Math 125 A — Fall 2013
Midterm 2: November 4
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Problem 1: (10 points) Decide whether the following statements are True or False. Circle the right answer.
You don’t need to justify your answers.

T @Once we prove compactness, the notions of elementary class and of weakly elementary class become
equivalent.

@F If an embedding between two L-structures is onto, it is an elementary embedding.

T @Let L be countable. Then every infinite L-structure has a proper elementary substructure (proper
means not equal).

T@Let A and B be L-structures. Then 4 < B if and only if A C B and A = B.

@ F Let M, N be L-structures. M and A are elementary equivalent if and only if Th(N) C ThiM).




Problem 3: (6 points)

Let & = {3, : n € N} C Seni, be such that ¢,41 = v, for every n. Prove that if M od(¥) is elementary, §
then there exists some n such that |= @, < @p1.
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Problem 3: (8 points) Consider Q = (Q, +).
(a} Find four subsets of @ which are definable in ©, and give the formulas that define therm.
(b) Prove that there are no other subsets of @ which are definable in Q.
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Problem 4: (6 points) Let £ = {<}, and let & C Sent; be such that all the models of T are linear
orderings. Suppose also that for every n € N, there is an A |= £ such that |A] > n.

Prove that for every linear ordering C = (C, <%) there is an A = ¥ for which there exists an L-embedding
of C into A.
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Problem 5: (5 points)

Let £ be a countable language and A4 an infinite Z-structure. Show that there exists a countable
L-gtructure A such that M < A and M £ N,
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