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Preface

We all know that in mathematics there are proofs that are more dif-
ficult than others, constructions that are more complicated than others,
and objects that are harder to describe than others. The objective of
computable mathematics is to study this complexity, measure it, and
find out where it comes from. Among the many aspects of mathemat-
ical practice, this book concentrates on the complexity of structures.
By structures, we mean objects like rings, graphs, or linear orderings,
which consist of a domain on which we have relations, functions, and
constants.

Computable structure theory studies the interaction between com-
plexity and structure. By complexity, we mean descriptional or com-
putational complexity, in the sense of how difficult it is to describe or
compute a certain object. By structure, we refer to the algebraic or
structural properties of mathematical structures. The setting of com-
putable structure theory is that of countable infinite structures, and
thus, within the whole hierarchy of complexity levels developed by lo-
gicians, the appropriate tools come from computability theory: Turing
degrees, the arithmetic hierarchy, the hyperarithmetic hierarchy, etc.
These structures are like the ones studied in model theory, and we will
use a few basic tools from there too. However, the intention is not to
effectivize model theory, and our motivations are very different from
those of model theory. Our motivations come from questions of the
following sort: Are there syntactical properties that explain why cer-
tain objects (like structures, relations, or isomorphisms) are easier or
harder to compute or to describe?

The objective of this book is to describe some of the main ideas
and techniques used in the field. Most of these ideas are old, but for
many of them, the style of the presentation is not. Over the last few
years, the author has developed new frameworks for dealing with these
old ideas — for instance, for forcing, r.i.c.e. relations, jumps, Scott
ranks, and back-and-forth types. One of the objectives of the book is
to present these frameworks in a concise and self-contained form.
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viii PREFACE

The modern state of the field, and also the author’s view of the sub-
ject, has been influenced greatly by the monograph by Ash and Knight
[AK00] published in 2000. There is, of course, some intersection be-
tween that book and this one. But, even within that intersection, the
approach is different.

The intended readers are graduate students and researchers working
on mathematical logic. Basic background in computability and logic, as
is covered in standard undergraduate courses in logic and computabil-
ity, is assumed. The objective of this book is to describe some of the
main ideas and techniques of the field so that graduate students and
researchers can use it for their own research.

This book is part II of a monograph that actually consists of two
parts: within the arithmetic and beyond the arithmetic.

Part I, Within the arithmetic. [Part 1] The first book is about
the part of the theory that can be developed below a single Turing
jump. The first chapters introduce what the author sees as the basic
tools to develop the theory: ω-presentations, relations, and ∃-atomic
structures. It then goes into many topics where there is current active
research going on. Many of the topics covered in Part I (like Scott
sentences, 1-generics, the method of true stages, categoricity, etc.) are
generalized through the transfinite in Part II. Here is the list of chapters
of Part I.

Table of contents of Part 1

Chapter I: Structures
Chapter II: Relations
Chapter III: Existentially atomic models
Chapter IV: Generic presentations
Chapter V: Degree spectra
Chapter VI: Comparing structures and classes of structures
Chapter VII: Finite injury constructions
Chapter VIII: Computable categoricity
Chapter IX: The jump of a structure
Chapter X: Σ-small classes

Part II, Beyond the arithmetic. This book moves into the
realm of the hyperarithmetic and the infinitary languages. To fully
analyze the complexity of a structure, the arithmetic hierarchy is not
enough. The hyperarithmetic hierarchy goes far enough to capture the
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complexity levels of relations in almost all structures — although, as we
will see, there are some structures whose complexity goes just beyond.

The first half of Part II develops the basic theory of infinitary logic,
Π1

1 sets, and the hyperarithmetic hierarchy. The first chapter explains
how we treat ordinals in computability theory. We then move to infini-
tary logic and develop the model theory of infinitary logic on countable
structures. We hold on to Chapter III to introduce the computable ver-
sion of infinitary logic. The following chapters are on Π1

1 sets and the
hyperarithmetic hierarchy. Of course, we look at these descriptive-
set-theoretic notions from a computable structure theory viewpoint.
Chapter VI, the last one of this first half of the book, deals with over-
spill arguments, which are key on constructions that go just beyond
the computable ordinals.

The second half of the book introduces various techniques that are
repeatedly used throughout the subject. The first one is forcing, for
which our presenetation is only aesthetically new. Then we introduce
the game metatheorem, which was developed by the author and is
used to better organize many important theorems that were known
decades ago. Chapter IX on the Iterated True-Stages develops a pow-
erful machinery that can be used, among other things, to prove the
game metatheorem from the previous chapter.

Chapter XI is about the complexity of the isomorphism problem,
that is, the problem of deciding when to ω-presentations of a structure
are isomorphic. This is a problem that has been studied in a wide
variety of settings and that shows up all over the subject.

The last chapter is on Vaught’s Conjecture, a topic that has capti-
vated the author attention for many years. This chapter takes a more
informal tone and does not prove everything that is claimed. The goal
of this chapter is to give the reader an idea of what we know and point
the reader to research papers for more in-depth proofs.

The two books are mostly independent of each other, and it is not
necessary to read Part I before reading Part II.

Acknowledgements

Many people helped in different ways throughout the long process
that was writing these two books, and I am grateful to all of them.
Many people have send me comments and typos over the years. Most
notably, Julia Knight, Mariya Soskova, and Jun Le Goh taught courses
at Notre Dame and Wisconsin following earlier drafts of this second
book, and then sent me typos and comments and got their students
to the same — that was extremely useful. David Gonzales did a great
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Rossegger also gave me a lot of useful feedback.

I learned the subject primarily from Julia Knight and my Ph.D.
advisor, Richard A. Shore. Together with Ted Slaman, they have been
instrumental in shaping my career. I was also greatly influenced by Rod
Downey, Denis Hirschfeldt, and Steffen Lempp. I am deeply indebted
to all of them.

My work was partially supported by NSF grants DMS-1854360.



Notation and Conventions from computability
theory

The intention of this section is to refresh the basic concepts of com-
putability theory and structures and set up the basic notation we use
throughout the book. If the reader has not seen basic computability
theory before, this section will be too fast an introduction and we rec-
ommend starting with other textbooks like Cutland [Cut80], Cooper
[Coo04], Enderton [End11], or Soare [Soa16].

The computable functions

A function is computable if there is a purely mechanical process to
calculate its values. In today’s language, we would say that f : N→ N
is computable if there is a computer program that, on input n, out-
puts f(n). This might appear to be too informal a definition, but the
Turing–Church thesis tells us that it does not matter which method of
computation you choose: you always get the same class of functions
from N to N. The reader should choose to keep in mind whichever
definition of computability feels intuitively most comfortable to him or
her, be it Turing machines, µ-recursive functions, lambda calculus, reg-
ister machines, Pascal, Basic, C++, Java, Haskel, or Python.∗ We will
not use any particular definition of computability, and instead, every
time we need to define a computable function, we will just describe the
algorithm in English and let the reader convince himself or herself that
it can be written in the programming language he or she has in mind.

The choice of N as the domain and image for the computable func-
tions is not as restrictive as it may sound. Every hereditarily finite
object† can be encoded by just a single natural number. Even if for-
mally we define computable functions as having domain N, we think

∗For the reader with a computer science background, let us remark that we do
not impose any time or space bound on our computations — computations just
need to halt and return an answer after finitely many steps using a finite amount
of memory.

