Math 125 A – Fall 2013 Homework 4: Due Friday, October 11

Required Problems

Problem 1: Decide whether the following statements are **T**rue or **F**alse. Circle the right answer. You don't need to justify your answers. Use $\mathcal{L} = \{0, 1, +\}$.

T F $x \in FreeVar(x+1=1 \land \exists x(x+x=x)).$

T F If s(x) = 0, then $(\mathcal{N}, s) \models \forall x(x + x = x)$.

T F $(x + x = x \land x + 1 = 0) \in AtomicFrom_{\mathcal{L}}.$

T F $Term_{\mathcal{L}} \subseteq AtomicForm_{\mathcal{L}}$.

T F If the truth value of $(M, s) \models \varphi$ is independent of s, then φ has no free variables.

Problem 2:

a. Let $\mathcal{L} = \{f\}$ where f is a unary function symbol. Show that the class of all \mathcal{L} -structures \mathcal{M} such that $f^{\mathcal{M}}$ is a bijection on M is an elementary class in the language \mathcal{L} .

b. A directed graph is a nonempty set V of vertices together with a set $E \subseteq V \times V$ where $(v, w) \in E$ intuitively represents an edge originating at v and terminating at w. A cycle in a directed graph is a sequence $v_1v_2 \cdots v_k$ of vertices, such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k-1$ and $(v_k, v_1) \in E$. If we let $\mathcal{L} = \{R\}$, where R is a binary relation symbol, then directed graphs correspond exactly to \mathcal{L} -structures. Show that the class of directed acyclic graphs (that is, directed graphs with no cycles) is a weak elementary class in this language.

Problem 3:

a. Let $\mathcal{L} = \{f\}$ where f is a binary function symbol. Show that $(\mathbb{N}, +) \neq (\mathbb{Z}, +)$. b. Let $\mathcal{L} = \{f\}$ where f is a binary function symbol. Define $g: \{1, 2, 3, 4\}^2 \rightarrow \{1, 2, 3, 4\}$ and $h: \{a, b, c, d\}^2 \rightarrow \{a, b, c, d\}$ by

r	1	2	3	4	h	a	b	с	
1	4	3	1	1	a	b	b	с	
2	2	2	1	2	b	a	d	d	
3	1	4	1	4	с	b	a	с	
4	1	3	2	3	d	d	b	с	

Interpret the diagrams as follows. If $m, n \in \{1, 2, 3, 4\}$, to calculate the value of g(m, n), go to row m and column n. For example, g(1, 2) = 3. Similarly for h. Show that $(\{1, 2, 3, 4\}, g) \not\equiv (\{a, b, c, d\}, h)$. c. Let $\mathcal{L} = \{\mathsf{R}\}$ where R is a 3-ary relation symbol. Let \mathcal{M} be the \mathcal{L} -structure where $\mathcal{M} = \mathbb{R}$ and $\mathsf{R}^{\mathcal{M}}$ is the "betweeness relation", i.e. $\mathsf{R}^{\mathcal{M}} = \{(a, b, c) \in \mathbb{R}^3 : \text{Either } a \leq b \leq c \text{ or } c \leq b \leq a\}$. Let \mathcal{N} be the \mathcal{L} -structure where $\mathcal{N} = \mathbb{R}^2$ and $\mathsf{R}^{\mathcal{N}}$ is the "collinearity relation", i.e. $\mathsf{R}^{\mathcal{N}} = \{((x_1, y_1), (x_2, y_2), (x_3, y_3)) \in (\mathbb{R}^2)^3$: There exists $a, b, c \in \mathbb{R}$ with either $a \neq 0$ or $b \neq 0$ such that $ax_i + by_i = c$ for all $i\}$. Show that $\mathcal{M} \not\equiv \mathcal{N}$.