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Abstract. We propose a framework to study the computational complexity of definable
relations on a structure. Many of the notions we discuss are old, but the viewpoint is new.
We believe all the pieces fit together smoothly under this new point of view. We also survey
related results in the area.

More concretely, we study the space of sequences of relations over a given structure. On this
space we develop notions of c.e.-ness, reducibility, join and jump. These notions are equivalent
to other notions studied in other settings. We explain the equivalences and differences between
these notions.

1. Introduction

The study of the complexity of definable relations over a given structure is a main theme in
mathematical logic. In this paper we are interested in using computational ways of measuring
the complexity of relations. The key notion of this paper is the one of rice sequence of
relations, where rice stands for relatively intrinsically computably enumerable. A rice relation
on a structureA is one that is always computably enumerable relative to any given presentation
of A (Definition 3.1). Rather than looking at relations (i.e., subsets of An for some n), we
will look at sequences of relations which can be used, for instance, to code subsets of A<ω,
and even subsets of A<ω × N. This idea of going beyond subsets of An to develop a better
theory of computability is not new, and it appears, for instance, in the work on hereditarily
finite extensions or Moschovakis extensions that we will mention later. Once we have a notion
of c.e.-ness (namely rice) on the space of sequences of relations over a fixed structure A, we
can define a notion of relative computability, of join and of jump. This notion of jump of a
relation, or of a sequence of relations, can then be extended to the notion of the jump of a
structure. Different notions of jump for structures have been developed in the recent years by
researchers in the computability groups of Novosibirsk and Sofia (see Sections 5 and 6), and
by the author.

In this paper we survey some of this recent work in the context of the study of sequences
of relations. We believe that all the pieces fit together nicely under this new viewpoint, which
is even slightly different from the one used be the author in the last few years [Mon09, Mona,
Mon10]. Much of the notation introduced in those papers is revisited here. For instance, we
remark that what used to be called a jump of A in [Mon09, Mona, Mon10], is now called
a structural jump of A defined in Section 6, and different from the jump of A as defined in
Section 5.

The reason why we like the viewpoint developed here is that it is closer, in style, to the no-
tions used by many of the people already working on computable structure theory, particularly
in the west, which makes it more approachable. Of course, other researches might disagree.
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2 ANTONIO MONTALBÁN

This paper also contains historic information explaining what the other known similar notions
are, how they were developed, and how they connect to the notions here.

The author’s original motivation in this topic [Mon09, Mona] was to study relations on a
given structure A that contain all the structural Σc

n information about A. In many cases one
can find a nice, small set of relations which, alone, give you everything you need to know about
all other Σc

n relations. Finding such relations can, of course, be useful for other applications.
We will talk about this in the last two sections of this paper.

Most of the results in this paper are not new, at least not in essence. This is except for
the work in Section 7, where we study finite complete sets of rice relations. The work in that
section was done during a visit to Sofia the week before CiE’11, by Knight, R. Miller, Soskov,
A. Soskova, M. Soskova, VanDenDriessche, Vatev, and the author. (The author would like to
thank them for allowing him to publish these results here.)

2. Background

We only consider relational languages, since functions can be coded as relations without
changing the computational complexity of the objects we are interested in. Our languages are
always computable. That is, they are countable and we can effectively list all their symbols
and their arities. We will always use L to denote a language, where L = {P0, P1, ...} is finite or
infinite, and where Pi has arity pi. Since L is computable, the function i 7→ pi is computable.
By an L-structure we mean a tuple A = (A;PA0 , P

A
1 , ...) where PAi ⊆ Api for all i. We only

allow countable structures, as we will not deal with larger structures in this paper. By a
copy of A, or by a presentation of A, we mean another structure B = (B;PB0 , P

B
1 , ....) which

is isomorphic to A and where B ⊆ N. Since all our structures are countable, it does not
hurt to assume that the domains are always subsets of N. However, the words “copy” or
“presentation” emphasize that we are talking about this particular representation of A, and
not about the isomorphism type of A.

Given a structure A with A ⊆ N, we let D(A) be the atomic diagram of A. More concretely:
Let a0, a1, ... be constant symbols naming the elements of A where the number i ∈ N is named
by ai. (If i 6∈ A, then ai does not name anybody.) Let ϕat0 , ϕ

at
1 , ... be an effective listing of all

the atomic (L ∪ {a0, a1, ...})-formulas. Finally, let D(A) ∈ 2ω be defined by

D(A)(i) =

{
1 if A |= ϕati ,

0 if A 6|= ϕati .

In particular, we let D(A)(i) = 0 if ϕati uses some constant aj for which j 6∈ A. Notice that
D(A) computes A by looking at the formulas ai = ai.

When we say that a set X is c.e. (computable) in a structure A, we mean that X is c.e.
(computable) in D(A), which of course depends on the given presentation of A. The spectrum
of a structure A is

Sp(A) = {x ∈ D : x computes a copy of A},
where D is the set of Turing degrees. (The spectrum of A is often as the set of degrees of all
copies of A. The two definitions are equivalent for non-trivial structures, as proved by Knight
[Kni86].)

All throughout we will use the letters A, B and C to denote structures with domains A, B
and C, and we will use the letters X, Y and Z for sets of natural numbers. Unless we specify
otherwise, A is always an L-structure where L is as above.

We will use Σc
n and Πc

n to denote the set of computable infinitary Σn and Πn formulas. These
are first-order L-formulas where we allow infinitary disjunctions and infinitary conjunctions so
long as they are taken over a computable list of formulas, and so long as there are only finitely
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many different free variables over all the formulas in the list. When we count alternation
of quantifiers, infinitary disjunctions count as ∃ and infinitary conjunctions count as ∀. See
[AK00, Chapter 7] for more background on these formulas.

Given a tuple ā in A, we let Σ1-tpA(ā), the Σ1-type of ā in A, be the set of Gödel numbers
of all Σ1 formulas true about ā in A.

We use Pfin(X) to denote the set of finite subsets of X.

3. Rice relations

The following well-known notion is central to this paper.

Definition 3.1. A relation R ⊆ An is rice (relatively intrinsically computably enumerable) if
for every copy (B, RB) of (A, R), we have that RB is c.e. in D(B).

Notice that the notion of being rice is independent of the presentation of A, and depends
only on its isomorphism type.

Example 3.2. Let A be a linear ordering. We say that x and y ∈ A are adjacent, and write
Adj(x, y), if there is no element in between them. The relation ¬Adj(·, ·) is rice in A.

We shall call a relation whose complement is rice, co-rice.

Example 3.3. Let G be a graph that consists of infinitely many disjoint cycles, one of each size
n for n ≥ 3. Let R be the set of vertices x in G such that x belongs to a cycle of size n, for
some n ∈ 0′ (i.e., with {n}(n) ↓). Then R is rice in G.

The relations in the examples above have quite a different feel to them. The former contains
structural information, while the latter codes “Turing-degree information,” namely 0′. We will
say more about this later.

The following theorem characterizes rice relations in purely syntactical terms, as opposed
to the definition which refers to computations whose oracles are the diagrams of the copies of
the given structure.

Theorem 3.4 (Ash, Knight, Manasse, Slaman [AKMS89]; Chisholm [Chi90]). Let A be a
structure, and R ⊆ An a relation on it. The following are equivalent:

(1) R is rice.
(2) R is definable by a Σc

1 formula with parameters from A.

Recall that a Σc
1 formula is nothing more than an infinitary disjunction of a computable list

of finitary Σ1 L-formulas.
Once we have a notion of c.e.-ness among relations on A, we can develop a notion of

computability.

Definition 3.5. Let R and Q be relations on A. We say that R is relatively intrinsically
computable in Q, and we write

R ≤AT Q,

if R is both rice and co-rice in (A, Q).

