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ON THE TRIPLE JUMP OF THE SET OF ATOMS OF A
BOOLEAN ALGEBRA.

ANTONIO MONTALBÁN

Abstract. We prove the following result about the degree spectrum of the
atom relation on a computable Boolean algebra. Let C be a computable

Boolean algebra with infinitely many atoms and a be the Turing degree of

the atom relation of C. If d is a c.e. degree such that a′′′ ≤T d′′′, then there is
a computable copy of C where the atom relation has degree d. In particular,

for every high3 c.e. degree d, any computable Boolean algebra with infinitely

many atoms has a computable copy where the atom relation has degree d.

1. Introduction

We study the degree spectrum of the atom relation on computable Boolean
algebras. If C is a computable Boolean algebra, let

DgC(Atom) = {Deg(Atom(B)) : B ∼= C,B computable},

where Deg(X) is the Turing degree of X, and Atom(B) is the set of atoms of B,
that is, the set of non-zero x ∈ B beneath which there is no element other than
0. This is part of a more general program that studies the information content of
relations on computable models, initiated by Ash and Nerode [AN81]. One of the
goals of this programs is to understand the possible degree spectra that relations
can have, or in other words, how the classical isomorphism type of a computable
model restricts the computability theoretic properties of a certain relation. In the
case of Boolean algebras, the atom relation is the simplest one. It is natural to
ask how its degree spectrum looks, or what information can be encoded into it and
how hard it is to decode it. A nice survey about this question can be found in
[Rem89]. Let us fix a computable Boolean algebra B. If B has only finitely many
atoms, then DgB(Atom) = {0}. So, let us assume B has infinitely many atoms.
The first observation is that the set of atoms is co-c.e., and hence DgB(Atom)
is contained in the c.e. degrees. It follows from [Gon75, Theorem 2] that there
is a computable Boolean Algebra B such that 0 6∈ DgB(Atom) (see [Rem89], or
[Dow97, Theorem 5.11] adding the word “atomic” in the line where Tarski’s result is
mentioned). Remmel [Rem81a, 2.12.i] showed that DgB(Atom) is closed upwards in
the c.e. degrees, and, in particular, that it always contains 0′. Downey [Dow93] then
showed that DgB(Atom) also has to contain some incomplete degree. This contrasts
a result of Downey and Moses [DM91], who proved that there is computable linear
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ordering whose set of successivities is intrinsically complete. We prove the following
extension of Downey’s result.

Theorem 1.1. Let C be a computable Boolean algebra with infinitely many atoms.
If a ∈ DgC(Atom) and d is a c.e. degree such that a′′′ ≤T d′′′, then d ∈ DgC(Atom).

In particular, for every high3 c.e. degree d, d ∈ DgC(Atom).

It follows that no information can be encoded directly into the atom relation of
a Boolean algebra C: If b is a non-computable Turing degree, there is a high degree
d which does not compute b and there is a copy of C where the atom relation is
computable in d and hence does not compute b. Moreover, via a similar argument,
we get that no information can be encoded into the double jump of the atom
relation. Another corollary we get is that there is a computable Boolean algebra B
such that DgB(Atom) contains no low3 degree: Just consider the Boolean algebra
constructed by Goncharov [Gon75] whose atom relation is always non-computable.

It was proved by Knight and Stob [KS00] that every low4 Boolean algebra has
a computable copy. Our theorem has a similar flavor, and it heavily uses results of
Knight and Stob [KS00]. It is not known whether every lown Boolean algebra has a
computable copy. A proof answering this question positively would probably yield
a generalization of our main theorem to nth-jumps, and in particular that every
highn c.e. degree is in the degree spectrum of the atom relation of any computable
Boolean algebra with infinitely many atoms.

Even though the result is a big improvement over Downey’s previous result,
the proof is not complicated. It is actually an application of a sequence of known
lemmas due to Knight and Stob [KS00], Thurber [Thu95], and Remmel [Rem81a],
and a variation of another lemma due to Downey and Jockusch [DJ94]. Here is the
new lemma.

