Problem 1 \hspace{1cm} (2) \Rightarrow (1)

Suppose \(p \equiv \emptyset \). We want to show \(P_2 \equiv \emptyset \).

Take \(\nu : P \rightarrow \{T,F\} \) satisfying \(P_2 \).

By (1) \(P_2 \subset P_1 \), so \(\nu \) satisfies \(P_1 \).

Since \(P_1 \equiv \emptyset \), \(\nu(\emptyset) = T \). Thus \(P_2 \equiv \emptyset \).

That \(P_2 \equiv \emptyset \Rightarrow P_1 \equiv \emptyset \) is analogous.

By (2)

(2) \Rightarrow (1) Take \(\theta \in P_1 \), then \(P_1 \equiv \emptyset \), then \(P_2 \equiv \emptyset \).

Analogously, if \(\theta \in P_2 \), \(P_1 \equiv \emptyset \).

(2) Let \(\Delta \subset \Gamma \) be smallest such that \(\Delta \equiv \emptyset \).

Since \(\Gamma \) is finite, such a smallest set exists.

Claim \(\Delta \) independent: if not, there is \(\Phi \in \Delta \) such that \(\Delta \cdot \Phi \equiv \emptyset \). But then \(\Delta \cdot \{\emptyset\} \equiv \emptyset \).

\(\Delta \) and \(\Delta \cdot \{\emptyset\} \) are equivalent, contradicting that \(\Delta \) is smallest.

(3) Let \(\Gamma = \{A_0, A_0 \wedge A_1, A_0 \wedge A_1 \wedge A_2, \ldots \} \)

\(\Gamma \)
Problem 2

On the one hand
\[| \{ f : \{T,F\}^3 \to \{T,F\} \} | = 2^3 = 2^{128} \]

On the other hand:

Let \(D_i = \{ p \in \text{Sent}^P : \text{depth}(p) \leq i \} \).

and \(N_i = |D_i| \)

\[D_0 = \{ \lambda, A, \ldots, A_6 \} \quad \text{and} \quad N_0 = 7 \]

\[D_{i+1} = D_i \cup \{ \eta \in \text{Sent}^P : \eta \in D_i 3 \cup \exists \gamma : \gamma \in \text{Sent}^P, \eta \eta \gamma \in D_i \} \]

\[N_1 = 7 + 7 + 7^2 = 63 < 64 = 2^6 \]

\[N_{i+1} = N_i + N_i + N_i^2 \leq 2N_i^2 \]

\[N_2 \leq 2N_1^2 < 2 \cdot (2^6)^2 = 2^{13} \]

\[N_3 \leq 2N_2^2 < 2 \cdot (2^{13})^2 = 2^{27} \]

\[N_4 \leq 2N_3^2 < 2 \cdot (2^{27})^2 = 2^{54} \]

\[N_4 \leq 2^{27} \] (there are many other ways to prove this bound)

Thus, by pigeonhole principle, there is \(f : \{T,F\}^3 \to \{T,F\} \) such that for every \(p \in D_4 \), \(f \neq B_p \).

\[\therefore \text{if } f = B_p, \text{ depth}(p) \geq 5 \]
Problem 3

\[
\begin{align*}
\Gamma, \phi &\vdash \psi & \text{(Cont)} \quad \frac{\Gamma, \phi, \psi \vdash \Gamma, \phi} \text{BR} \\
\Gamma, \phi &\vdash \psi & \text{(Subset)} \quad \frac{\Gamma, \phi, \psi \vdash \Gamma, \phi} \text{BR} \\
\Gamma, \phi &\vdash \psi & \text{(MP)} \quad \frac{\Gamma, \phi, \psi \vdash \Gamma, \phi} \text{BR} \\
\Gamma, \phi &\vdash \psi & \text{(VI)} \quad \frac{\Gamma, \phi, \psi \vdash \Gamma, \phi} \text{VI} \\
\Gamma, \phi &\vdash \psi & \text{(VIR)} \quad \frac{\Gamma, \phi, \psi \vdash \Gamma, \phi} \text{VIR} \\
\end{align*}
\]
Problem 4

Recall that

\[\Gamma \vdash \varphi \iff \Gamma, \varphi \text{ inconsistent} \]
\[\Gamma \vdash \varphi \iff \Gamma, \varphi \text{ not satisfiable.} \]

(a) \[\Gamma \vdash \varphi \Rightarrow \Gamma, \varphi \text{ inconsistent} \ implies \ \Gamma, \varphi \text{ not satisfiable} \Rightarrow \Gamma \vdash \varphi \]

(b) Suppose \(\Gamma \) not satisfiable.

Then for any \(\varphi, \ \Gamma \vdash \varphi \) and \(\Gamma \vdash \neg \varphi \).

Then \(\Gamma \vdash \varphi \) and \(\Gamma \vdash \neg \varphi \) by (1).

The \(\Gamma \) inconsistent.