Historic Remark 3.6. The notion of rice relation appeared already in [AKMS89]–see also [AK00,
Chapter 10]. The equivalent notion of Σ-definable relation on HFA was used by Ershov as part of
the study of admissibility over abstract structures, and is still used in Russia quite a bit. We will
say more about Σ-definability in Section 4.1. Moschovakis [Mos69] defined an equivalent notion called
semi-search computable relation, which is also defined on an extended domain (of the sort of HFA),
and appears often in the work of Soskov et.al. The equivalence between these notions is due to Gordon
[Gor70].
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3.1. Sequences of relations. The space of relations on a structure A is not rich enough
to develop a good theory of computability because, for instance, it does not always have a
universal rice relation. There are various approaches to solve this issue. One is to consider
relations defined on extensions of the structure like the hereditarily finite extension (see Section
4.1 below), or the Moschovakis extension (see [Mos69]). Here we take a different approach
that is probably friendlier for the audience accustomed to the style of Ash and Knight’s book
[AK00].

Definition 3.7. Let RSeq(A) be the set of all sequences of relations ~R = (R0, R1, ...), where
Ri ⊂ Ari and the arity function i 7→ ri is computable.

We say that ~R is rice in A if for every copy (B, ~RB) of (A, ~R), we have that ~RB is uniformly
c.e. in D(B), that is, the set

⊕
i∈ω R

B
i = {(i, b̄) ⊆ N×B<ω : b̄ ∈ RBi } is c.e. in D(B).

Given ~R and ~Q ∈ RSeq(A), we say that ~R is r.i. computable in ~Q, and write
~R ≤AT ~Q,

if both ~R and ¬~R are rice in (A, ~Q), where ¬~R is the sequence of complements of the relations
in ~R, and (A, ~Q) is a new structure whose language is augmented with infinitely many new
relations symbols Qi, one for each i ∈ N, interpreted in the obvious way according to ~Q.

Example 3.8. Let V be a Q-vector space. Then ~LD = (LD2, LD3, ...), given by LDi =
{(v1, ..., vi) ∈ V i : v1, ..., vi are linearly dependent}, is rice in V.

Example 3.9. Let A be a ring. Then ~R = (R1, R2, ....), given by Ri = {(a0, ..., ai) ∈ Ai+1 :
aix

i + ...+ a1x+ a0 is a reducible polynomial}, is rice in A.

Remark 3.10. Note that not only can we represent subsets of A<ω as sequences of relations,
but also subsets of A<ω×N, for instance, by considering sequences ~R = (Ri,j : i, j ∈ N) where
Ri,j has arity i. Furthermore, restricting ourselves to work just with subsets of A<ω×N would
be essentially equivalent to working with RSeq(A).

Historic Remark 3.11. An equivalent notion of computability on subsets of An×Nk, for the structure
E = (A; ) on an empty language, was already considered by Soskov and Baleva [Bal06].

3.1.1. Information sequences. We can also use sequences of relations to code subsets of N in
a natural way. We will allow ourselves to consider relations R ⊆ Ar where r = 0. Recall that
A0 = {〈〉}, where 〈〉 is the empty tuple, and hence either R = ∅ or R = {〈〉}. In the former
case we say that R = ⊥, and that R = > in the latter. (The reader that is uncomfortable
with 0-ary relations, can work with 1-ary relations R instead, where either R = ∅ or R = A.)

Definition 3.12. If ~R is a sequence of relations, all of arity 0, we say that ~R is an information
sequence. Given X ⊆ N, let ~X ∈ RSeq(A) be the information sequence ~X = (X0, X1, ....)
where

Xi =

{
> if i ∈ X,
⊥ if i 6∈ X.

We observe that ~X is c.e. in an oracle Z if and only if X is c.e. in Z. Thus, ~X is rice in A
if and only if X is c.e. in the diagrams of all the copies of A. In particular, for every c.e. set
X, ~X is rice in A. The set of all X ⊆ N such that ~X is rice in A, called the co-spectrum of
A (see Soskov [Sos04]), forms an ideal in the enumeration degrees. This ideal is characterized
by a theorem of Knight (Corollary 3.16) below.

Also note that, for X,Y ⊆ N, we have

X ≤T Y ⇒ ~X ≤AT ~Y .
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3.1.2. Join of sequences. We also have a least-upper-bound operation on RSeq(A).

Definition 3.13. Given ~R = (R0, R1, ...) and ~Q = (Q0, Q1, ...) in RSeq(A), let

~R⊕ ~Q = (R0, Q0, R1, Q1, ....).

It is not hard to see that ~R⊕ ~Q is the least upper bound of ~R and ~Q in the ≤AT -ordering.
We will sometimes abuse notation and write R ⊕ ~Q, or R1 ⊕ R2, even when R,R1, R2 are

relations, rather than sequences of relations, interpreting a single relation R by the sequence
(R,∅,∅,∅, ...).

3.1.3. The Ash–Knight–Manasse–Slaman–Chisholm theorem, revisited. This well-known the-
orem extends from relations to sequences of relations in a straightforward way. We include the
proof here for completeness. The original proofs, which proved the result for r.i. Σ0

α-relations,
used forcing, but the rice case can be proved in a much simpler way. An interesting fact about
this extended version is that it also extends two other well-known theorems, one of Knight’s
and one of Selman’s. We will see how they follow as particular cases (Corollaries 3.16 and
3.17 below).

Theorem 3.14 (Ash, Knight, Manasse, Slaman [AKMS89]; Chisholm [Chi90]). Let ~R =
(R0, R1, ...) be a sequence of relations in A. The following are equivalent:

(A1) ~R is rice.
(A2) There is a tuple p̄ ∈ A<ω and a computable list φ0, φ1, ... of Σc

1-formulas such that, for
all i ∈ N and all ā ∈ Ari (where ri is the arity of Ri),

ā ∈ Ri ⇐⇒ A |= φi(p̄, ā).

Proof. It is easy to see that (A2) implies (A1) because deciding Σc
1 formulas about A is c.e.

in D(A). We prove the other direction. We will attempt to build a copy B of A where ~RB is
not uniformly c.e. in D(B). By (A1), this attempt is bound to fail, and we will use this failure
to find the list of formulas φ0, φ1, ... that we need.

Let A? be the set of finite tuples from A all whose entries are different. At stage s we will
define p̄s ∈ A? such that p̄s−1 ⊆ p̄s (where inclusion here is as strings). At the end of stages
we will obtain G =

⋃
s∈N p̄s : N→ A. Along the way we will make sure that every element of

A is in some p̄s, and hence that G is a bijection between N and A. We can then let B be the
pull-back of A via G. That is, B has domain N, and if P is a relation symbol of L, PB(x̄)
holds if and only if PA(G(x̄)) holds. By (A1), we know that for some index e,⊕

n∈N
RBn = WD(B)

e .

Given q̄ ∈ A?, we let D(q̄) be the initial segment of D(B) of length |q̄| which is determined by
q̄ assuming we have that q̄ ⊆ G. More formally, let {b0, b1, ...} be a list of constant symbols
where bi is interpreted as i in B, and let {ϕati : i ∈ N} be a list of all atomic L ∪ {b0, ...}-
sentences, and assume that ϕati only uses constants bj for j ≤ i. Given q̄ = (q0, ..., qk−1) ∈ A?,
let D(q̄) ∈ 2k be such that D(q̄)(i) = 1 if and only if A |= ϕati [bj 7→ qj : j < k]. This way we
have that

D(B) =
⋃
s∈N

D(p̄s).

