MATH 113 – MIDTERM

Name: AMSWers	
July 25, 2013	

(1) (20 points) Decide whether the following statements are True or False. Circle the right answer. You don't need to justify your answers.

$T(F)\langle \mathbb{N}, + \rangle$ is a group.	no	imuluse

TF:
$$\mathbb{Q}^+$$
 is a subgroup of (\mathbb{R}^*, \cdot) , where $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$.

$$T(F)(Q,+)$$
 and (Q^+,\cdot) are isomorphic. $Va\exists b (b+b=a) ln Qt$ but $Va\exists b (b+b=a) ln Qt$

/70

T)**F**: $\langle \mathbb{Z}_{\leq 3}[x], + \rangle$ and $\langle \mathbb{Z}^4, + \rangle$ are isomorphic, where $\mathbb{Z}_{\leq 3}[x]$ is the set of polynomials with integer coefficients and degree at most 3.

$$\mathbf{T}$$
 \mathbf{F} : $\mathbb{Z}_{24} \times \mathbb{Z}_5$ and $\mathbb{Z}_8 \times \mathbb{Z}_{15}$ are isomorphic. $\mathbf{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_5$

T
$$\widehat{\mathbf{F}}$$
: S_4 has a subgroup isomorphic to \mathbb{Z}_8 or S_4 have order S_4 and S_4 have order S_4 have order S_4 and S_4 have order S_4 have order S_4 have order S_4 and S_4

T (F) If R is a subring of F, both with unity, then R and F have the same characteristic. F=212 R=24,8,03

T (F)
$$\mathbb{Z}_{25}$$
 is a field.
 $5.5 = 0$ in \mathbb{Z}_{25}

$$\mathbf{T}$$
F: $\mathbb{Q}[i] = \{ai + b : a, b \in \mathbb{Q}\}$ is a sub-field of \mathbb{C} .

(2) (9 points)

Find all the solutions to the following equations. You don't need to justify.

(a) $3x = 7 \text{ in } \mathbb{Z}_8$.

one rolution Le course gcd (3,81=1

2=5

(b) 3x = 7 in \mathbb{Z}_9 .

no robution becoure gcd (3,9)=3

(c) 8x = 4 in \mathbb{Z}_{12} .

4 solutions become d = gcd (8,12) = 4

x=2 x=5

x = 8

2 = 11

(3) (12 points)

Consider \mathbb{Z} , \mathbb{Q} and \mathbb{R} as additive groups.

- (a) Prove that every element of $\frac{\mathbb{Q}}{\mathbb{Z}}$ has finite order.
- (b) Find an element in $\frac{\mathbb{R}}{\mathbb{Z}}$ which has infinite order.
- (c) Show that $\frac{\mathbb{R}}{\mathbb{Z}}$ and $\frac{\mathbb{R}}{\mathbb{Q}}$ are not isomorphic.

(a) Every element of $\frac{Q}{2}$ hold the form $\frac{C}{q+2}$ where $P, q \in \mathbb{Z}$, $q \neq 0$ then $(\frac{q+2}{q+2})_{+--} + (\frac{q+2}{q+2}) = P+2 = 2$ identity of $\frac{Q}{2}$

(b) v=M, e or any irretioned number than For no n=W V+V+---+ +2

(C) There is on element of order 2 monely $\frac{1}{2} + 2$

In $\frac{R}{20}$ there is now element of order 2 becomes

If (a+Q)+(a+Q)=Q then $2a\in Q$ but then $a\in Q$ and a+Q=Qthe identity

(4) (10 points)

Consider the following operation on the set $\mathbb{R}^+ = \{r \in \mathbb{R} : r > 0\}$:

$$a * b = a^{\log(b)}.$$

Show that $(\mathbb{R}^+,\cdot,*)$ is a field. (You may skip the associativity and distributivity properties. You'll get partial credit for proving parts of this.)

- We lemm that (R1.) is on abelian group.

- X bs commitative become

0 x 3 = e log b = e log(e) · log(b) = log(5) · log(c)

* has on identity, namely e (a so if you have wing sore so)

 $ex=e^{\log a}=a$ $ex=e^{\log a}=a$ $ex=e^{\log a}=a$

* Every Q + OR = 1 has a * - inverse given by

(elapla) log(a) log(a) = e log(a)

(5) (9 points)

Let G be an abelian group and let $H = \{(a, a, a) : a \in G\}$. Show that H is a normal subgroup of $G \times G \times G$ and that

$$\frac{G\times G\times G}{H}\cong G\times G.$$

- His a subgroup because

· if (a, a, a), (b, b, b) & H then (a, a, a). (b, b) = (ab, ab, ab) & H

· 16x (2,11) EH

· if (a, a a) eH, then (a, a, a) = (e', a', a') EH

Line 6 is obelien, so is 6×6×6, no His normal.

- Emider \$:6x6x6->6x6 given by \$(a,6,d=(ac',5c'))

· of is a homomorphism becoure

φ(a,b1,c1). β(arb2c2) = (aci, bci). (a2ci, b2ci)

= (a,c,a,c,) (b,c,b,c,) =

= (0,02(C,C2)), 5,52(C,C2))

= \$ (a,bc)(a,bzcz)

· 9 houts become given (x,y) E6x6, (x,y) = \$(x,y,)=

. Ker/4)=H become (a,5,c) \(\text{ker} (H) \(\text{ac'}, \dotsc') = (e,e) \(\text{bc'} \) \(\delta \text{c'} \) = \(e \) \(\delta \text{c'} \) \(\delta \text{c'} \) = \(e \) \(\delta \text{c'} \) = \(e \) \(\delta \text{c'} \) = \(e \) \(\delta \text{c'} \) \(\delta \text{c'} \) = \(e \) \(e \) \(\delta \text{c'} \) = \(e \) \(

(02-6=CG) (05C) EH

Thanfore, by the fundamental theorem of bronnwyhim

6x6x6 26x6

(6) (10 points)

In a field F, we say that b is a cubic root of a, if $b^3 = a$.

(a) Show that a^{11} is a cubic root of a for every $a \in \mathbb{Z}_{17}$.

(b) Show that if $p \equiv 2 \pmod{3}$, then every element of \mathbb{Z}_p has a cubic root.

(c) Show that if $p \equiv 1 \pmod{3}$, the 1 has more than one cubic root in \mathbb{Z}_p . (Hint: you may use the fact that on any finite abelian group G, if q is prime and q divides |G|, then G has an element of order q.)

(d) Show that if $p \equiv 1 \pmod{3}$, then some element of \mathbb{Z}_p does not have a cubic

(a) By Fermat's little theren $a^{16} \equiv 1 \pmod{p}$ So $(a^{11})^3 = a^{33} = a^{16} \cdot a^{16} \cdot a \equiv a \pmod{p}$

(b) By Earnet's little therm, $a^{P'}=2 \pmod{p} \quad \forall a \neq 0 \pmod{p}$ So Let k=2p-1. Jince $p=2 \pmod{3}$, we know $\frac{3p-1}{3} \in \mathbb{Z}$

 $(a^k)^3 = a^{3k} = a^{2p-1} = a^{2p-1} = a^{2p-1} = a \pmod{p}$ ula 0 to field

If $a \equiv 0 \mod p$, then $0^3 \equiv 0 \pmod p$ In any case at the cubic two of a

(c) \[Z\begin{array}{c}\begin{

Therefore $a \neq 1$ and $a^3 = 1$ To a and are Solh cube novers of 1

(d) Ince every element has at most one cube,

and I has at least 2 cubic roots, The funtion

Some the element must have none.