Lemma 1.2. Let d be a c.e. degree and let A be a d-computable Boolean Algebra
whose atom relation is also computable in d. Then, there is a computable copy of
A whose atom relation is computable from d.

This lemma extends a previous result of Downey and Jockusch [DJ94], where
they prove that if A is a 0′-computable Boolean algebra A whose atom relation
is also computable in 0′, then A is isomorphic to a computable Boolean algebra.
Their proof has two steps, first a finite injury argument and then an application of
the Remmel-Vaught Lemma [Rem81a] (see Lemma 3.1 below). Our proof follows
the one found in [KS00, Theorem 2.2], although, since we also need to keep the
atom relation below a certain degree, we have to be a bit more careful.

It might be possible to get similar results for relations other than the atom
relation, as for example, the relations finite (or equivalently infinite) and atomless
(see definitions below). Ideas similar to ours might be applicable to study the
following spectrum.

DgC(Atom,Finite,Atomless) =

{〈Deg(Atom(B)),Deg(Finite(B),Deg(Atomless(B))〉 : B ∼= C,B computable},

Remmel [Rem81b] has studied the degree spectrum of the relation finite on com-
putable Boolean algebras with computable sets of atoms.

2. General outline of the proof
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First we describe how Lemma 1.2 is used to prove our main theorem. We need
to start by introducing some Boolean algebra unary predicates. Atom, infinite and
atomless, are the only predicates we will use in the proof of Lemma 1.2. We define
the other ones to be able to refer to previous results of Knight and Stob [KS00].
We classify these predicates in terms of how many quantifier alternations, in a
computably infinitary formula, are necessary to define them.

• 1-relations
– atom(x) - x is an atom,

• 2-relations
– atomless(x) - x 6= 0, and there are no atoms below x,
– infinite(x) - x is not a join of finitely many atoms,

• 3-relations
– atomic(x) - x has no atomless elements below it,
– 1-atom(x) - whenever x = y ∨ z, either y or z is a finite join of atoms,
– atominf(x) - there are infinitely many atoms below x,

• 4-relations
– ∼-inf(x) - there are infinitely many ∼-inequivalent elements below x,

where a ∼ b if the symmetric difference a4b = (a−b)∨(b−a) is finite.
– infatomicless(x) - there is no infinite atomic element below x,
– 1-atomless(x) - there are no 1-atoms below x,
– nomaxatomless(x) - x is not a join of atomless and atomic elements
– I(ω+η)(x) - atominf(x) and whenever x = y∨z, there are only finitely

many atoms below either y or z.
When we refer to ≤4-relations, we mean the set of 1-, 2-, 3- and 4-relations.
Similarly for ≤3-relations and ≤2-relations.

Let C0 be a computable Boolean Algebra with infinitely many atoms, whose
atom relation is computable in a. The first important observation is that all the
≤4-relations of C0 are computable in a′′′ ≤T d′′′: just write down the definitions in
terms of the atom relation. We use the following sequence of lemmas.

Lemma 2.1 (Knight and Stob [KS00, 5.2]). If a Boolean algebra C is computable
in x′ and all its ≤4-relations are also computable in x′, then C has a x-computable
copy where all the ≤3-relations are computable in x.

So we have that there is a d′′-computable copy C1 of C0 whose ≤3-relations are
also computable in d′′.

Lemma 2.2 (Knight and Stob [KS00, 3.2]). If a Boolean algebra C is computable
in x′ and all its ≤3-relations are also computable in x′, then C has a x-computable
copy where all the ≤2-relations are computable in x.

So we have that there is a d′-computable copy C2 of C1 whose ≤2-relations are
also computable in d′.

Lemma 2.3 (Thurber [Thu95], see[KS00, 2.5]). If a Boolean algebra C is com-
putable in x′ and all its ≤2-relations are also computable in x′, then C has a x-
computable copy where all the 1-relations are also computable in x.