†A hereditarily finite object consists of a finite set or finite tuple of hereditarily
finite objects.

xi



xii NOTATION AND CONVENTIONS FROM COMPUTABILITY THEORY

of them as using any kind of finitary object as inputs or outputs. This
should not be surprising. It is what computers do when they encode
everything you see on the screen using finite binary strings, or equiva-
lently, natural numbers written in binary. For instance, we can encode
pairs of natural numbers by a single number using the Cantor pairing
function 〈x, y〉 7→ ((x+ y)(x+ y + 1)/2 + y), which is a bijection from
N2 to N whose inverse is easily computable too. One can then encode
triples by using pairs of pairs, and then encode n-tuples, and then tu-
ples of arbitrary size, and then tuples of tuples, etc. In the same way,
we can consider standard effective bijections between N and various
other sets like Z, Q, Vω, Lω,ω, etc. Given any finite object a, we use
Quine’s notation paq to denote the number coding a. Which method of
coding we use is immaterial for us so long as the method is sufficiently
effective. We will just assume that these methods exist and hope that
the reader can figure out how to define them.

Let

Φ0,Φ1,Φ2,Φ3, ...

be an enumeration of all the computer programs ordered in some effec-
tive way, say lexicographically. Given n, we write Φe(n) for the output
of the eth program on input n. Each program Φe calculates the values
of a partial computable function N ⇀ N. Let us remark that, on some
inputs, Φe(n) may run forever and never halt with an answer, in which
case Φe(n) is undefined. If Φe returns an answer for all n, Φe is said
to be total — even if total, these functions are still included within the
class of partial computable functions. The computable functions are the
total functions among the partial computable ones. We write Φe(n)↓
to mean that this computation converges, that is, that it halts after a
finite number of steps; and we write Φe(n)↑ to mean that it diverges,
i.e., it never returns an answer. Computers, as Turing machines, run
on a step-by-step basis. We use Φe,s(n) to denote the output of Φe(n)
after s steps of computation, which can be either not converging yet
(Φe,s(n)↑) or converging to a number (Φe,s(n)↓ = m). Notice that,
given e, s, n, we can computably decide whether Φe,s(n) converges or
not: All we have to do is run Φe(n) for s steps. If f and g are partial
functions, we write f(n) = g(m) to mean that either both f(n) and
g(m) are undefined, or both are defined and have the same value. We
write f = g if f(n) = g(n) for all n. If f(n) = Φe(n) for all n, we say
that e is an index for f .

In his famous 1936 paper, Turing showed that there is a partial
computable function U : N2 → N that encodes all other computable
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functions in the sense that, for every e, n,

U(e, n) = Φe(n).

This function U is said to be a universal partial computable function.
It does essentially what computers do nowadays: You give them an
index for a program and an input, and they run it for you. We will not
use U explicitly throughout the book, but we will constantly use the
fact that we can computably list all programs and start running them
one at the time, using U implicitly.

We identify subsets of N with their characteristic functions in 2N,
and we will move from one viewpoint to the other without even men-
tioning it. For instance, a set A ⊆ N is said to be computable if its
characteristic function is.

An enumeration of a set A is nothing more than an onto function
g : N → A. A set A is computably enumerable (c.e.) if it has an enu-
meration that is computable. The empty set is computably enumerable
too. Equivalently, a set is computably enumerable if it is the domain
of a partial computable function.‡ We denote

We = {n ∈ N : Φe(n)↓} and We,s = {n ∈ N : Φe,s(n)↓}.

As a convention, we assume that We,s is finite, and furthermore, that
only on inputs less than s can Φe converge in less than s steps. One
way to make sense of this is that numbers larger than s should take
more than s steps to even be read from the input tape. In general, if a
is an object built during a construction and whose value might change
along the stages of the construction, we use a[s] to denote its value at
stage s. A set is co-c.e. if its complement is c.e.

Recall that a set is computable if and only if it and its complement
are computably enumerable.

The recursion theorem gives us one of the most general ways of using
recursion when defining computable functions. It states that for every
computable function f : N2 → N there is an index e ∈ N such that
f(e, n) = ϕe(n) for all n ∈ N.§ Thus, we can think of f(e, ·) = ϕe(·)
as a function of n which uses its own index, namely e, as a parameter
during its own computation, and in particular is allowed to call and

‡If A = range(g), then A is the domain of the partial function that, on input
m, outputs the first n with g(n) = m if it exists.

§To prove the recursion theorem, for each i, let g(i) be an index for the par-
tial computable function ϕg(i)(n) = f(ϕi(i), n). Let e0 be an index for the total
computable function g, and let e = g(e0). Then ϕe(n) = ϕg(e0) = f(ϕe0(e0), n) =

f(g(e0), n) = f(e, n).
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run itself. An equivalent formulation of this theorem is that, for every
computable function h : N→ N, there is an e such that Wh(e) = We.

Sets and strings

The natural numbers are N = {0, 1, 2, ....}. For n ∈ N, we some-
times use n to denote the set {0, ..., n − 1}. For instance, 2N is the
set of functions from N to {0, 1}, which we will sometimes refer to as
infinite binary sequences or infinite binary strings. For any set X, we
use X<N to denote the set of finite tuples of elements from X, which
we call strings when X = 2 or X = N. For σ ∈ X<N and τ ∈ X≤N,
we use σaτ to denote the concatenation of these sequences. Similarly,
for x ∈ X, σax is obtained by appending x to σ. We will often omit
the a symbol and just write στ and σx. We use σ ⊆ τ to denote that
σ is an initial segment of τ , that is, that |σ| ≤ |τ | and σ(n) = τ(n) for
all n < |σ|. This notation is consistent with the subset notation if we
think of a string σ as its graph {〈i, σ(i)〉 : i < |σ|}. We use 〈〉 to denote
the empty tuple. If Y is a subset of the domain of a function f , we use
f � Y for the restriction of f to Y . Given f ∈ X≤N and n ∈ N, we use
f � n to denote the initial segment of f of length n. We use f �� n for
the initial segment of length n+ 1. For a tuple n̄ = 〈n0, ..., nk〉 ∈ N<N,
we use f � n̄ for the tuple 〈f(n0), ...., f(nk)〉. Given a nested sequence
of strings σ0 ⊆ σ1 ⊆ · · · , we let

⋃
i∈N σi be the possibly infinite string

f ∈ X≤N such that f(n) = m if σi(n) = m for some i.
Given f, g ∈ XN, we use f ⊕ g for the function (f ⊕ g)(2n) = f(n)

and (f ⊕ g)(2n+ 1) = g(n). We can extend this to ω-sums and define⊕
n∈N fn to be the function defined by (

⊕
n∈N fn)(〈m, k〉) = fm(k).

Conversely, we define f [n] to be the nth column of f , that is, f [n](m) =
f(〈n,m〉). All these definitions work for sets if we think in terms of
their characteristic functions. So, for instance, we can encode countably
many sets {An : n ∈ N} with one set A = {〈n,m〉 : m ∈ An}.

For a set A ⊆ N, the complement of A with respect to N is denoted
by Ac.

A tree on a set X is a subset T of X<N that is closed downward,
i.e., if σ ∈ T and τ ⊆ σ, then τ ∈ T too. A path through a tree T is
a function f ∈ XN such that f � n ∈ T for all n ∈ N. We use [T ] to
denote the set of all paths through T . A tree is well-founded if it has
no paths.
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Reducibilities

There are various ways to compare the complexity of sets of natural
numbers. Depending on the context or application, some may be more
appropriate than others.

Many-one reducibility. Given sets A,B ⊆ N, we say that A is
many-one reducible (or m-reducible) to B, and write A ≤m B, if there
is a computable function f : N → N such that n ∈ A ⇐⇒ f(n) ∈ B
for all n ∈ N. One should think of this reducibility as saying that all
the information in A can be decoded from B. Notice that the classes
of computable sets and of c.e. sets are both closed downward under
≤m-reducibility. A set B is said to be c.e. complete if it is c.e. and, for
every other c.e. set A, A ≤m B.

