · ≤ξ1+1 (Ais1 , ās1) ≤ξ0+1 (Ais0 , ās0),

to get b̄s satisfying (2).
The last step is to define ās+1 using the strategy σ for the engineer in the simplified game.

Let 0 = t0, ..., tj are the apparent η-true stages below s+ 1. Note that Tηti = Tηs+1 � i. We then
let

〈is+1, ās+1〉 = σ(b̄t1−1,T
ξ
t1
, b̄t2−1,T

ξ
t2
, ..., b̄tj−1,T

ξ
tj
, b̄s,T

ξ
s+1).

That is, 〈is+1, ās+1〉 is what the engineer would play in her j+ 1st move if she was following σ
and the previous moves by the extender where b̄t1−1, b̄t2−1, ...b̄tj−1, b̄s and the previous plays

by the oracle Tξs+1 � 1,Tξs+1 � 2,..., Tξs+1.
Now, consider the sequence t1 <η t2 <η · · · of η-true stages. We get that the following is a

run of the simplified game following σ:

engineer i0, ā0 it1 , āt1 it2 , āt2 · · ·
extender b̄t1−1 b̄t2−1 b̄t3−1 · · ·
oracle Tξ � 1 Tξ � 2 Tξ � 3 · · ·

It follows that the limit structure of this run of the game is the computable structure with
diagram

⋃
sDAis (ās) that we mentioned above. �

14 ANTONIO MONTALBÁN

References

[AJK90] C. J. Ash, C. G. Jockusch, Jr., and J. F. Knight. Jumps of orderings. Trans. Amer. Math. Soc.,
319(2):573–599, 1990.

[AK90] C. J. Ash and J. F. Knight. Pairs of recursive structures. Ann. Pure Appl. Logic, 46(3):211–234,
1990.

[AK00] C.J. Ash and J. Knight. Computable Structures and the Hyperarithmetical Hierarchy. Elsevier Sci-
ence, 2000.

[AKMS89] Chris Ash, Julia Knight, Mark Manasse, and Theodore Slaman. Generic copies of countable struc-
tures. Ann. Pure Appl. Logic, 42(3):195–205, 1989.

[Ash86] C. J. Ash. Stability of recursive structures in arithmetical degrees. Ann. Pure Appl. Logic, 32(2):113–
135, 1986.

[Ash87] C. J. Ash. Categoricity in hyperarithmetical degrees. Ann. Pure Appl. Logic, 34(1):1–14, 1987.
[Ash91] C. J. Ash. A construction for recursive linear orderings. J. Symbolic Logic, 56(2):673–683, 1991.
[Bar73] J. Barwise. Back and forth through infinitary logic. In M. D. Morley, editor, Studies in model theory,

pages 5–34. The Mathematical Association of America, Buffalo, N.Y., 1973.
[DJ94] Rod Downey and Carl G. Jockusch. Every low Boolean algebra is isomorphic to a recursive one.

Proc. Amer. Math. Soc., 122(3):871–880, 1994.
[DKL+15] Rodney G. Downey, Asher M. Kach, Steffen Lempp, Andrew E. M. Lewis-Pye, Antonio Montalbán,

and Daniel D. Turetsky. The complexity of computable categoricity. Advances in Mathematics,
268:423–466, 2015.

[Fri57] Richard M. Friedberg. Two recursively enumerable sets of incomparable degrees of unsolvability
(solution of Post’s problem, 1944). Proc. Nat. Acad. Sci. U.S.A., 43:236–238, 1957.

[GHK+05] Sergey Goncharov, Valentina Harizanov, Julia Knight, Charles McCoy, Russell Miller, and Reed
Solomon. Enumerations in computable structure theory. Ann. Pure Appl. Logic, 136(3):219–246,
2005.

[GMS13] N. Greenberg, A. Montalbán, and T. A. Slaman. Relative to any non-hyperarithmetic set. Journal
of Mathematical Logic, 13(1), 2013.