So we have that there is a d-computable copy C3 of C2 such that the atom relation
is also computable in d. Now we use Lemma 1.2 and get a computable copy C4 of
C3 whose atom relation is computable in d. To get a copy C5 of C4 where the atom
relation has degree exactly d we use the following lemma.
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Lemma 2.4 (Remmel [Rem81a, 2.12]). If a computable Boolean algebra C has
infinitely many atoms and its atom relation is computable in a c.e. degree d, then
C has a computable copy whose atom relation has degree d.

3. Proof of Lemma 1.2

Let A be a d-computable Boolean algebra with infinitely many atoms whose
atom relation is computable in d. We want to build a computable Boolean algebra
B, isomorphic to A, whose atom relation is also computable in d. Let D be an
infinite c.e. set in d. We define the set of true stages for the enumeration of D
as usual. Let {d0, d1, ...} be a computable enumeration of D. We say that t is a
true stage if ∀u > t (du > dt). Let t0 < t1 < t2 < ... be the sequence of true
stages. This sequence is computable in D. A stage t looks true at s if t ≤ s and
∀u ≤ s (u > t ⇒ du > dt); this is a computable predicate. Note that if t is a true
stage, then t looks true at any stage s > t, and if u < t looks true at t, then u is
actually true. For every s, we let ts be the largest t < s which looks true at s. To
make ts defined for every s > 0, we might assume that d0 = 0 and hence that 0 is
a true stage.

We construct B by finite approximations. At stage s we computably define a
finite boolean algebra Bs so that B0 ⊆ B1 ⊆ B2 ⊆ ... and B =

⋃
s∈ω Bs. We define

Bs so that
⋃

Bs = ω, where Bs is the domain of Bs. Note that B is computable. If
y is a minimal element of Bs−1 and x ∈ Bs is strictly below y, x 6= 0, we say that
x is enumerated at s and that y is split at s. Let C be the set of atoms of B. So,
the elements of C will appear in some Bs as minimal elements and will never split.
To make sure C is computable in D we satisfy the following condition:

(B) If y ∈ Bts−1 is a minimal element of Bs−1, then it does not split at s.
Therefore, if ts is a true stage, then y will be an atom of B. To compute C from D
we do the following. Given x ∈ B we find the first stage s at which it is enumerated.
Then we find some true stage tk greater than s. So, x is an atom of B if and only
if it is a minimal element in Btk

.
Now we describe our approximation to A. We think of A as a Boolean algebra

with atom relation, that is, a structure 〈A,∨,∧,¬,Atom(·)〉. At stage s we will
define a finite Boolean algebra As = 〈As,∨,∧,¬, Ts〉, where Ts ⊆ As is a subset
of the set of minimal elements of As, but since minimal elements of As might
not be atoms of A, Ts might not contain all the minimal elements of As. There
is some Turing functional, that with oracle D, computes A, including the atom
relation. We let Âs = 〈Âs,∨,∧,¬, T̂s〉 be the largest finite Boolean algebra that this
Turing functional computes in less than s steps and using as oracle the finite string
Ds � ds = 〈Ds(0), Ds(1), ..., Ds(ds−1)〉. Note that if t looks true at s, then Ât ⊆ Âs

where inclusion here also means that T̂t = T̂s∩At. Therefore A =
⋃

n∈ω Âtn , where
{tn : n ∈ ω} is the sequence of true stages. We would like to assume that for each n,
either Atn+1 = Atn or Atn+1 = Atn [atn+1 ], that is, the Boolean algebra generated
by Atn

and atn+1 , where atn+1 is strictly below some minimal element btn+1 of Atn
.

We define As by induction as follows. Let A0 be the Boolean algebras with two
elements. To define As, consider Ats . If Ats = Âs, let As = Âs, and if Ats ( Âs,
let as be some non-zero element of Âs strictly below some minimal element in Ats ,
and let As be the sub-algebra of Âs generated by Ats and as. We let Ts = T̂s ∩As.
It is not hard to show that one can choose as so that A =

⋃
n∈ω Atn

.
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To get A ∼= B, we will construct an embedding f : A → B by stages. At each
stage s we define

fs : As → Bs,

To be able to define f as some sort of limit of the fs, we impose the following
condition.