For σ ∈ 2<ω we let W σ
e be the step |σ| approximation to WS

e for any S ⊇ σ, noticing that
WS
e can not read the oracle S beyond position |σ| in less than |σ| steps. So we have that
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W
D(B)
e =

⋃
s∈NW

D(p̄s)
e . We also notice that for σ ∈ 2k there is an atomic formula ψσ such

that D(q̄) = σ ⇐⇒ A |= ψσ(q̄).
Now that we have got the background notation out of the way, here is the construction. Let

p̄0 be the empty sequence. At stage s+ 1 = 2e, we try to force
⊕

n∈NR
B
n 6= W

D(B)
e as follows.

Ask if there exist n ∈ N, ̄ = (j1, ..., jrn) ∈ Nrn and q̄ ⊇ p̄s such that (n, ̄) ∈ W
D(q̄)
e but

A 6|= Rn(q̄) (where q̄ = (qj1 , ..., qjrn
)). If so, let p̄s+1 be such q̄, and otherwise let p̄s+1 = p̄s.

Notice that in the former case we have succeeded making
⊕

n∈NR
B
n 6= W

D(B)
e because we are

forcing (n, ̄) ∈WD(B)
e and b̄ 6∈ RBn . At stage s+ 1 = 2e+ 1, we take care of making G onto: If

the eth element of A is not already in p̄s, add it to the range of p̄s+1, otherwise let p̄s+1 = p̄s.
Since we are assuming (A1), for some e we do get

⊕
n∈NR

B
n = W

D(B)
e . Thus, at stage

s+ 1 = 2e, there were no n, ̄, and q̄ as wanted, as otherwise we would have acted. Let p̄ = p̄s.
We now claim that for all n ∈ N and all ā ∈ Arn , we have that

A |= Rn(ā) if and only if for some q̄ ∈ A?, with q̄ ⊇ p̄ and with q̄(〈j1, ..., jrn〉) = ā

for some j1, ..., jrn < |q̄|, we have that (n, 〈j1, ..., jrn〉) ∈W
D(q̄)
e .

Note that this can be written as the disjunction over all σ ∈ 2<ω and all ̄ with (n, ̄) ∈ W σ
e ,

of the formulas that say that there exists ȳ ∈ A<ω such that if we let q̄ = p̄ȳ, we get q̄ ∈ A?,
q̄(̄) = ā and D(q̄) = σ. So, the claim gives us a Σc

1 definition φn(x̄) of RAn , with parameters p̄
and which is uniform on n. To prove the claim, notice that the left-to-right direction follows
from

⊕
n∈NR

B
n = W

D(B)
e by taking q̄ to be a long enough segment of G. For the other

direction, notice that if such ̄ and q̄ existed, but A 6|= Rn(ā), we would have chosen them and
acted at step s+ 1. Contradicting the fact that we did not act. �

For the next corollaries we recall the definition of enumeration reducibility.

Definition 3.15. A set X ⊆ N is e-reducible to Y ⊆ N if there exists a c.e. set Φ ⊆ N×Pfin(N)
(called an enumeration operator) such that for all n ∈ N, n ∈ X if and only if there exists
D ∈ Pfin(N) such that (n,D) ∈ Φ and D ⊆ Y .

Corollary 3.16 (Knight, see [AK00, Theorem 10.17]). Let X ⊆ N. The following are equiv-
alent:

(B1) X is c.e. in every copy of A.
(B2) X is e-reducible to Σ1-tpA(p̄) for some p̄ ∈ A<ω.

Proof. It is not hard to show that (B2) implies (B1) using that all Σ1-types are c.e. in every
copy of A. We prove the other direction.

As we mentioned before, X is c.e. in every copy of A if and only if ~X is rice in A. So,
we have that (A1), and hence (A2), of Theorem 3.14 hold for ~R = ~X. Let {φn : n ∈ N} be
a computable sequence of L-sentences with parameters p̄ witnessing (A2). Each φn is of the
form

∨
j∈N ∃ȳϕΣ

in,j
(p̄, ȳ), where ϕΣ

i is the ith Σ1-L-formula. Let Φ = {(n, {in,j}) : n, j ∈ N},
so that n ∈ ΦΣ1-tpA(p̄) if and only if, for some j ∈ N, in,j ∈ Σ1-tpA(p̄), which happens if and
only if φn holds. So, X = ΦΣ1-tpA(p̄). �

Corollary 3.17 ([Sel71]). Let X,Y ⊆ N. The following are equivalent:
(C1) Every enumeration of Y computes an enumeration of X.
(C2) X is e-reducible to Y .

(By enumeration of Y we mean a function f : N→ N with range Y .)

Proof. It is not hard to show that (C2) implies (C1). We prove the other direction.
Assume Y is infinite, otherwise both statements are trivially equivalent to X being c.e.

Consider a language with constants c0, c1, .... and a binary relation Q. Let A be the structure
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with domain N, where ci is interpreted as 2i, and no constants are assigned to the odd numbers,
and where Q is a bijection between the odd numbers and the set {ci : i ∈ Y }.

Now, it is clear that every presentation of A computes an enumeration of the set Y . Hence,
(C1) implies that X is c.e. in every presentation of A, and thus that ~X is rice in A. So, we
have that (B1), and hence (B2), of the previous corollary hold, that is, that X is e-reducible
to Σ1-tpA(p̄) for some p̄ ∈ A<ω. Now, every Σ1-type in A is e-reducible to the set Y : It is not
hard to show, using disjunctive normal forms in a standard way, that every Σ1 formula about
A is equivalent to a finite disjunction of formulas of the form ∃x Q(x, ci) (which holds if and
only if i ∈ Y ). So we have that X is e-reducible to Y . �

3.2. The jump of a sequence of relations. So far, on RSeq(A) we have defined a notion
of c.e.-ness, of computability and of join. Now, as the central notion of this paper, we define
a notion of jump. We start by defining universal rice sequence of relations.

Let ϕΣc

0 , ϕΣc

1 , ... be an effective listing of all Σc
1 L-formulas, where ϕΣc

i has arity ki.

Definition 3.18. Let ~KA = (KA0 ,K
A
1 , ...) be defined by

KAi = {ā ∈ Aki : A |= ϕΣc

i (ā)}.

~KA is nothing more than the Σc
1-diagram of A.

It should be clear that ~KA is rice.

Observation 3.19. ~KA is universal among rice sequences of relations in A in the following
sense. If ~Q is rice, there is p̄ ∈ A<ω and a computable f : N→ N such that

∀i ∈ N∀ā ∈ Aqi (ā ∈ Qi ⇐⇒ (p̄, ā) ∈ KAf(i)),

where qi is the arity of Qi, and the arity of KAf(i) is |p̄|+qi. To prove this, we use the extended
Ash–Knight–Manasse–Slaman–Chisholm theorem 3.14: Just let p̄ and {φi : i ∈ N} be as given
by the theorem, and let f be the computable function such that φi is ϕΣc

f(i).

Definition 3.20. Given ~Q ∈ RSeq(A), let (A, ~Q) be the structureA augmented with infinitely
many new relations interpreting Qi for i ∈ N. Let the jump of ~Q in A be ~K(A, ~Q). We denote
it by ~Q

′
.

We can also define ~Q′′ as ~K(A, ~Q′), etc.

Remark 3.21. Let us use ~∅A to denote the sequence of empty (unary) relations (∅,∅, ...) ∈
RSeq(A). Let us emphasize the difference between ~∅′A and

−→
0′ . The former is ~KA as in

Definition 3.18 where the relations in the sequence have all possible arities, each arity appearing
infinitely often. The latter is the information sequence coding 0′, so it consists only of 0-ary
relations and contains no structural information about A. We have that

−→
0′ ≤AT ~∅′A always

holds just because
−→
0′ is rice. However, in most cases, ~∅′A has structural information about

A that
−→
0′ alone does not. The last two sections of this paper are dedicated to studying this

structural information.

Example 3.22. Let A be a linear ordering. Then

~∅′A ≡AT Adj(·, ·)⊕
−→
0′ .