Two sets are m-equivalent if they are m-reducible to each other,
denoted A ≡m B. This is an equivalence relation, and the equivalence
classes are called m-degrees

There are, of course, various other ways to formalize the idea of one
set encoding the information from another set. Many-one reducibility
is somewhat restrictive in various ways: (1) to figure out if n ∈ A,
one is allowed to ask only one question of the form “m ∈ B?”; (2) the
answer to “n ∈ A?” must be the same as the answer to “f(n) ∈ B?”.
Turing reducibility is much more flexible.

One-one reducibility. 1-reducibility is is like m-reducibility it re-
quires the reduction to be one-to-one. The equivalence induced by
it, 1-equivalence, is one of the strongest notions of equivalence between
sets in computability theory — a computability theorist would view sets
that are 1-equivalent as being the same. Myhill’s theorem states that
two sets of natural numbers are 1-equivalent, i.e., each is 1-reducible
to the other, if and only if there is a computable bijection of N that
matches one set with the other.

Turing reducibility. Given a function f : N → N, we say that a
partial function g : N⇀ N is partial f -computable if it can be computed
by a program that is allowed to use the function f as a primitive
function during its computation; that is, the program can ask questions
about the value of f(n) for different n’s and use the answers to make
decisions while the program is running. The function f is called the
oracle of this computation. If g and f are total, we write g ≤T f
and say that g is Turing reducible to f , that f computes g, or that
g is f -computable. The class of partial f -computable functions can
be enumerated the same way as the class of the partial computable
functions. Programs that are allowed to query an oracle are called
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Turing operators or computable operators. We list them as Φ0, Φ1,...
and we write Φf

e (n) for the output of the eth Turing operator on input
n when it uses f as an oracle. Notice that Φe represents a fixed program
that can be used with different oracles. When the oracle is the empty
set, we may write Φe for Φ∅e matching the previous notation.

As we already mentioned, for a fixed input n, if Φf
e (n) converges, it

does so after a finite number of steps s. As a convention, let us assume
that in just s steps, it is only possible to read the first s entries from
the oracle. Thus, if σ is a finite substring of f of length greater than s,
we could calculate Φσ

e,s(n) without ever noticing that the oracle is not
an infinite string.

Convention: For σ ∈ N<N, Φσ
e (n) is shorthand for

Φσ
e,|σ|(n), which runs for at most |σ| stages.

Notice that given e, σ, n, it is computable to decide if Φσ
e (n)↓.

As the class of partial computable functions, the class of partial
X-computable functions contains the basic functions; is closed under
composition, recursion, and minimization; and can be listed in such a
way that we have a universal partial X-computable function (that sat-
isfies the s-m-n theorem). In practice, with very few exceptions, those
are the only properties we use of computable functions. This is why
almost everything we can prove about computable functions, we can
also prove about X-computable functions. This translation is called
relativization. All notions whose definition are based on the notion of
partial computable function can be relativized by using the notion of
partial X-computable function instead. For instance, the notion of c.e.
set can be relativized to that of c.e. in X or X-c.e. set: These are the
sets which are the images of X-computable functions (or empty), or,
equivalently, the domains of partial X-computable functions. We use
WX
e to denote the domain of ΦX

e .
When two functions are Turing reducible to each other, we say that

they are Turing equivalent, which we denote by ≡T . This is an equiv-
alence relation, and the equivalence classes are called Turing degrees.

Computable operators can be encoded by computable subsets of
N<N × N × N. Given Φ ⊆ N<N × N × N, σ ∈ N<N, n, m, we write
Φσ(n) = m as shorthand for 〈σ, n,m〉 ∈ Φ. Then, given f ∈ NN, we let

Φf (n) = m ⇐⇒ (∃σ ⊂ f) Φσ(n) = m.

We then have that g is computable in f if and only if there is a c.e.
subset Φ ⊆ N<N × N × N such that Φf (n) = g(n) for all n ∈ N. A
standard assumption is that 〈σ, n,m〉 ∈ Φ only if n,m < |σ|.
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We can use the same idea to encode c.e. operators by computable
subsets of N<N × N. Given W ⊆ N<N × N, σ ∈ N<N, and f ∈ NN, we
let

W σ = {n ∈ N : 〈σ, n〉 ∈ W} and W f =
⋃
σ⊂f

W σ.

We then have that X is c.e. in Y if and only if there is a c.e. subset
W ⊆ N<N × N such that X = W Y . A standard assumption is that
〈σ, n〉 ∈ W only if n < |σ|.

The Turing jump. Let K be the domain of the universal partial
computable function. That is,

K = {〈e, n〉 : Φe(n)↓} =
⊕
e∈N

We.

K is called the halting problem.¶ It is not hard to see that K is c.e. com-
plete. Using a standard diagonalization argument, one can show that
K is not computable.‖ It is common to define K as {e : Φe(e)↓} instead
— the two definitions give 1-equivalent sets. We will use whichever is
more convenient in each situation. We will often write 0′ for K.

We can relativize this definition and, given a set X, define the
Turing jump of X as

X ′ = {e ∈ N : ΦX
e (e)↓}.

Relativizing the properties of K, we get that X ′ is X-c.e.-complete,
that X ≤T X ′, and that X ′ 6≤T X. The Turing degree of X ′ is strictly
above that of X — this is why it is called a jump. The jump defines an
operation on the Turing degrees. Furthermore, for X, Y ⊆ N, X ≤T
Y ⇐⇒ X ′ ≤m Y ′.

The double iteration of the Turing jump is denoted X ′′ and the n-th
iteration by X(n).

Vocabularies and languages

Let us quickly review the basics of vocabularies and structures. Our
vocabularies will always be countable.

A vocabulary τ consists of three sets of symbols {Ri : i ∈ IR},
{fi : i ∈ IF}, and {ci : i ∈ IC}; and two functions aR : IR → N and
aF : IF → N. Each of IR, IF , and IC is an initial segment of N. The
symbols Ri, fi, and ci represent relations, functions, and constants,

¶The ‘K’ is for Kleene.
‖If it were computable, so would be the set A = {e : 〈e, e〉 6∈ K}. But then

A = We for some e, and we would have that e ∈ A ⇐⇒ 〈e, e〉 6∈ K ⇐⇒ e 6∈
We ⇐⇒ e 6∈ A.
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respectively. For i ∈ IR, aR(i) is the arity of Ri, and for i ∈ IF , aF (i)
is the arity of fi.

A vocabulary τ is computable if the arity functions aR and aF are
computable. This only matters when τ is infinite; finite vocabularies
are trivially computable. Except for a few occasions, the vocabularies
we use will always be computable.

Given such a vocabulary τ , a τ -structure is a tuple

M = (M ; {RMi : i ∈ IR}, {fMi : i ∈ IF}, {cMi : i ∈ IC}),
where M is just a set called the domain ofM, and the rest are interpre-
tations of the symbols in τ . That is, RMi ⊂MaR(i), fMi : MaF (i) →M ,
and cMi ∈M . A structure is a τ -structure for some τ .

Given two τ -structures A and B, we write A ⊆ B to mean that
A is a substructure of B, that is, that A ⊆ B, fAi = fBi � A

aF (i),
RAj = RBj � A

aR(i) and cAk = cBk for all symbols fi, Rj and ck. This
notation should not be confused with A ⊆ B which only means that the
domain of A is a subset of the domain of B. If A is a τ0-structure and B
a τ1-structure with τ0 ⊆ τ1,∗∗ A ⊆ B means that A is a τ0-substructure
of B � τ0, where B � τ0 is obtained by forgetting the interpretations of
the symbols of τ1 r τ0 in B. B � τ0 is called the τ0-reduct of B, and B is
said to be an expansion of B � τ0.