(F) ∀c ∈ Ats (fs(c) = fts(c))
So we have that ft0 ⊆ ft1 ⊆ ft2 ⊆ .... We then define f =

⋃
k∈ω ftk

. Note that to
compute f we need an oracle for D, because D can enumerate the true stages.

At stage s we have fs already defined on Ats and we need to extend it to
As = Ats [as] where as is strictly below some minimal element bs of Ats . We only
need to decide the value of fs(as), and it has to be some element of Bs strictly
below fs(bs). Recall that we are allowed to enlarge Bs−1, but we are not allowed to
put elements below the minimal elements of Bts−1 that are still minimal elements
in Bs−1. To make sure there is always room below fs(b), we inductively make sure
the following conditions are satisfied at every stage s and below fs(d), for every
minimal element d of As.

(B1) If we guess d is an atom (i.e. d ∈ Ts), then no minimal element of Bs−1

below fs(d) is split in Bs.
(B2) Otherwise, every minimal element of Bs−1 below fs(d) is split in Bs.
Notation: For a Boolean algebra C and c ∈ C, we let C � c = {x ∈ C : x ≤ c}.

Observe that if c ∈ A is a finite sum of atoms, the conditions above might imply
that A � c 6∼= B � f(c). However, these two restricted Boolean algebras will not be
too different; both will be finite. The reason is the following. On the one hand, for
every stage s at which some element d ≤ c is a minimal element of As but not an
atom, we will have that f(d) splits in Bs and hence the size of Bs � f(c) grows. On
the other hand at some true stage t0, we will have that at the atoms below c are
in At0 . For every stage t ≥ t0, since all the minimal elements d of At below c are
atoms, by B1, we have that no minimal element of Bt−1 below ft0(c) is split in Bt.
Therefore, B � f(c) = Bt0 � ft0(c) is finite.

We would like f : A → B to be an isomorphism. However, we only need f to
satisfy the conditions in the following lemma.

Lemma 3.1 (Remmel-Vaught [Rem81a, 2.1]). Let A and B be countable Boolean
algebras, and suppose that A has infinitely many atoms. Let f : A → B be a Boolean
algebra embedding such that
(RV1) if a is an atom of A, then f(a) is a finite join of atoms in B,
(RV2) every atom of B is below f(a) for some atom a of A,
(RV3) B is generated by f(A) and the atoms of B.
Then, A and B are isomorphic.

Note that condition (RV1) follows from (B1) because if we guess d ∈ At is an
atom at some true stage t, then we guess d is an atom at every stage s > t.

We are now ready to do the construction.
Construction: Stage s = 0. Let B0 be the Boolean algebra with two elements,

and f0 be the identity map from A0 to B0.
Stage s > 0. We have As = Ats [as], where a = as is strictly below some

minimal element b = bs of Ats . We need to define fs satisfying (F) and define
Bs satisfying (B), (B1), (B2), and (RV1)-(RV3). Along the construction, we verify
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that conditions (F), (B), (B1) and (B2) are satisfied. It then follows that (RV1) is
satisfied. We will verify (RV2) and (RV3) after the construction. For this purpose,
along the construction we will make sure that if s is true then every element of
Bs−1 � fs(bs) is generated by the image of f and the atoms of B, and that every
atom of B that belongs to Bs−1 � fs(bs) is strictly below f(d) for some atom d of A.

We define fs(a) and extend Bs−1 � fs(b) to Bs � fs(b). We look at different cases
depending on our guesses about a and b−a. Recall that we already know the value
of fs(b) = fts(b), and that at stage ts we had to split some minimal element below
fts(b), so fs(b) is not a minimal element of Bs−1.

