Math 125 A – Fall 2013 Midterm 2: November 4

Name: SOUTIONS	/30
Problem 1: (10 points) Decide whether the following statements are True or False. (You don't need to justify your answers.	Circle the right answer
T Ponce we prove compactness, the notions of elementary class and of weakly elementary class are considered and the class and of weakly elementary class ar	mentary class become
$\widehat{\mathbf{T}}\mathbf{F}$ If an embedding between two $\mathcal{L} ext{-structures}$ is onto, it is an elementary embeddi	ng.
The Let \mathcal{L} be countable. Then every infinite \mathcal{L} -structure has a proper elementary means not equal).	substructure (proper
Telebra Let \mathcal{A} and \mathcal{B} be \mathcal{L} -structures. Then $\mathcal{A} \preccurlyeq \mathcal{B}$ if and only if $\mathcal{A} \subseteq \mathcal{B}$ and $\mathcal{A} \equiv \mathcal{B}$.	
$f{T}$ $f{F}$ Let \mathcal{M},\mathcal{N} be \mathcal{L} -structures. \mathcal{M} and \mathcal{N} are elementary equivalent if and only if \mathcal{L}	$Th(\mathcal{N}) \subseteq Th(\mathcal{M}).$

Problem 3: (6 points)

Let $\Sigma = \{\psi_n : n \in \mathbb{N}\} \subseteq Sent_{\mathcal{L}}$ be such that $\varphi_{n+1} \models \varphi_n$ for every n. Prove that if $Mod(\Sigma)$ is elementary, then there exists some n such that $\models \varphi_n \leftrightarrow \varphi_{n+1}$.

Suppose $Mod(\Sigma)$ is elementary and $Mod(\Sigma) = Mod(T)$, $\Rightarrow \Sigma = T$ Then, by them From class, $\Sigma = \pm \Sigma_0$ Ensome finite $\Sigma_0 \in \Sigma$

let no= longert n, ln 50.

The Linea Proton trolo, Proto == I

Is Pro F Prair

Problem 3: (8 points) Consider $Q = (\mathbb{Q}, +)$.

- (a) Find four subsets of Q which are definable in Q, and give the formulas that define them.
- (b) Prove that there are no other subsets of $\mathbb Q$ which are definable in $\mathbb Q$.

(a)
$$103 \le Q$$
 definelle by $x+x=x$

- Q-{03 defendile by x+x +x

- Q defuelle by z=z

definable by 2+x

(6) Suppose D = Q es définélle.

of D = log then either D= \$ 0 D= log

. 90, suppose D\$ {0} and d∈ D. 203.

Tolae on 9 & Qitor. The h(P/= 9P in

on autmorphism of (D,+)

25 9= h(d/ 6 D

Thus Q(20) ED. Hence who dQ=D

Problem 4: (6 points) Let $\mathcal{L} = \{\leq\}$, and let $\Sigma \subset Sent_{\mathcal{L}}$ be such that all the models of Σ are linear orderings. Suppose also that for every $n \in \mathbb{N}$, there is an $A \models \Sigma$ such that $|A| \geq n$.

Prove that for every linear ordering $\mathcal{C} = (C, \leq^{\mathcal{C}})$ there is an $\mathcal{A} \models \Sigma$ for which there exists an \mathcal{L} -embedding of \mathcal{C} into \mathcal{A} .

 $L' = \{ \{ \} \cup \{ C_b : b \in C \} \}$ ρ = Σιυξζες": 5,5'ες } P is fintely ratifieble, Secone of To ET is Ente I mention only Emitely many constants 30,-, Ebr. Then, let A = 5 with |A| > 6K We can tryet Co-Con h A sother they one hi the cornect ordering and get a model of to Is, by comportners, I'h sætifielle. Let A'FT and let the the northering of the took. The AFS and the map h: 6-1

hBl= ct is or order provering

embedding.

Problem 5: (5 points)

Let \mathcal{L} be a countable language and \mathcal{M} an infinite \mathcal{L} -structure. Show that there exists a countable \mathcal{L} -structure \mathcal{N} such that $\mathcal{M} \preceq \mathcal{N}$ and $M \neq N$.

Use Up LST to get N' >M. N'unautable

Let X = Mu {c} En nome c \in N' M. (X is contable)

Use Down LST to get N, X \in N, N'unatable

The M \le N and c \in N M.