Given a vocabulary τ , we define various languages over it. First, re-
cursively define a τ -term to be either a variable x, a constant symbol ci,
or a function symbol applied to other τ -terms, that is, fi(t1, ..., taF (i)),
where each tj is a τ -term we have already built. The atomic τ -formulas
are the ones of the form Ri(t1, ..., taR(i)) or t1 = t2, where each ti is a
τ -term. A τ -literal is either a τ -atomic formula or a negation of a τ -
atomic formula. A quantifier-free τ -formula is built out of literals using
conjunctions and disjunctions. If we also use existential quantification,
we get the existential τ -formulas, or ∃-formulas. Every τ -existential
formula is equivalent to one of the form ∃x1 · · · ∃xk ϕ, where ϕ is
quantifier-free. A universal τ -formula, or ∀-formula, is one equivalent
to ∀x1 · · · ∀xk ϕ for some quantifier-free τ -formula ϕ. An elementary
τ -formula is built out of quantifier-free formulas using existential and
universal quantifiers. We also call these finitary first-order formulas.

Given a τ -structure A, and a tuple ā ∈ A<N, we write (A, ā) for the
τ ∪ c̄-structure where c̄ is a new tuple of constant symbols and c̄A = ā.
Given R ⊆ N × A<N, we write (A, R) for the τ̃ -structure where τ̃ is
defined by adding to τ relations symbols Ri,j of arity j for i, j ∈ N, and
RAi,j = {ā ∈ Aj : 〈i, ā〉 ∈ R}.

∗∗By τ0 ⊆ τ1 we mean that every symbol in τ0 is also in τ1 and has the same
arity.
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Orderings

Here are some structures that we will use quite often in examples.
A partial order is a structure over the vocabulary {≤} with one binary
relation symbol which is transitive (x ≤ y & y ≤ z → x ≤ z), reflexive
(x ≤ x), and anti-symmetric (x ≤ y & y ≤ x → x = y). A linear
order is a partial order in which any two elements are comparable
(∀x, y (x ≤ y∨y ≤ x)). We will often add and multiply linear orderings.
Given linear orderings A = (A;≤A) and B = (B;≤B), we define A+B
to be the linear ordering with domain A tB, where the elements of A
stand below the elements of B. We define A×B as the linear ordering
with domain A × B where 〈a1, b1〉 ≤A×B 〈a2, b2〉 if either b1 <B b2 or
b1 = b2 and a1 ≤A a2 — notice that we compare the second coordinate
first.†† We will use ω to denote the linear ordering of the natural
numbers and Z and Q for the orderings of the integers and the rationals.
We denote the finite linear ordering with n elements by n. We useA∗ to
denote the reverse ordering (A;≥A) of A = (A,≤A). For a <A b ∈ A,
we use the notation A� (a, b) or the notation (a, b)A to denote the open
interval {x ∈ A : a <A x <A b}. We also use A � a to denote the initial
segment of A below a, which we could also denote as (−∞, a)A.

As mentioned above, a tree T is a downward-closed subset of X<N.
As a structure, a tree can be represented in various ways. One is as
a partial order (T ;⊆) using the ordering on strings. Another is as a
graph where each node σ ∈ T other than the root is connected to its
parent node σ � |σ − 1|, and there is a constant symbol used for the
root of the tree. We will refer to these two types of structures as trees
as orders and trees as graphs.

A partial order where every two elements have a least upper bound
(x ∨ y) and a greatest lower bound (x ∧ y) is called a lattice. A lattice
with a top element 1, a bottom element 0, where ∨ and ∧ distribute
over each other, and every element x has a complement (that is an
element xc such that x ∨ xc = 1 and x ∧ xc = 0) is called a Boolean
algebra. The vocabulary for Boolean algebras is {0, 1,∨,∧, ·c}, and the
ordering can be defined by x ≤ y ⇐⇒ y = x ∨ y.

The arithmetic hierarchy

Consider the structure (N; 0, 1,+,×,≤). In this vocabulary, the
bounded formulas are built out of the quantifier-free formulas using
bounded quantifiers of the form ∀x < y and ∃x < y. A Σ0

1 formula
is one of the form ∃x ϕ, where ϕ is bounded. A Π0

1 formula is one

††A times B is A B times.
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of the form ∀x ϕ, where ϕ is bounded. By coding tuples of numbers
by a single natural number, one can show that formulas of the form
∃x0∃x1 · · · ...∃xk ϕ are equivalent to Σ0

1 formulas. Post’s theorem as-
serts that a set A ⊆ N is c.e. if and only if it can be defined by a Σ0

1

formula. Thus, a set is computable if and only if it is ∆0
1, that is, if it

can be defined both by a Σ0
1 formula and by a Π0

1 formula.
By recursion, we define the Σ0

n+1 formulas as those of the form ∃x ϕ,
where ϕ is Π0

n; and the Π0
n+1 formulas as those of the form ∀x ϕ, where

ϕ is Σ0
n. A set is ∆0

n if it can be defined by both a Σ0
n formula and

a Π0
n formula. Again, in the definition of Σ0

n+1 formulas, using one
existential quantifier or many makes no difference. What matters is
the number of alternations of quantifiers. Post’s theorem asserts that
a set A ⊆ N is c.e. in 0(n) if and only if it can be defined by a Σ0

n+1

formula. In particular, a set is computable from 0′ if and only if it
is ∆0

2. The Shoenfield Limit Lemma says that a set A is ∆0
2 if and

only if there is a computable function f : N2 → N such that, for each
n ∈ N, if n ∈ A then f(n, s) = 1 for all sufficiently large s, and if
n 6∈ A then f(n, s) = 0 for all sufficiently large s. This can be written
as χA(n) = lims→∞ f(n, s), where χA is the characteristic function of
A and the limit is with respect to the discrete topology of N where a
sequence converges if and only if it is eventually constant.

The language of second-order arithmetic is a two-sorted language
for the structure (N,NN; 0, 1,+,×,≤). The elements of the first sort,
called first-order elements, are natural numbers. The elements of the
second sort, called second-order elements or reals, are functions N→ N.
The vocabulary consists of the standard vocabulary of arithmetic, 0, 1,
+, ×, ≤, which is used on the first-order elements, and an application
operation denoted F (n) for a second-order element F and a first-order
element n. A formula in this language is said to be arithmetic if it
has no quantifiers over second-order objects. Among the arithmetic
formulas, the hierarchy of Σ0

n and Π0
n formulas are defined exactly as

above. Post’s theorem that Σ0
1 sets are c.e. also applies in this context:

For every Σ0
1 formula ψ(F, n), where n a number variable and F is a

function variable, there is c.e. operator W such that n ∈ W F ⇐⇒
ψ(F, n). We can then build the computable tree Tn = {σ ∈ N<N : n 6∈
W σ}, and we have that ψ(F, n) holds if and only if F is not a path
through Tn. A Π0

1 class is a set of the form {F ∈ NN : ψ(F )} for some
Π0

1 formula ψ(F ). The observation above shows how every Π0
1 class is

of the form [T ] for some computable tree T ⊆ N<N.



Notation and Conventions from Part I

Knowledge of [Part 1] is not necessary to read this book. However,
there are some basic notations and concepts developed at the begin-
ning of [Part 1] that we will review here. Most of these concepts are
carefully developed in [Part 1, Chapter I]. Here we review them rather
quickly.

Presentations

All the structures we consider are countable. So, unless otherwise
stated, “structure” means “countable structure.” Furthermore, we usu-
ally assume that the domains of our structures are subsets of N. This
will allow us to have everything we already know about computable
functions on N at our disposal.