This proof is given in [Mon09, Theorem 2.1] using different notation.
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Example 3.23. Let V be a Q-vector space. Then

~∅(n)
V ≡

V
T

~LD ⊕
−−→
0(n).

This is because we can use ~LD to compute an isomorphism between V and the standard
computable presentation of Qd, where d = dimQ(V), and then we can use 0(n) to decide
Σc
n-relations on Qd.

3.2.1. Diagonalization. We now prove that, on the space of sequences of relations, the jump
is actually a jump in the sense that is strictly increasing.

Theorem 3.24 (Vatev [Vat11], Stukachev). For every ~Q ∈ RSeq(A), ~Q <AT
~Q′.

Proof. (Montalbán) It is easy to see that ~Q ≤AT ~Q′ because the Σc
1 diagram of (A, ~Q) clearly

computes the atomic diagram of (A, ~Q). We now show that ~Q′ is not r.i. computable in ~Q. It
is enough to show that ~KA is not r.i. computable in A for any given A.

We start by re-indexing ~KA so that the arity of each relation is reflected in the index.
Let KAi,j(x̄) ≡ ϕΣc

i,j (x̄) where ϕΣc

i,j is the ith Σc
1 formula with arity j. Suppose, toward a

contradiction, that ~KA is co-rice. For each e, j ∈ N, let

Re,j(x̄) =

{
¬KA{e}(e,j),2j(x̄, x̄) if {e}(e, j) ↓,
∅ otherwise,

where {e} is the eth Turing functional. Note that under the assumption that ~KA is co-rice,
~R is rice. By the universality of ~KA (Observation 3.19), there is an n ∈ N, an ā ∈ An, and an
index k for a total computable function {k} such that

Re,j(x̄) ⇐⇒ KA{k}(e,j),n+j(ā, x̄).

We then get the following contradiction.

Rk,n(ā) ⇐⇒ KA{k}(k,n),n+n(ā, ā) ⇐⇒ ¬Rk,n(ā). �

Historic Remark 3.25. The proof given above is new, although it is clearly similar to the standard
proof of the incomputability of the Halting problem. Theorem 3.24 had been previously proved for a
different, yet equivalent, notion of jump (notion J2 in page 11) by Vatev in [Vat11]. Vatev’s proof,

restated in our terms, goes by showing that if B is a generic copy of A, then ~KB has degree D(B)′

(which, of course, is not computable in D(B)), and hence ~KA is not r.i. computable in A. In a personal
communication, Stukachev has told me he has another proof which has not been translated to english
yet.

4. Superstructures

We mentioned in the introduction, the notion of rice sequences of relations is equivalent
to other notions that were known many decades ago. In this section we briefly sketch two of
these other notions: the study of Σ-definable subsets of the hereditarily finite superstructures,
and the study of semi-search computable subsets of the Moschovakis superstructure.

The reader can skip this section without affecting the understanding of the rest of the paper.

4.1. The hereditarily finite superstructure. As we mentioned before, another approach
to the study of rice relations is using Σ-definability on admissible structures. We will not
use admissible structures in general but just the hereditarily finite extension of an abstract
structure A, which we define below. We will see how this is essentially equivalent to studying
rice sequences of relations. For more background see Barwise’s book [Bar75, Chapter II] or
Stukachev’s survey paper [Stu].
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Definition 4.1. Let Pfin(X) denote the collection of finite subsets of X. Given a set A, we
define:

(1) HFA(0) = ∅,
(2) HFA(n+ 1) = Pfin(A ∪HFA(n)), and
(3) HFA =

⋃
n∈NHFA(n).

Now, given an L-structure A we define the L ∪ {∈, D}-structure HFA whose domain has two
sorts, A and HFA, and where the symbols of L are interpreted in the A-sort as in A, ‘∈’ is
interpreted in the obvious way, and D is a unary relation coding the atomic diagram of A, as
we explain below.

A quantifier of the form ∀x ∈ y... and ∃x ∈ y.... is called a bounded quantifier. A Σ-
formula is one that is build out of atomic and negation of atomic formulas using disjunction,
conjunction, bounded quantifiers and existential unbounded quantifiers. A subset of HFA is
∆-definable if it and its complement are Σ-definable.

Clearly, on HFA we have the usual pairing function 〈x, y〉 = {{x}, {x, y}}, and, of course,
we can also encode n-tuples, strings etc. Notice, also, that HFA includes the finite ordinals
(denoted by n, where 0 = ∅ and n+ 1 = {n} ∪ n). We use ω to denote the ∆-definable
set of finite ordinals of HFA. Well-known arguments in admissibility theory show that every
c.e. subset of ω is Σ-definable in HFA, and every computable function is ∆-definable (see, for
instance, [Bar75, Theorem II.2.3]).

We let D(A) be the satisfaction relation for atomic formulas, that is D(A) = {〈i, ā〉 : A |=
ϕati (ā)} ⊆ HFA, where {ϕat0 , ϕ

at
1 , ...} is an effective enumeration of all the atomic formulas of

A. Notice that if the language of A is finite, this is a finite list. So, when the language of A
is finite, D(A) is ∆-definable in HFA, without using D(A) of course, and hence it does not
need to be added to the definition of HFA.

Now, given any ~R ∈ RSeq(A), we can encode it by

h(~R) = {〈n, ā〉 : n ∈ N, ā ∈ Rn} ⊆ HFA.

Another set we will use is the satisfaction relation for Σ1 formulas, that is

hK(A) = {〈i, ā〉 : HFA |= ϕΣ
i (ā)} ⊆ HFA,

where {ϕΣ
0 , ϕ

Σ
1 , ...} is an enumeration of all the Σ1 formulas of HFA. Using recursion on the

size of formulas, it is not hard to prove that hK(A) is Σ-definable in HFA.

Theorem 4.2. Let ~R ∈ RSeq(A). The following are equivalent:

(1) ~R is rice in A.
(2) h(~R) is Σ-definable in HFA with parameters.

Historic Remark 4.3. This theorem is credited to Vǎıtsenavichyus [Văı89] in [Stu] and appears in
some form in [BT79].

Sketch of the Proof. We start by proving that h( ~KA) is Σ-definable in HFA, where ~KA is as
in Definition 3.18. Let hK0 be the satisfaction relation for finitary Σ1 formulas in A, that is

hK0(A) = {〈i, ā〉 : A |= ϕΣ
i (ā)} ⊆ HFA,

where {ϕΣ
0 , ϕ

Σ
1 , ...} is an enumeration of all the Σ1 formulas of A. As with hK(A), it is not

hard to prove that hK0(A) is Σ-definable in HFA. Each Σc
1 formula is a disjunction over some

c.e. set We of formulas ϕΣ
i for i ∈ We. Using the Σ-definitions of {(e, n) ∈ N2 : n ∈ We} and

of hK0(A), we get a Σ-definition of h( ~KA).
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Assume now that ~R is rice. Thus, there is p̄ ∈ A<ω and a computable function f : N → N
such that for all i ∈ N and all ā ∈ A<ω, Ri(ā) holds in A if and only if KAf(i)(p̄, ā) holds. Using

the Σ-definition of h( ~KA), we get a Σ-definition of h(~R) with parameters p̄.
Suppose now that h(~R) is Σ-definable in HFA with parameters; we want to prove that ~R

is rice. Let B be a copy of A. Computably in D(B) build a copy of HFB and then use the
Σ-definition of h(~R) to enumerate h(~R)HFB . We end up with a computable enumeration of
~RB relative to D(B). �

There is also a natural way of going the other way around: from relations in HFA to
sequences of relations on A. Let X = {x0, x1, ...} where the xi’s are variable symbols. Every
t ∈ HFX is essentially a term, and we write t(x̄) to show the variables that appear in t. Observe
that HFA = {t(ā) : t(ā) ∈ HFX , ā ∈ A|x̄|}. Let {ti : i ∈ N} be an effective enumeration of
HFX ∪X, and let qi be number of different variables in ti. Now, given Q ⊆ HFA, we define

s(Q) = (Q0, Q1, ....) ∈ RSeq(A) where Qi = {ā ∈ Aqi : ti(ā) ∈ Q}.