[GT] Noam Greenberg and Daniel Turetsky. Completeness of the hyperaritmetic isomorphism equivalence
relation. Submitted for publication.

[Har76] L. Harrington. Mclaughlin’s conjecture. Handrwitten notes, 11 pages, September 76.
[HM14] Kenneth Harris and A. Montalbán. Boolean algebra approximations. Transactions of the AMS,

366(10):5223–5256, 2014.
[JS91] Carl G. Jockusch, Jr. and Robert I. Soare. Degrees of orderings not isomorphic to recursive linear

orderings. Ann. Pure Appl. Logic, 52(1-2):39–64, 1991. International Symposium on Mathematical
Logic and its Applications (Nagoya, 1988).

[Kar65] Carol R. Karp. Finite-quantifier equivalence. In Theory of Models (Proc. 1963 Internat. Sympos.
Berkeley), pages 407–412. North-Holland, Amsterdam, 1965.

[Lac76] Alistair H. Lachlan. A recursively enumerable degree which will not split over all lesser ones. Ann.
Math. Logic, 9(4):307–365, 1976.

[Ler10] Manuel Lerman. A framework for priority arguments, volume 34 of Lecture Notes in Logic. Associ-
ation for Symbolic Logic, La Jolla, CA, 2010.

[LL95] Steffen Lempp and Manuel Lerman. A general framework for priority arguments. Bull. Symbolic
Logic, 1(2):189–201, 1995.

[MM17] David Marker and Russell Miller. Turing degree spectra of differentially closed fields. J. Symb. Log.,
82(1):1–25, 2017.

[Mon10] Antonio Montalbán. Counting the back-and-forth types. Journal of Logic and Computability, page
doi: 10.1093/logcom/exq048, 2010.

[Mon13] Antonio Montalbán. Copyable structures. Journal of Symbolic Logic, 78(4):1025–1346, 2013.
[Mon14] Antonio Montalbán. Priority arguments via true stages. Journal of Symbolic Logic, 79(4):1315–1335,

2014.
[Mon15] Antonio Montalbán. A robuster Scott rank. Proc. Amer. Math. Soc., 143(12):5427–5436, 2015.
[MonP1] Antonio Montalbán. Computable structure theory: Beyond the arithmetic. In preparation, P1.
[MonP2] Antonio Montalbán. Computable structure theory: Beyond the arithmetic. In preparation, P2.
[Muc56] A. A. Muchnik. On the unsolvability of the problem of reducibility in the theory of algorithms.

Dokl. Akad. Nauk SSSR, N.S., 108:194–197, 1956.
[Sac63] Gerald E. Sacks. Degrees of unsolvability. Princeton University Press, Princeton, N.J., 1963.
[Sho61] J. R. Shoenfield. Undecidable and creative theories. Fund. Math., 49:171–179, 1960/61.

A NEW GAME METATHEOREM FOR ASH-KNIGHT STYLE PRIORITY CONSTRUCTIONS 15

[Thu95] John J. Thurber. Every low2 Boolean algebra has a recursive copy. Proc. Amer. Math. Soc.,
123(12):3859–3866, 1995.

[Wat84] Richard Watnick. A generalization of Tennenbaum’s theorem on effectively finite recursive linear
orderings. J. Symbolic Logic, 49(2):563–569, 1984.

Department of Mathematics, University of California, Berkeley
E-mail address: antonio@math.berkeley.edu

URL: www.math.berkeley.edu/∼antonio

http://www.math.berkeley.edu/~antonio/index.html

	1. Background and notation
	1.1. Diagrams
	1.2. Back-and-forth relations
	1.3. 0+1(X) questions

	2. Game constructions
	3. Pairs of structures
	4. Linear ordering presentations
	5. 0-categoricity
	6. The lown property
	7. -true-stage systems
	8. The proof of the game metatheorem
	References