Definition .1. An ω-presentation is nothing more than a structure
whose domain is N. Given a τ -structure A, when we refer to an ω-
presentation of A or to a copy of A, we mean an ω-presentation M
that is isomorphic to A. An ω-presentation M is computable if all its
relations, functions, and constants are uniformly computable; that is,
if the set τM, defined as

τM =
⊕
i∈IR

RMi ⊕
⊕
i∈IF

FMi ⊕
⊕
i∈IC

{cMi }, (1)

is computable.

Atomic diagrams

Another standard way of defining when an ω-presentation is com-
putable is via its atomic diagram. Let {ϕat

i : i ∈ N} be an effective
enumeration of all atomic τ -formulas with free variables from the set
{x0, x1, ...}. (An atomic τ -formula is one of the form R(t1, ..., ta), where
R is either “=” or Rj for j ∈ IR, and each ti is a term built out of the
function, constant, and variable symbols.)

xxi
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Definition .2. The atomic diagram of an ω-presentationM is the
infinite binary string D(M) ∈ 2N defined by

D(M)(i) =

{
1 if M |= ϕat

i [xj 7→ j : j ∈ N]

0 otherwise.

It is not hard to see that D(M) and τM are Turing equivalent.
We will often treat the ω-presentation M, the real τM, and the real
D(M) as the same thing. For instance, we define the Turing degree
of the ω-presentation M to be the Turing degree of D(M). When we
say that M is computable from a set X, that a set X is computable
from M, that M is ∆0

2, that M is arithmetic, that M is low, etc., we
always mean D(M) instead of M.

Relaxing the domain

In many cases, it will be useful to consider structures whose domain
is a subset of N. We call those (⊆ω)-presentations. If M , the domain
of M, is a proper subset of N, we can still define D(M) by letting
D(M)(i) = 0 if ϕat

i mentions a variable xj with j 6∈ M . In this case,
we have

D(M) ≡T M ⊕ τM.
To see that D(M) computes M , notice that, for j ∈ N, j ∈ M if and
only if D(M)(pxj = xjq) = 1, where pϕq is the index of the atomic
formula ϕ in the enumeration {ϕat

i : i ∈ N}.
The following observation will simplify many of our constructions

later on.

Observation .3. We can always associate to an infinite (⊆ω)-
presentationM an isomorphic ω-presentation A: If M = {m0 < m1 <
m2 < · · · } ⊆ N, we can use the bijection i 7→ mi : N → M to get a
copy A of M, now with domain N. Since this bijection is computable
in M , it is not hard to see that D(A) ≤T D(M), and furthermore that
D(A)⊕M ≡T D(M).

One of the advantages of (⊆ω)-presentations is that they allow us
to present finite structures.

Relational vocabularies

A vocabulary is relational if it has no function or constant symbols
and has only relational symbols. Every vocabulary τ can be made
into a relational one, τ̃ , by replacing each n-ary function symbol by an
(n+ 1)-ary relation symbol coding the graph of the function and each
constant symbol by a 1-ary relation symbol coding it as a singleton.
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Depending on the situation, this change in vocabulary might be more or
less significant. For instance, the class of quantifier-free definable sets
changes, but the class of ∃-definable sets does not (see Exercise [Part
1, Exercise ??]). For most computational properties, this change is
nonessential; for instance, if M is an ω-presentation of a τ -structure,

and M̃ is the associated ω-presentation of M as a τ̃ -structure, then

D(M) ≡T D(M̃) (as it follows from [Part 1, Exercise ??]). Because
of this, and for the sake of simplicity, we will often restrict ourselves to
relational vocabularies.

Diagrams of tuples

When dealing with an infinite vocabulary, we sometimes need to
approximate it using finite sub-vocabularies. We assume that all com-
putable vocabularies τ come with an associated effective approximation
τ0 ⊆ τ1 ⊆ · · · ⊆ τ , where each τs is finite, and τ =

⋃
s τs. In general

and unless otherwise stated, we let τs consist of the first s relation,
constant and function symbols in τ , but in some particular cases, we
might prefer other approximations. For instance, if τ is already finite,
we usually prefer to let τs = τ for all s.

As a convention, when we enumerate the atomic formulas as {ϕat

i :
i ∈ N} we do it an way that for each s, the τs-atomic formulas on
the variables {x0, ..., xs−1} are listed before the rest; that is, they are
ϕat

0 , ..., ϕ
at

`s−1 for some `s ∈ N.
As a useful technical device, we define the atomic diagram of a

finite tuple as the finite binary sequence that encodes the set of atomic
formulas that are true of the tuple restricted to the smaller vocabulary.
We assume that τ is relational.

Definition .4. LetM be a τ -structure and let ā = 〈a0, ..., as−1〉 ∈
M s. We define the atomic diagram of ā in M, denoted DM(ā), as the
string in 2`s such that

DM(ā)(i) =

{
1 if M |= ϕat

i [xj 7→ aj, j < s],

0 otherwise.

Observation .5. For every σ ∈ 2<N and every s with `s ≥ |σ|,
there is a quantifier-free τ -formula ϕat

σ (x0, ..., xs−1) such that

A |= ϕ
at

σ (ā) ⇐⇒ σ ⊆ DA(ā)
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for every τ -structure A and tuple ā ∈ As, namely

ϕ
at

σ (x̄) ≡

 ∧
i<|σ|,σ(i)=1

ϕ
at

i (x̄)

 ∧
 ∧
i<|σ|,σ(i)=0

¬ϕat

i (x̄)

 .

Congruence structures

It will often be useful to consider structures where equality is in-
terpreted by an equivalence relation. A congruence τ -structure is a
structure M = (M ; =M, {RMi : i ∈ IR}, {fMi : i ∈ IF}, {cMi : i ∈ IC}),
where =M is an equivalence relation on M , and the interpretations of
all the τ -symbols are invariant under =M (that is, if ā =M b̄, then
ā ∈ RMi ⇐⇒ b̄ ∈ RMi and fMj (ā) =M fj(b̄) for all relation symbols Ri

and function symbols fj). If M = N, we say that M is a congruence
ω-presentation. We can then define D(M) exactly as in Definition .2,
using =M to interpret equality.

Given a congruence τ -structure, one can always take the quotient
M/=M and get a τ -structure where equality is the standard N-equality.
To highlight the difference, we will sometimes use the term injective
ω-presentations when equality is N-equality.

Lemma .6. Given a congruence ω-presentation M with infinitely
many equivalence classes, the quotient M/=M has an injective ω-
presentation A computable from D(M). Furthermore, the natural pro-
jection M→A is also computable from D(M).

See [Part 1, Lemma I.11] for a proof.
It follows that from a computational point of view, there is no real

difference in considering congruence structures or injective structures.

Enumerations

Assume τ is a relational vocabulary. An enumeration of a structure
M is just an onto map g : N→ M . To each such enumeration we can
associate a congruence ω-presentation g−1(M) by taking the pull-back
of M through g:

g−1(M) = (N;∼, {Rg−1(M)
i : i ∈ IR}),

where a ∼ b ⇐⇒ g(a) = g(b) and R
g−1(M)
i = g−1(RMi ) ⊆ Na(i). The

assumption that τ is relational was used here so that the pull-backs
of functions and constants are not multi-valued. Let us remark that if
g is injective, then ∼ becomes =N, and hence g−1(M) is an injective
ω-presentation. In this case, the assumption that τ is relational is not
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important, as we can always pull-back functions and constants through
bijections.

It is not hard to see that

D(g−1(M)) ≤T g ⊕D(M).

Furthermore, D(g−1(M)) ≤T g ⊕ τM, where τM is as in Definition .1.
Throughout the book, there will be many constructions in which

we need to build a copy of a given structure with certain properties. In
most cases, we will do it by building an enumeration of the structure
and then taking the pull-back. The following observation will allow us
to approximate the atomic diagram of the pull-back, and we will use it
countless times.

