Math 125 A – Fall 2013 Homework 6: Due Friday, October 25

Problem 1: Let $\mathcal{L} = \{\mathsf{R}\}$ where R is a binary relation symbol and let \mathcal{M} be a finite \mathcal{L} -structure. Show that there exists $\sigma \in Sent_{\mathcal{L}}$ such that for all \mathcal{L} -structures \mathcal{N} , we have

 $\mathcal{N} \vDash \sigma$ if and only if $\mathcal{M} \cong \mathcal{N}$

(This problem easily generalizes to any finite language \mathcal{L} . In particular, if \mathcal{L} is a finite language and \mathcal{M} is finite \mathcal{L} -structure, then for any \mathcal{L} -structure \mathcal{N} , we have $\mathcal{M} \equiv \mathcal{N}$ if and only if $\mathcal{M} \cong \mathcal{N}$.)

Problem 2:

Let \mathbb{Z}^{∞} be the set of infinite sequences $\langle n_0, n_1, n_2, ... \rangle$ of integers that are equal to zero from some point on (i.e. there exists k such that for all $j \ge k$, $n_j = 0$). Given two sequences $\mathbf{n} = \langle n_0, n_1, n_2, ... \rangle$ and $\mathbf{m} = \langle m_0, m_1, m_2, ... \rangle$ we define a new sequence $\mathbf{n} + \mathbf{m} = \langle n_0 + m_0, n_1 + m_1, n_2 + m_2, ... \rangle$.

Let \mathbb{Q}^+ be the set of positive rational numbers.

a. Show that $(\mathbb{Z}^{\infty}, +) \cong (\mathbb{Q}^+, \times)$. (hint: think of prime numbers)

b. Show that the set $\{(a, b) \in (\mathbb{Q}^+)^2 : a \leq b\}$ is not definable in (\mathbb{Q}^+, \times) .

c. Show that the set $\{(a,b) \in \mathbb{Q}^2 : a \leq b\}$ is not definable in (\mathbb{Q}, \times) .

Problem 3: Let $\mathcal{L} = \{e, *\}.$

(a) An element g on a group (G, e, *) is said to be *torsion* if there exists an $n \in \mathbb{N}^+$, such that $g^n = e$. Show that there is no \mathcal{L} -formula $\varphi(x)$ such that on all groups G, $\varphi(x)$ defines the set of torsion elements of G.

(b) A group G is said to be *torsion* if every element of G is torsion. Show that the class of torsion groups is not weakly elementary.

(c) A group G is torsion-free if no element of G is torsion, except for e. Show that the class of torsion-free groups is weakly elementary but not elementary.

Problem 4: Let $\mathcal{L} = \{\leq\}$.

(a) An anti-chain on a partial ordering (P, \leq) is a subset $X \subseteq P$ such that no two elements of X are comparable (i.e. $\forall x, y \in X(x \leq y \land y \leq x)$). A partial ordering is said to be *thin* if it has no infinite anti-chains. Show that the class of thin partial orderings is not weakly elementary.

(b) A partial ordering is said to be *short* if it has no infinite chains. Show that the class of short partial orderings is not weakly elementary.

(c) Two elements a, b in a partial ordering are said to be *finitely apart* if $a \leq b$ and there are only finitely many elements in between a and b. Show that there is no formula $\varphi(x, y)$ such that, on any partial ordering $P, \varphi(x, y)$ defines the set of pairs of elements of P which are finitely apart.

(d) Give an example of a partial ordering where the set $\{(a, b) \in P^2 : a \text{ is finitely apart from } b\}$ is definable.