With a bit of effort one can show that the relation {〈a, n, ā〉 : a ∈ A,n ∈ N, ā ∈ Aqn & a =
tn(ā)} is ∆-definable in HFA. This can be used to prove the following theorem.

Theorem 4.4. Given Q ⊆ HFA, the following are equivalent:
(1) s(Q) is rice in A.
(2) Q is Σ-definable in HFA with parameters.

Proof. Assume s(Q) is rice in A. Then h(s(Q)) is Σ-definable. Now, a ∈ Q if and only if there
exist n ∈ N and ā ∈ Aqn such that a = tn(ā) and 〈n, ā〉 ∈ h(s(Q)). This gives a Σ-definition
of Q from the one of h(s(Q)).

Suppose now that Q is Σ-definable. As in the proof of the previous theorem, it is not hard
to show that for every copy B of A, s(Q)B is c.e. in D(B). �

4.2. The Moschovakis enrichment. The Moschovakis extension A∗ of a structure A is not
too far from HFA.

Definition 4.5. [Mos69] Let 0 be a new constant symbol. Given a set A, we define A0 =
A ∪ {0}, and we let A∗ be the closure of A0 under a pairing operation x, y 7→ (x, y).

Moschovakis [Mos69] then defines a class of partial multi-valued functions from (A∗)n to A∗

which he calls search computable functions. This class is defined as the least class closed under
certain primitive operations, much in the style of Kleene’s definition of primitive recursive and
partial recursive functions, where instead of the Kleene’s least-element operator µ, we have
a multivalued search operator ν. A subset of A∗ is search computable if its characteristic
function is, and it is semi-search computable if it has a definition of the form ∃y (f(x, y) = 1),
where f is search computable.

The definition of search computable allows us to add a list of new primitive functions to our
starting list (so long as they are given in an effective list, with computable arities), obtaining
a sort of relativized version of search computability. If we have a structure A, we would add
to the list of primitive functions the characteristic functions of the relations in A to obtain a
notion of partial, multi-valued, search computable function in A.

Much in the same way as we did for HFA above, we have a natural way of encoding sequences
~R ∈ RSeq(A) by subsets of A∗, and vice-versa. Maybe even more directly, one can go from
subsets of A∗ to subsets of HFA and back. Gordon [Gor70] proved that the notions of search
computable in A and semi-search computable in A for subsets of A∗ coincide with the notions
of ∆-definable and Σ-definable for subsets of HFA. And hence, when you add parameters,
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they also coincide with the notions of r.i. computable and rice for sequences of relations in
RSeq(A).

5. The jump of a structure

In this section we look at the jump as a map from abstract structures to abstract structures,
rather than from RSeq(A) to RSeq(A).

Definition 5.1. Given an L-structure A, we let

A′ = (A, ~KA),

where ~KA is as in Definition 3.18, and A′ is now an L′-structure, where L′ = L∪{Ki : i ∈ N}.

Notice that the isomorphism type of A′ does not depend on the presentation of A. However
it does depend, in a non-essential way, on the Gödel numbering of the Σc

1 L-formulas, in the
same way as the Turing jump of a set depends on the numbering of the partial computable
functions. Also notice that the extended language L′ is still a computable relational language.
L′ is now infinite, even if L was finite, and this can be viewed as a disadvantage of this
definition. That is the price to pay if we want A and A′ to have the same domain.

We note that the definition above also works for uncountable structures. However, we will
still assume all our structures are countable throughout this paper.

Historic Remark 5.2. The jump of structures has been independently defined various times in the last
few years. We have four different definitions of maps from abstract structures to abstract structures
that we call jump. All these definitions are equivalent up to Σ-equivalence (see Definition 5.5 below).

(J1) The first appearance in print of such a definition for all countable abstract structures is due to
Vessela Baleva [Bal06], as part of her Ph.D. thesis under the supervision of Ivan Soskov. That
definition uses, as domain for the jump of A, the Moschovakis extension (A × N)∗ of A × N
(see Section 4.2). Baleva’s jump of A adds to (A × N)∗ a universal Σc

1 set, very similar to

the set h( ~KA) mentioned in the Section 4.1. Baleva sets up her definition in the semi-lattice
of countable structures over a fixed domain ordered by SC-reducibility. This reducibility is
essentially ≤ET as defined in 3.7 where E is the countable structure on the empty language, and
all other structures are viewed as having the same domain as E .

(J2) Alexandra Soskova and Ivan Soskov [Sos07, SS09] worked with another map from structures
to structures, which they did not call the jump of the structure until later papers. There, the
domain of A′ is the Moschovakis extension A∗ of A, and the added relation is one that codes
(the negation of) the forcing relation on Π1 formulas, which is essentially {〈p̄, e, x〉 ∈ A?×N2 :
∃q̄ ∈ A? (q̄ ⊇ p̄ & x ∈WD(q̄)

e )} following the notation of the proof of Theorem 3.14.
(J3) Alexey Stukachev [Stu09, Stu10], who was working on the semi-lattice of structures of any size

below an arbitrary cardinal, ordered under Σ-reducibility, provided a new definition of the jump
of a structure in that setting. Stukachev was the first one to work with uncountable structures
of any size. For him, the domain of A′ is HFA, and the added relation is the satisfaction
relation for Σ1-formulas, namely hK(A). The importance of the role of Σ-reducibility in this
context was previously shown by Stukachev in [Stu07, Stu08].

Another independent definition of the jump is due to Puzarenko [Puz09]. However, he only
defines the jump of an admissible structure, and does not deal with structures in general.
The definition is almost the same as that of Stukachev when one considers the jump of the
admissible structure HFA; although they only realized this afterwards. Puzarenko’s definition
generalized an earlier definition of jump by Morozov [Mor04], that only works for recursively
listed admissible structures, which are the admissible structures where there is a Σ-definable
bijection between the whole domain and the class of ordinals.

(J4) Montalbán [Mon09], independently of all this previous work, introduced yet another definition.
The original definition in [Mon09] is not completely equivalent to the definitions above; it is
what we call the structural jump in Section 6. In that definition, the domain of the jump of
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a structure A is the same as the domain of A, and the language is extended with finitely or
infinitely many new relations that, altogether, form a complete set of Πc

1-relations.

5.1. Comparing structures. Working with structures as objects, we need to have a way of
comparing the computational complexity of different structures. There is more than one way to
do this. A measurement that is widely accepted is to say that a structure is more complicated
than another if it is harder to compute, in the sense that it takes smarter oracles to produce a
presentation of it. This reduction is more commonly used implicitly than explicitly as in the
following definition.

Definition 5.3. Given two structures A and B, we say that A is Muchnik reducible to B, and
write A ≤w B, if

∀X ⊆ N, X computes a copy of B ⇒ X computes a copy of A,
or equivalently, if Sp(B) ⊆ Sp(A). The “w” stands for “weak,” where the strong reduction is
the Medvedev reduction which asks for a uniform way of computing a copy of A from a copy
of B.

This reduction defines a pre-ordering on the class of all countable structures, and hence an
equivalence, ≡w, as usual.

In some cases this equivalence may be not appropiate, as it does not look too deeply into
the model theoretic aspects of a structure. For example, any two computable structures
are equivalent under ≡w, even if the structures are model-theoretically very different. The
following reduction is nothing more than an effective version of the notion of interpretability
used in model theory.

Definition 5.4. Let A be an L-structure, and B be any structure, where L = {P0, P1, ...}
and Pi has arity pi.