Observation .7. Let g be an enumeration of M. Notice that for
every tuple ā ∈M<N,

Dg−1(M)(ā) = DM(g(ā)).

Suppose that g was defined as
⋃
s∈N σs where σ0 ⊆ σ1 ⊆ σ2 ⊂ · · · are

tuples of elements of M . Then Dg−1(M)(〈0, ..., |σk| − 1〉) = DM(σk),
and the diagram of the pull-back can be calculated in terms of the
diagrams of tuples in M as follows:

D(g−1(M)) =
⋃
k∈N

DM(σk).





CHAPTER I

Ordinals

The ordinal numbers were introduced by Cantor in 1883 with the
intention of extending the iteration of his derivative process beyond just
the finite steps. They turned out to have a beautiful structure that we
describe in this chapter. Ordinal numbers extend the natural numbers
to the transfinite and allow us to define complexity classes beyond the
arithmetic. A set is said to be arithmetic if it can be defined within
arithmetic, that is, within the structure (N; 0, 1,+,×,≤). The first
step to go beyond the arithmetic is to extend arithmetic.

The first couple sections describe the elementary properties of or-
dinals and well-founded partial orderings. Even if this is basic back-
ground for most readers, it is so important for the rest of the text-
book that we had to include it. We recommend the reader to skim
through the statements as there might be some interesting lemma here
or there. We then turn into complexity issues in Section I.3 and define
computable ordinals in Section I.4.

I.1. Well-orderings

We start with a very quick introduction to ordinals and their prop-
erties. The first half of this section can be found in most basic logic
textbooks; the second half, which is about ordinal exponentiation, not
as much.

Definition I.1. We say that a linear ordering is well-ordered if it
has no infinite descending sequences.

Equivalently, a linear ordering is well-ordered if every subset has a
least element: If a subset has no least element, one can easily define
an infinite descending sequence inside the set, and if we are given an
infinite descending sequence, its elements form a set which has no least
element.

In this book, we use the word ordinal to refer to the isomorphism
type of a well-ordering.∗

∗By isomorphism type we mean an equivalence class under the equivalence
relation given by isomorphism. In the case of linear orderings, isomorphism types
are often called order types.

1
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All finite orderings are well-ordered. We use the number n to rep-
resent the linear ordering of size n. The first infinite ordinal is ω, which
corresponds to the order on the natural numbers (N;≤). Next come

ω + 1, ω + 2, ..., ω + ω, ω2 + 1, ..., ω3, ..., ω · ω, ..., ω3, ..., ωω, ..., ωω
ω

, ...

Exercise I.2. Consider N[x], the set of polynomials with coeffi-
cients in N. Order N[x] as follows: p ≤ q if limx→∞ q(x) − p(x) ≥ 0.
Prove that (N[x];≤) is a well-ordering.

Let LO denote the class of (⊆ω)-presentations of linear orderings.†

Let WO denote the class of (⊆ω)-presentations of well-orderings. One
way to represent the set of countable ordinals is as the quotient WO/∼=.
We often abuse notation and refer to an ordinal when we actually mean
a particular (⊆ω)-presentation of that ordinal instead of an equivalence
class of (⊆ω)-presentations.

We start by proving the three main properties of well-orderings:
transfinite induction, transfinite recursion, and comparability. We need
the following notation: Given a partial ordering P = (P ;≤P ) and
a ∈ P , we use P<a to denote the sub-ordering of P with domain P<a =
{x ∈ P : x <P a}.

Theorem I.3 (Transfinite induction). LetW = (W ;≤W ) be a well-
ordering and I a subset of W that satisfies that, for every a ∈ W , if
W<a ⊆ I, then a ∈ I. Then I = W .

Proof. If I 6= W , the set W r I has a minimal element. Call it a.
It satisfies that W<a ⊆ I while a 6∈ I, contradicting the hypothesis. �

Theorem I.4 (Transfinite recursion). LetW = (W ;≤W ) be a well-
ordering, X be any set, and Ψ be an operator that, given a ∈ W and a
function W<a → X, outputs an element of X. Then there is a unique
total function g : W → X such that

g(a) = Ψ(a, g �W<a) for every a ∈ W .

Proof. Let C be the class of all functions g whose domain is a
downward-closed subset of W and which satisfy

g(a) = Ψ(a, g �W<a) for every a ∈ dom(g). (2)

First, we claim that if f, g ∈ C, then f and g coincide on their common
domain: If not, let a ∈ dom(f) ∩ dom(g) be a minimal element such
that f(a) 6= g(a). By the minimality of a, f � W<a = g � W<a, and

†Recall that an (⊆ω)-presentations is a structure whose domain is a subset of
ω. We use (⊆ω)-presentations instead of plain old ω-presentations because we want
to allow for finite linear orderings.
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hence f(a) = Ψ(a, f �W<a) = Ψ(a, g �W<a) = g(a), contradicting our
choice of a.

Now, since all the functions in C are compatible, their union g =
⋃
C

is also a function, given by g(a) = b if there is some f ∈ C with f(a) = b.
It is easy to see that g is itself a member of C.

Last, we claim that the domain of g is the whole of W . If not,
let a be a minimal element outside the domain of g. Define a new
function f : dom(g) ∪ {a} → X by copying g on dom(g), and letting
f(a) = Ψ(a, g). This new function clearly belongs to C but it has larger
domain than g, contradicting the maximality of g in C. �

Observation I.5. There is no one-to-one order-preserving function
from an ordinal to a proper initial segment of itself: To see this, suppose
towards a contradiction that f is a one-to-one order-preserving function
from an ordinal α to α<a for some a ∈ α. We claim that then, the
sequence a, f(a), f(f(a)), ... would be an infinite descending sequence in
α, which would contradict the well-orderness of α. To see this, we first
note that a > f(a) just because f(a) ∈ α<a. Using that f preserves
order, we then get that f(a) > f(f(a)) and then by induction that
fn(a) > fn+1(a).

Theorem I.6. Given two well-orderings α and β, we have one of
the following three exclusive possibilities:

• α and β are isomorphic.
• α is isomorphic to β<b for some b ∈ β.
• β is isomorphic to α<a for some a ∈ α.

Proof. To see that the possibilities are mutually exclusive, notice
that if two of them were true, we could compose the isomorphisms and
get either that α is isomorphic to a proper initial segment of itself or
that β is isomorphic to a proper initial segment of itself. Either way,
we find a contradiction with the previous observation.

To prove that one of these isomorphisms exists, we start by defining
a partial function g : α ⇀ β as follows: Given a ∈ α, let g(a) be the
b ∈ β such that α<a ∼= β<b if it exists, and let g(a) be undefined if
it does not. Note that there can be at most one such b, as otherwise
we would get β<b0

∼= β<b1 for b0 6= b1, contradicting the observation
above. Also, note that g is injective and order preserving, as if we had
a0 < a1 with g(a0) ≥ g(a1), we could again compose the isomorphisms
and contradict the observation above. A key observation is that the
domain of g is an initial segment of α, as if c < a and a ∈ dom(g), then
if f is the isomorphism α<a ∼= β<g(a), we get that α<c ∼= β<f(c), and
hence g(c) is defined and equals f(c). A symmetric argument shows
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that the range of g is also an initial segment of β. We now claim that
either the domain of g is the whole of α, the range of g is the whole of
β, or both. Otherwise, let a be the least element in α not in the domain
of g and let b be the least element in β not in the range of g. Then
g is an isomorphism from α<a to β<b, and we should have g(a) = b,
contradicting our choice of a and b.

There are now three cases: If dom(g) = α and ran(g) = β, then g
is an isomorphism from α to β; If dom(g) = α but ran(g) ( β and b is
the least element of βrran(g), then g is an isomorphism from α to β<b;
If dom(g) ( α, ran(g) = β, and a is the least element of α r dom(g),
then g is an isomorphism from α<a to β. �

Corollary I.7. If there is an order-preserving embedding from α
to β, then there is an embedding from α to β whose image is an initial
segment of β.