Case 1: We are guessing that at least one of a or b − a is an atom (i.e.
a ∈ Ts or b− a ∈ Ts). Suppose first that a is an atom in As. Let x0, ..., xk

be the minimal elements of Bs−1 � fs(b). Define fs(a) =
∨

i=1,...,k xi and
fs(b− a) = x0. Notice that if s is true, the minimal elements of Bs � fs(a)
will be atoms in B, because we will always guess a is an atom. Moreover,
every non-zero element of Bs−1 � fs(b) is generated by the minimal elements
of Bs � fs(a), and fs(b−a). So, all the elements of Bs−1 � fs(b) satisfy (RV2)
and (RV3). If a is not an atom in As but b− a is, replace a by b− a in the
definition of f above.

Case 2: Neither a nor b− a is an atom. Since there might not be any atoms
in A below b, we have to try to get that every element of B � f(b) is in
the image of f . Here is one way of not leaving anybody in B � f(b) out of
the image of f . Let u < s be the least stage at which there is a nonzero
element strictly below fs(b) in Bu. Define fs(a) to be one of those elements
in Bu � fs(b). If s is true and B � fs(b) is atomless, then eventually every
element of Bu � fs(b) will be contained in the image of f , and only after this
we start letting f � b have values that have been enumerated into B after u.

Let us extend Bs−1 � fs(d) to Bs � fs(d) for every minimal element d of As, in
order to satisfy (B1) and (B2) at s below fs(d). If we are currently guessing d is an
atom, let Bs � fs(d) = Bs−1 � fs(d). Otherwise, since (B2) was satisfied at ts, every
minimal element in Bs−1 � fs(d) was enumerated after ts − 1, so we can split them
now. Of course, every time we split a minimal element y ∈ Bs−1 into x, y−x ∈ Bs,
we are also adding to Bs all the elements generated by Bs−1 and x, namely the
elements of the form z ∨ x or z ∨ (y − x) for z ∈ Bs−1.

This finishes the construction of f and B. Now we have to verify that (RV2)
and (RV3) are satisfied: Note that every element of B is generated by the minimal
elements of Bt for true stages t, and hence, for (RV3), it is enough to show that the
minimal elements of the Bt’s are generated by the image of f and the atoms of B.
For (RV2) we have to show that if a minimal element of Bt is an atom in B, it is
below the image of some atom in A. Consider a true stage t and a minimal element
e of Bt. It is below ft(d) for some minimal element d of At. So, at stage t, the only
elements of Bt � ft(d) in the image of ft are 0 and ft(d). Note that since t is true,
ft(d) = f(d). Let c ≥ e be the minimal element of Bt that is in the image of f (at
the end of time). Say c = fs(b) for some true stage s ≥ t and some b ∈ A. Note
that c ≤ f(d) and b ≤ d. If c = e then it is not hard to see that (RV2) and (RV3)
are satisfied, so suppose not. (Because e = f(b) is clearly in the image of f , and if
e is an atom, b would have to be an atom of A too.) If b is an atom of A then e will
be an atom of B, and again, (RV2) and (RV3) would be satisfied, so suppose not.
So we have that c = fs(b), where b is not an atom of A and s is a true stage, and
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we have that c is the minimal element in Bt above e. At some later true stage s1,
since b is not an atom, we consider a split of b = bs into a and b− a. If either of a
or b−a is an atom of A then by the argument in case 1 we have that e is generated
by the image of f and the atoms of B. Also, if e is an atom of B, it has to be below
some atom of f(A). If neither a nor b − a is an atom of A, then we are in case 2.
Let u < s1 be the least stage at which there is an element strictly below c = fs(b)
in Bu. We know such elements exist in Bt, namely e, so u ≤ t. Therefore, at s1 we
define fs1(a) and fs1(b− a) to be elements of Bu � c ⊆ Bt � c. Since e in minimal in
Bt, e is below either fs1(a) or fs1(b− a). This contradicts the minimality of c.
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