We say that A is effectively interpretable in B, and write A ≤I B, if, for some n ∈ N, in
B, there is a rice set D ⊆ Bn, a r.i. computable subset η ⊆ Bn × Bn which is an equivalence
relation on D, and a r.i. computable sequence of sets Ri ⊆ Bn·pi , closed under the equivalence
η within D, such that

(A;PA0 , P
A
1 , ...) ∼= (D/η;R0, R1, ...).

The setsRi do not need to be subsets ofDpi , and, when we refer to the structure (D/η;R0, R1, ...)
we, of course, mean (D/η; (R0 ∩Dp0)/η, (R1 ∩Dp1)/η, ...).

Being ≡I is a very strong notion of equivalence, which reflects both effective and model-
theoretic aspects of the structure. However, in some cases, the restriction of D to being a
subset of Bn can be too strong. We already argued that, when studying rice relations, one
needs to go beyond the study of subsets D ⊆ Bn. The following notion fixes this problem.

Definition 5.5. Consider structures A and B as above. We say that A is Σ-reducible to B if
there is an effective interpretation of A in B as in the previous definition, but allowing D to
be a rice subset of A<ω × N, and η and ~R be r.i. computable relations on A<ω × N, of course
viewed as elements of RSeq(A).

Observation 5.6. Consider structures A and B as a above. Then

A ≤Σ B ⇐⇒ A ≤I HFB,

Theorem 5.7. For any structures A and B,
(1) A ≤I B implies A ≤Σ B, and
(2) A ≤Σ B implies A ≤w B.

None of the implications above reverses.
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Proof. None of the implications is hard to prove. To see that the first implication does not
reverse consider A = (ω;Adj), and B = E = (B; ) the countable infinite structure over the
empty language. Then A ≤Σ E because A can be effectively interpreted in arithmetic, and
hence A is ≤Σ-reducible to any structure. On the other hand, it is not hard to prove that
A 6≤I E , because the only rice subsets of Bn in E are either finite or co-finite.

There are various proofs that A ≤w B does not imply A ≤Σ B. See for instance [Kal09,
KP09, Stu07]. For one such example: Let A be the structure coding the family of the graphs
of all computable functions, i.e., it is a family of sets of pairs, each set being the graph of a
computable function. Let B be the family of all c.e. sets. Then, it is proved in [KP09] that
A ≤w B but A 6≤Σ B. �

Historic Remark 5.8. The notion of Σ-reducibility between abstract structures was introduced in-
dependently by Khisamiev [Khi04] and Stukachev in [Stu07], and it is based on the notion of Σ-
definability of a structure inside an admissible set by Ershov. Stukachev [Stu07, Stu08] and Puzarenko
[Puz09, KP09] showed the importance of this reducibility and compared it to various other reducibil-
ities between structures (including ≤w). The definitions of [Khi04] and [Stu07] used, of course, the
notions of Σ-definability rather than rice. The equivalence with the definition given here follows from
Theorems 4.2 and 4.4.

5.2. The three main theorems about the jump. We now state the three main results
about the jump of structures.

5.2.1. The first jump inversion theorem. This theorem is a generalization of the Friedberg
jump inversion theorem to the semi-lattice of structures under ≤Σ-reducibility.

Theorem 5.9. For every structure A which codes 0′ (i.e.,
−→
0′ is r.i. computable in A), there

is a structure C such that C′ ≡Σ A.

Historic Remark 5.10. For the case of Muchnik equivalence, this theorem was proved independently
in two occasions. One is due to Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon in
2005 [GHK+05, Lemma 5.5 for α = 2]. They do not state their result in terms of the jump of a
structure, and they only prove the theorem for graphs, but any degree spectrum can be realized as
the degree spectrum of a graph. They prove inversion, not only for a single jump, but also for the
αth jump, for every α < ωCK1 . They proved this result as a tool to get get other results about ∆0

α

categoricity and intrinsic Σ0
α relations. Their α-jump inversion theorem was used in other occasions,

as, for instance, by Greenberg, Montalbán and Slaman [GMS] to build a structure whose spectrum is
exactly the non-hyperarithmetic degrees.

The other proof of Theorem 5.9 for ≡w is due to Alexandra Soskova [Sos07, SS09]. Her construction
is quite different and uses Marker extensions. The inspiration to use Marker’s extension in this context
came from Goncharov and Khoussainov [GK04]. Furthermore, she proved a relativized version of the
theorem, where the relativization is to structures. That is, she proved that if A ≥w B′, then there is a
structure C ≥w B such that A ≡w C′.

Stukachev [Stu10, Stu] then proved this theorem for the stronger notion of Σ-equivalence, as in the
statement of the theorem above, and for structures of arbitrary cardinality. Stukachev used the same
structure Soskova used, although the proof that it works for Σ-equivalence is completely different and
more model theoretic.

5.2.2. The second jump inversion theorem. This second jump inversion theorem is not a gen-
eralization of the usual jump inversion theorem to a more general class of degrees, but a
generalization in the sense that given X ⊆ N it gives Y ⊆ N with Y ′ ≡T X and some extra
properties.

Theorem 5.11. If X computes a copy of A′, then there there is a set Y , with Y ′ ≡T X,
which computes a copy of A. Equivalently, this says that

Sp(A′) = {y′ : y ∈ Sp(A)}.
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This theorem is proved by showing that any copy of A′ can compute a 1-generic copy B of
A, and that, for such a copy, D(B)′ ≤T D(A′).

The equivalent formulation in the second sentence of the theorem can be viewed as a
correctness statement: it reaffirms that our definition of the jump is an analog of the usual
definition of the Turing jump on sets of numbers.

Corollary 5.12 ([Mon09, Theorem 3.5]). The following are equivalent:

(1) A has the low property: If X ′ ≡T Y ′ and X computes a copy of A, then so does Y .
(2) A admits strong jump inversion: If X ′ computes a copy of A′, then X computes a

copy of A.

Historic Remark 5.13. Theorem 5.11 was first introduced by Soskov at a talk in the LC’02 in
Munster; a full proof then appeared in [SS09]. That proof just shows the existence of a structure B
with Sp(B) = {y′ : y ∈ Sp(A)}; this structure B was only later called the jump of A, and it is notion
J2 in page 11. Theorem 5.11 was first stated in print in Baleva [Bal06, Theorem 5], but the proof there
is not complete (Lemma 4 is not correct).

Another proof of the theorem then appeared independently in Montalbán [Mon09]. Both proofs are
essentially the same, although the great differences in the underlying setting make them look quite
different.

5.2.3. The fixed point theorem. The third theorem says that the jump operation on structures
does not always jump.

Theorem 5.14 (Puzarenko [Puz11], Montalbán [Monb]). There is a structure A such that
A ≡I A′.

Historic Remark 5.15. Puzarenko’s and Montalbán’s proofs were found independently . Montalbán
uses the existence of 0], and is a paragraph long once the definition of 0] is understood. Puzarenko’s
proof works inside ZFC, but is much more complicated. Both proofs work by building an ill-founded
ω-model A of V = L where for some ordinal α of the model, (Lα)A ∼= A.

More surprising than the theorem itself, is the complexity necessary for its proof.

Theorem 5.16 (Montalbán [Monb]). Higher-order arithmetic cannot prove that there exists
a structure A with A ≡w A′ (i.e. Sp(A) = Sp(A′)). Higher-order arithmetic refers to the
union of nth-order arithmetic for all n ∈ N.

One of the main steps to prove this theorem is to show that if A ≡w A′, then the co-
spectrum of A (i.e., {X ⊆ N : ~X is rice in A}) is the second-order part of an ω-model of full
second-order arithmetic. Generalizing this to higher orders, the author proves that the ω-jump
of any presentation of A computes a countably-coded ω-model of higher-order arithmetic.