Proof. If there is an order preserving embedding from α to β,
then the third case of the theorem cannot be the case, as we would end
up with an embedding from α to α<a for some a ∈ α, which we know
cannot happen. �

Given linear orderings A and B, we use A 4 B to denote that there
exists an embedding from A to B. We have proved that the embed-
dability relation on ordinals is linear. Define ω1 as the quotient of WO,
the class of (⊆ω)-presentations of well-orderings, over the isomorphism
relation ordered by embeddability. That is,

ω1 = (WO/∼=;4).

If α ∈ ω1, it follows from the theorem above that ω1<α
∼= α. Thus,

all countable well-orderings are proper initial segments of ω1, and all
proper initial segments of ω1 are countable well-orderings. A descend-
ing sequence in ω1 would be a descending sequence in some α ∈ ω1.
Thus, ω1 is itself well-ordered. Since no well-ordering is isomorphic to
a proper initial segment of itself, it follows that ω1 is not a countable
well-ordering: It is the first uncountable ordinal.

For every ordinal α we can form a new ordinal by adding an element
on top. We call this new ordinal the successor of α, and we denote it
by α+ 1. Non-zero ordinals that are not successors of another ordinals
are said to be limit ordinals.

The operations of addition and multiplication on ω1 are just the
addition and multiplication of linear orderings defined on page xix.
One can prove that if A and B are well-orders, then so are A+ B and
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A × B. We know that those operations coincide with addition and
multiplication on natural numbers when A and B are finite.

These operations are not commutative: 1 + ω ∼= ω 6∼= ω + 1, and
2×ω ∼= ω 6∼= ω+ω ∼= ω×2. They are associative, they have identities —
0 and 1 respectively — and left multiplication distributes over addition.
Right multiplication does not distribute over addition: (1 + 1)×ω ∼= ω
while 1 × ω + 1 × ω ∼= ω + ω. Addition and multiplication are order
preserving: If α0 ≤ α1 and β0 ≤ β1, then α0 + β0 ≤ α1 + β1 and
α0 × β0 ≤ α1 × β1. They are strict-order preserving on the right: If
β0 < β1, then α + β0 < α + β1 and α× β0 < α× β1.

We will often write α · β, and sometimes even αβ, for α× β.
On ordinals we have right subtraction: Given ordinals α < β, there

is a unique γ satisfying α + γ = β. To see this, let b ∈ β be such
that α ∼= β<b and let γ ∼= β≥b. Uniqueness follows from the fact that
addition preserves strict-order on the right. We also have left division
with remainder: Given ordinals ν and δ > 0, there exist unique ordinals
π ≤ ν and ρ < δ such that ν = δ × π + ρ. To see this, note that either
δ× ν ∼= ν or δ× ν � ν. In the former case, let π = ν and ρ = 0. In the
latter case, let (d, n) ∈ δ × ν be such that (δ × ν)<(d,n)

∼= ν, and then
let π = ν<n and ρ = δ<d. Uniqueness again follows from the fact that
addition and multiplication preserve strict-order on the right.

We can also consider the addition of infinitely many linear order-
ings: Given a list of linear orderings Ai for i ∈ L, where L is also
linearly ordered, we define

∑
i∈LAi to be the concatenation of the Ai’s

according to L. That is, as domain use the disjoint union of the Ai’s,
and let a ≤ b for a ∈ Ai and b ∈ Aj if either i <L j, or i = j and
a ≤Ai b. One can prove that if L and all the Ai’s are well-ordered, so
is
∑

i∈LAi.
Another important operation is the supremum. Given a countable

set {Ai : i ∈ N} of countable well-orderings, we let supiAi be the least
upper bound of the Ai’s. To see this exists, notice that we already
know that there is an upper bound, namely

∑
i∈NAi, and since ω1 is

well-ordered, there must be a least upper bound.

I.1.1. Exponentiation. We will use ordinal exponentiation ex-
tensively throughout this book. It can be defined either by transfinite
recursion or by a direct construction on linear orderings. We give both
definitions.

An order-preserving function f : ω1 → ω1 is said to be continuous
if, for every limit ordinal λ,

f(λ) = sup
β<λ

f(β).
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The reader can verify that addition and multiplication are both con-
tinuous on their second input. That is, if we fix an ordinal α, then for
every limit ordinal λ,

• α + λ = supβ<λ α + β.
• α× λ = supβ<λ α× β.

One could use these properties to define addition and multiplication
using recursion instead of a direct construction as above. These for-
mulas would be used for the limit case, and, at the successor cases, we
would use the following formulas:

• α + (β + 1) = (α + β) + 1
• α× (β + 1) = (α× β) + α.

In a similar fashion, one can define exponentiation by recursion:

• α0 = 1,
• αβ+1 = αβ × α, and
• αλ = supγ<λ α

γ for λ limit.

Alternatively, we could write these three equations in one that works
for all α and β:

αβ = sup{αγ × α : γ < β}.
It is not hard to see that exponentiation is order preserving on both

inputs and is continuous on its second input.
Recall that the base-b expansion of a natural number m is a se-

quence of numbers n0, ..., nk between 0 and b − 1 such that m =
bk · n0 + · · ·+ b · n1 + n0. The same is true for ordinals:

Lemma I.8. Fix an ordinal β. For every ordinal µ, there are ordi-
nals α0 > α1 > · · · > αk and ν0, ..., νk < β such that

µ = βα0 · ν0 + βα1 · ν1 + · · ·+ βαk · νk.
Furthermore, k, α0, ..., αk, ν0, ..., νk are uniquely determined from β and
µ.

Proof. We use transfinite induction on µ and assume such a unique
decomposition exists for all ρ < µ. If µ had such a decomposition, the
first thing to observe is that βα1 · ν1 + · · · + βαk · νk < βα0 , which can
be easily proved by induction on k. We must then have

βα0 ≤ βα0 · ν0 ≤ µ < βα0 · (ν0 + 1) < βα0+1.

From this, we first observe that α0 must be the supremum of all the
α’s with βα ≤ µ. Second, that there is then a unique possible value for
ν0: Using left-division with reminder, we can find ν0 and ρ < βα0 such
that

µ = βα0 · ν0 + ρ.
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Since βα0 × β = βα+1 > µ, we must have ν0 < β. Since ρ < βα0 ≤ µ,
by the induction hypothesis, we can write ρ uniquely as

ρ = βα1 · ν1 + · · ·+ βαk · νk.

Putting these last two equations together, we get the decomposition of
µ we were looking for. Note that α1 < α0, as βα1 ≤ ρ < βα0 . �

The preferred base when dealing with ordinals is, of course, ω. In
the case when β = ω, this decomposition of µ is called the Cantor
normal form of µ.

One can use the base-β decomposition of the elements of βα to give
an order-theoretic and more constructive definition of exponentiation.
Given linear orderings A and B, where B has an element designated as
0B, we define a new linear ordering BA as follows: We let the domain
of BA be the set of all functions from A to B of finite support, i.e.
equal to 0B in all but finitely many inputs. We define an ordering on
BA as follows: Given two different functions, f, g : A → B with finite
support, we let f <BA g if and only if, for the A-greatest a ∈ A with
f(a) 6= g(a), we have f(a) <B g(a).