Puzarenko’s proof of Theorem 5.14 uses KP plus ωCK1 +1 iterations of the Power-set axiom.
So there is still a gap as to what is actually needed to prove the fixed point theorem.

6. The structural jump

The author’s original definition of the jump of a structure [Mon09], which is different than
the one we gave here, uses complete set of Πc

1-relations. Complete set of Πc
1-relations, or by

taking complements, of rice relations, provide the link between the formal definition of the
jump of a relation and its applications on concrete natural structures.

6.1. Complete sets of rice relations. The author’s original definition [Mon09, Definition
1.1] is given as part (2) of Lemma 6.3 below. The following definition is equivalent:
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Definition 6.1. A sequence of relations ~R is structurally rice complete if it is rice and

~∅′A ≡AT ~R⊕
−→
0′ .

More generally, ~R is structurally Σc
n (Πc

n) complete if it is Σc
n (Πc

n) and

~∅(n)
A ≡

A
T
~R⊕
−−→
0(n).

In [Mon09, Definition 1.1], instead of saying that ~R is structurally rice complete, we said
that ~R is a complete sets of rice relations. The new notation is more accurate, but, as an abuse
of notation, we will still use the old notation sometimes. The word “structurally” reflects that
~R is complete in the sense that it has all the structural information of ~∅′A, but it may need to
borrow other information from

−→
0′ to be actually equivalent to ~∅′A. Also, it is important that

~R is a sequence and not just a set, because the ≡AT -equivalence asks for uniform reductions
between sequences.

Example 6.2. From Examples 3.22 and 3.23, we get that ¬Adj alone, and ~LD are structurally
rice complete for linear orderings and vector spaces respectively. More examples are given in
Section 7.

The following lemma shows how having a simple complete set of rice relations on a structure
A can be very useful: first because it gives a simple characterization of all the r.i. Σ0

2 relations
in A, and second because it can be used to build copies of A.

Lemma 6.3. Let ~R be a finite or infinite Σc
n sequence of relation on A. The following are

equivalent:
(1) ~R is structurally Σc

n complete.
(2) Every Σc

n+1 formula ψ(x̄) about A is equivalent to a 0(n)-computable disjunction of fini-
tary Σ1 formulas about (A, ~R), and this equivalent disjunction can be found uniformly
in ψ.

(3) If X ≥T 0(n) computes a copy of (A, ~R), then there exists Y with Y (n) ≡T X which
computes a copy of A, and, furthermore, X computes an isomorphism between A and
its copy.

Sketch of the Proof. That (2) implies (1) follows from the fact that both ~∅(n)
A and ¬~∅(n)

A are
Σc
n+1 definable. To prove that (1) implies (2) one needs to use, first, that every Σc

n+1 formula
about A is equivalent to a Σc

1 formula about A(n) = (A, ~∅(n)
A ), and, second, that ~∅(n)

A is both

Σc
1- and Πc

1-definable in (A, ~R,
−−→
0(n)), to get that every Σc

n+1 formula is equivalent to a Σc
1

formula about (A, ~R,
−−→
0(n)). Such Σc

1 formula is equivalent to a 0(n)-computable disjunction of
finitary Σ1 formulas about (A, ~R).

That (1) implies (3) follows from Theorem 5.11 iterated n times.
Let us now assume that (3). To show that (1) holds, we need to show that for every copy

B of A, ~RB ⊕ 0(n) computes ~∅(n)
B . Let X compute (B, ~RB,

−−→
0(n)). By (3), there exists Y ,

with Y (n) ≡T X, which computes a copy C of B and X computes the isomorphism. Then X

computes ~∅(n)
C , and through the isomorphism, it computes ~∅(n)

B . �

The following particular case of the previous lemma was independently proved by Frolov.

Corollary 6.4 ([Fro10, Theorem 6]). If A is a linear ordering and (A, Adj) has a 0′-computable
copy, then A has a low copy.
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It is not always the case that there is a nice complete set of rice relations. Conditions for
when this is the case, under a certain interpretation of “nice,” are given in [Mona]. There, the
author studies sequences of Πc

n formulas which define complete sets of Πn relations for all the
structures inside a class K, and that, furthermore, are complete relative to any oracle. It is
proved in [Mona] that such a set of formulas exists if and only if the number of n-back-and-
forth types of tuples in structures in K is countable, and some mild effectiveness conditions
hold on these types.

6.2. The author’s original definition of jump. The definition given in this paper is better
than the one in [Mon09] in the sense that it matches the other definitions of jump. However,
the definition from [Mon09] has the advantage that it is more practical, and aesthetic, when
looking at particular examples of jumps.

Definition 6.5. A structural jump of A is a structure of the form (A, ~R) where ~R ∈ RSeq(A)
is structurally rice complete.

Notice that A′, as defined in 5.1, is a structural jump of A, and that the only essential
difference between A′ and any other structural jump Â of A is that A′ codes the information
sequence

−→
0′ while Â might not. This difference is not structural; it just involves information

unrelated to the structure A.
The following examples show how simple the structural jump of a structure can be. More

examples are given in the next section.

Example 6.6. If A is a linear ordering, then (A, Adj) is a structural jump of A. If A is a
Q-vector space, (A, ~LD) is a structural jump of A. If A is a Boolean algebra, (A, atom) is a
structural jump of A, and (A, atom, inf, atomless) is a structural double-jump of A.

7. Finite complete sets of rice relations

In this last section we look at the following question: For which structures, and n ∈ N, is
there a finite structurally Σc

n complete set of relations? We do not have a general answer for
this question; but we have some interesting examples.

7.1. Linear orderings. As we said a few times already, for linear orderings we do have a
finite complete set of rice relations, namely the singleton {¬Adj}, and a proof of this can be
found in [Mon09]. Linear orderings also enjoy a nice structural double jump. The following is
a complete set of Πc

2 relations for linear orderings with endpoints:
(1) Adj(x, y);
(2) limleft(x ); where limleft(x ) holds if x is a limit from the left, that is, if ∃y < x & ∀y <

x∃z (y < z < x).
(3) limright(x ); where limright(x ) holds if x is a limit from the right, that is, if ∃y > x &
∀y > x∃z (x < z < y).

(4) Dn(x, y) for n ≥ 1; where Dn(x, y) holds if there is no string of n+1 adjacent elements
somewhere between x and y, that it, if x < y & ¬∃z0, ..., zn (x ≤ z0 < · · · < zn ≤ y &∧
i<nAdj(zi, zi+1)).

That these form a complete set of Πc
2 relations follows from work of Frolov [Fro10, Theorem 7]

who proved that part (3) of Lemma 6.3 holds for these relations. In the case when the linear
ordering has no end points the situation is not much different; we just need to consider extra
relations Dn,+∞(x) and Dn,−∞(x) which are like Dn(·, ·), but look at end and initial segments,
(x,+∞) and (−∞, x), respectively.

This is a nice set of relations, but it is not finite.
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Theorem 7.1 (Knight, R. Miller, Montalbán, Soskov, A. Soskova, M. Soskova, VanDen-
Driessche, and Vatev; unpublished). There is a finite complete set of Πc

2 relations for linear
orderings with end points. These relations are:

• Adj(x, y),
• limleft(x ),
• limright(x ),
• P (x, y, z, w) ≡

∧
n∈N (Succn(z) = w → Dn+1(x, y)),

where Succn(z) = w is a shorthand for ∃z0, ..., zn (z = z0 < z1 < · · · < zn = w &∧
i<nAdj(zi, zi+1)).

The theorem also holds for linear orderings without end points, although one needs to
consider a couple added relations.

Proof. Let A be a presentation of a linear orderings with end points. We need to show that
the relations Dn are uniformly computable in the relations above. Fix n. If n = 1, then
D1(x, y) ≡ P (x, y, x, x). Suppose now that n > 1, and consider x, y ∈ A. Suppose that,
recursively, we know whether or not Dn(x, y) holds, and we want to check if Dn+1(x, y) holds.
If Dn(x, y) holds, then we know that Dn+1(x, y) holds too. Suppose now that ¬Dn(x, y) holds.
Then, we can search for z, w such that Succn(z) = w and we have that P (x, y, z, w) ⇐⇒
Dn+1(x, y). �

7.2. Boolean algebras. Harris and Montalbán [HM] proved that, for all n ∈ N, there is
a finite structurally Πc

n-complete set of relations. They describe a recursive procedure to
build these sets of relations, but the construction is too involved to give here. Up to Boolean
combination, and for the cases n = 1, 2, 3, 4, relations that are structurally Πc

n complete for
Boolean algebras were considered by Downey and Jockusch [DJ94] for n = 1, Thurber [Thu95]
for n = 2, and Knight and Stob [KS00] for n = 3, 4. They did not mention their completeness,
but they proved that (3) of Lemma 6.3 holds. Moreover, they showed that Boolean algebras
have the low4 property by showing that they admit strong 4th jump inversion (see Corollary
5.12).

7.3. Vector spaces. As we mentioned before, ~LD is structurally rice complete for Q-vector
spaces. This is again a very nice sequence of relations that is not finite.

Theorem 7.2 (Knight, R. Miller, Montalbán, Soskov, A. Soskova, M. Soskova, VanDen-
Driessche, and Vatev; unpublished). Let V be the infinite dimensional countable Q-vector
space. There is no finite complete set of rice relations in V.

Sketch of the Proof. The proof has two parts. First, we give a different, more hands on, proof
that ~LD is structurally rice complete. A proof that lets us observe that every rice relation
R(x̄) is ≤VT -reducible to 0′ and finitely many instances of ~LD. Let n be the arity of R and
let (v1, ...vn) ∈ Vn. Then, using (LD2, ..., LDn) we can find out all the linear dependencies
among the vectors v1, ..., vn. So we can find a linearly independent subset of v1, ..., vn which
generates the rest, and then we can search for the equations witnessing these dependencies.
Let us now assume that the vi’s are all linearly independent, as otherwise we can reduce the
problem to a smaller set. By standard arguments using disjunctive normal forms one can show
that every finitary Σ1 formula about v1, ..., vn can be effectively decided by solving systems of
linear equations and inequations, and hence 0′ can then decide infinitary Σc

1 formulas about
v1, ..., vn in a uniform way.

Second, we show that no finite sequence (LD2, ..., LDn−1) can ≤VT -compute the whole se-
quence ~LD. We build a copy A of V where (LD2, ..., LDn−1) is computable, but ~LD is
not. We will define a computable subspace W of Qω and then let A be the quotient Qω/W .
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Let b0, b1, ... be the standard basis of Qω. To make sure LDn is not computable we will let
LDn(bkn, ..., bk(n+1)−1) hold in A if and only if k ∈ 0′. Given s ∈ N, let As be the set of all
v ∈ Qω which are a linear combinations of b0, ..., bs using coefficients among the first s rational
numbers. At stage s of the construction, if we see that k enters 0′ we enumerate a non-trivial
linear combination of bkn, ..., bk(n+1)−1 to W without adding to W any vector of As that was
not in W already, and without adding any new dependence between any set of vectors of As
of size less than n. Proving that this can be done requires a little linear algebra, and proving
that W and LD2, ..., LDn−1 end up being computable is a rather standard argument (for a
fully spelled out argument of a similar kind, see [DHK+07]).

Relativizing this proof to 0′, we get a 0′-computable copy of V, where (LD2, ..., LDn−1)⊕
−→
0′ is

0′-computable, but ~LD computes 0′′. Thus ~LD is not r.i. computable in (LD2, ..., LDn−1)⊕
−→
0′ .

Finally, if R1, ..., Rm were structurally rice complete, then by the first part of the argument
we would have that finitely may of the LDi would also be rice complete, but the second part
shows this is not the case. �

7.4. Equivalence structures. An equivalence structure is a structure with a binary relation
E which is an equivalence relation. For equivalence structures, the following is a complete set
of rice relations:

(1) Fk(x) for k ∈ N, where Fk(x) holds if there are ≥ k elements equivalent to x, and
(2) the information sequence ~G (called the character of E), where

G = {〈n, k〉 ∈ N2 : there are ≥ n equivalence classes with ≥ k elements}.
Fix an equivalence structure A, and a rice relation R of arity n. We will show how we

can uniformly compute RA using ~FA, ~GA and 0′. Let (v1, ...vn) ∈ An. Using (F2, ..., Fn),
find which of the vi’s are equivalent to which. Let us assume they are all nonequivalent,
as otherwise we can reduce the problem to a maximal subset of nonequivalent vi’s. Given
k̄ ∈ Nn, let Fk̄(x̄) =

∧n
i=1 Fki

(xi). A standard argument shows that every finitary Σ1 formula
about v1, ..., vn is equivalent to a disjunction of formulas of the form Fk̄(v̄) in conjunction
with some formulas of the form “(m, k) ∈ G.” So, using G, we can effectively transform
every Σc

1 formula into a disjunction of formulas Fk̄(v̄) for k̄ in some computable set C ⊆ Nn.
Define the following ordering on Nn: k̄ 4 l̄ if for all i = 1, ..., n, ki ≤ li. Note that if
k̄ 4 l̄, then Fk̄(v̄) ∨ Fl̄(v̄) ≡ Fk̄(v̄). It is not hard to show (by induction on n) that (Nn,4)
is a well-quasi ordering, that is, that for every sequence {k̄i : i ∈ N}, there is i < j with
k̄i 4 k̄j . Well-quasi orderings have the property that for every set of C ⊆ Nn there is a
finite subset C0 ⊆ C such that every element of C is 4-above some element of C0. It follows
that

∨
k̄∈C Fk̄(v̄) ≡

∨
k̄∈C0

Fk̄(v̄). Let us note that 0′ is necessary to find C0 from C. So, we
have shown that every Σc

1 formula can be re-written, with the help of 0′ and G, as a finite
disjunction of the form

∨
k̄∈C0

Fk̄(v̄).

Theorem 7.3 (Knight, R. Miller, Montalbán, Soskov, A. Soskova, M. Soskova, VanDenDriess-
che, and Vatev; unpublished). Let A be an equivalence structure which has one equivalence
class of each finite size. There is no finite complete set of rice relations in A.

Sketch of the Proof. First, observe that every rice relation R(x̄) is ≤AT -reducible to 0′ and
finitely many instances of ~F , noting that G is computable in this case.

Second, we show that no finite sequence (F2, ..., Fn−1) can ≤AT -compute the whole sequence
~F . We build a copy B of A where (F2, ..., Fn−1) are computable, but ~F is not. Suppose n is
even; if not take n+ 1 as n. Start by building a structure with equivalence classes of al even
sizes and all sizes less than n; we will build the odd size classes beyond n by stages. Let bk
be a fixed element in a class of size 2k + n. If k enters 0′, we will make bk’s equivalence class
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bigger, so asking whether F2k+n+1(bk) holds will tell us if k ∈ 0′. At each stage build one
new odd size equivalence class. If k enters 0′ add elements to bk’s equivalence class to make
it have some large odd size not considered yet, and also make a new equivalence class of size
2k + n. Notice that the value of Fi for i < n is never changed during the construction, and
hence these relations are all computable.

Relativize this proof to 0′ to obtain a 0′-computable copy of A where (F2, ..., Fn−1)⊕
−→
0′ is

0′-computable but ~F computes 0′′.
Finally, if there was a finite complete set of rice relations, we would get that a finite set of

the Fk’s would also make a complete set, but we just proved this can not be the case. �
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