When A and B are presentations of ordinals α and β with 0B being
the least element of B, one can prove that BA has the same order type
as the ordinal βα we defined above. In this isomorphism, a function
f : A → B with finite support corresponds to the element of βα given
by ∑

a∈α∗
f(a)6=0B

βa · f(a),

where α∗ is the inverse order of α. Since almost all the values of
f(a) are zero, the summation above is a finite sum. We sum over the
inverse order of α because we put the terms corresponding to higher
exponents to the left and lower exponents to the right. That is, if
{a ∈ A : f(a) 6= 0B} = {a0 > a1 > · · · > ak}, then∑

a∈A∗
βa · f(a) = βa0 · f(a0) + βa1 · f(a1) + · · ·+ βak · f(ak).

Exponentiation on linear orderings satisfies the usual properties of
exponentiation of real numbers:

BC+D ∼= BC × BD and BC×D ∼= (BC)D.

We leave the verification of these properties to the reader.

Observation I.9. If A is a computable linear ordering, using these
functions of finite support, we get a computable ω-presentation of ωA.
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Furthermore, the operation of addition is computable in ωA, indepen-
dently of whether addition was or was not computable in A. If A
has a least element 0A, then ω0A is the second least element of ωA,
which we call 1ωA . We also get a computable successor operator and a
computable way of deciding if a member of ωA is limit or successor.

Observation I.10. Let us consider the particular case where A
has no least element, just for a minute. In this case, one can show
that BA is dense and has no endpoints, and thus is isomorphic to the
rationals (Exercise I.13). In general, every linear ordering A can be
decomposed as AWO + AIO where AWO is well-ordered and AIO has
no least element. We then get that BA ∼= BAWF ×Q.

Exercise I.11. Prove that the well-ordering from Exercise I.2 is
isomorphic to ωω.

Exercise I.12. Prove that if f : ω1 → ω1 is order preserving and
continuous, it has uncountably many fixed points.

Exercise I.13. Prove that if A has no least element, BA is dense
and has no endpoints.

Exercise I.14. A linear ordering that will appear often in examples
is Zα for ordinal α.

(a) Prove that any two elements of Zα are automorphic.
(b) Prove that if a linear ordering L satisfies that any two elements

are automorphic, then it must be isomorphic to ZA for some linear
ordering A. See the hint in footnote.‡

I.2. Well-foundedness

We now move to well-founded partial orderings, which we will also
use extensively throughout the book. Again, the first half of this section
can be found in most basic logic textbooks, though the second half not
as much.

Definition I.15. We say that a partial ordering is well-founded
if it has no infinite descending sequences. Otherwise, we say it is ill-
founded. A tree T ⊆ N<N is well-founded if it has no infinite paths, or
equivalently, if (T ;⊇) is a well-founded partial ordering. (Notice the
order in (T ;⊇) is reverse inclusion, with the root sitting on top.)

‡For each element ` of L, consider the supremum of the ordinals α such that
` belongs to a segment isomorphic to Zα. Then, consider the quotient of L over
these segments.
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It is not hard to see that a partial ordering is well-founded if and
only if every subset has a minimal element, that is, an element with no
other element from the subset below it.

Well-founded partial orderings do not behave as neatly as ordinals.
However, some useful properties still hold. The induction and recur-
sion principles can be proved for well-founded partial orderings using
exactly the same proofs we used for transfinite induction and transfinite
recursion on page 2.

Theorem I.16 (Well-founded induction). Let P = (P ;≤P ) be a
well-founded partial ordering and I a subset of P that satisfies that, for
every a ∈ P , if P<a ⊆ I, then a ∈ I. Then I = P .

Theorem I.17 (Well-founded recursion). Let P = (P ;≤P ) be a
well-founded partial ordering, X any set, and Ψ an operator that, given
a ∈ P and a function P<a → X, outputs an element of X. Then there
is a unique total function g : P → X such that

g(a) = Ψ(a, g � P<a) for every a ∈ P .

We will assign to each well-founded partial ordering a rank, which is
an ordinal that in some sense measures its well-foundedness. We start
by assigning a rank to each element of a partial ordering as follows:
All the minimal elements in a partial ordering get rank 0. Among
the remaining elements, the minimal ones get rank 1. Among the
remaining elements, the minimal ones get rank 2, and so on and so
forth, continuing throughout the ordinals. An element that is never§

reached through this process gets rank ∞. Here is a more formal
definition.

Definition I.18. For technical convenience, we let∞ be a symbol
for an element that we think of as larger than all ordinals. Also, for
technical convenience, we let ∞ satisfy ∞+ 1 =∞ and ∞ <∞. The
well-founded part WF(P) of a partial ordering P is the set of p ∈ P for
which P<p is well-founded.

We define the rank function rkP : P → ω1 ∪ {∞} as follows: All
elements in the ill-founded part of P , namely P rWF(P), are assigned
rank ∞. On WF(P), the rank function is defined by well-founded
recursion:

rkP(p) = sup{rkP(q) + 1 : q ∈ P, q <P p}.

§In this context, the informal word ‘never’ means not even after α many steps
for any ordinal α.
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We then define rk(P) = sup{rkP(q) + 1 : q ∈ P}. When we are
computing ranks of trees, it is customary to let

rk(T ) = rkT (〈〉).
Note that the rank of T as a partial ordering and the rank of T as a
tree are off by one.

Lemma I.19. The rank function on a countable partial ordering P
is the least <-preserving function f : P → ω1 ∪ {∞}.¶

Proof. First, observe that rk is indeed <-preserving, which is im-
mediate from the definition.

Suppose f : P → ω1∪{∞} is <-preserving. If p ∈ PrWF(P), then
f(p) must be ∞, as if p >P p1 >P p2 >P · · · , is an infinite descending
sequence, then so is f(p) > f(p1) > f(p2) > · · · which could only
happen if f(p) = f(p1) = · · · =∞. We now use well-founded induction
to show that rkP(p) ≤ f(p) for all p ∈WF(P):

rkP(p) = sup{rkP(q) + 1 : q ∈ P, q <P p}
≤ sup{f(q) + 1 : q ∈ P, q <P p}
≤ f(p).

The second line follows from the induction hypothesis, and the third
line from the fact that f is <-preserving. �

Corollary I.20. Let P and Q be partial orderings. If there exists
a <-preserving map f : P → Q, then rk(P) ≤ rk(Q).

Proof. The composition rkQ ◦f : P → ω1 ∪ {∞} is <-preserving.
From the previous lemma we get that, for all p ∈ P , rkP(p) ≤ rkQ(f(p)).
It follows that

rk(P) = sup{rkP(p) + 1 : p ∈ P}
≤ sup{rkQ(f(p)) + 1 : p ∈ P}

≤ sup{rkP(q) + 1 : q ∈ Q} = rk(Q). �

In the case of trees we also get the converse.

Lemma I.21. Let T, S ⊆ N<N be trees. Then rk(T ) ≤ rk(S) if and
only if there exists a (-preserving map f : T → S.

Proof. The (⇐) direction follows from the previous lemma. Sup-
pose now that rk(T ) ≤ rk(S), and hence rkT (〈〉) ≤ rkS(〈〉). We build a
(-preserving map f : T → S defining f(τ) by recursion on the length

¶A map f : P → Q is <-preserving if whenever x <P y, f(x) <Q f(y). Such
maps need not be one-to-one.
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|τ | of the string τ . At each step, we make sure that rkT (τ) ≤ rkS(f(τ)).
Start by letting f(〈〉) = 〈〉. Suppose that we have already defined f(τ)
and we want to define f(σ) for a child σ of τ . Since rkT (σ) < rkT (τ) ≤
rkS(f(τ)) and rkS(f(τ)) = sup{rkS(γ) + 1 : γ ∈ S, γ ) f(τ)}, there
must exist a child γ of f(τ) with rkS(γ) ≥ rkT (σ). Define f(σ) to be
one of those γ’s. �

I.3. Well-foundedness versus well-orderness

Let us examine complexity. In this section, we show that deciding
whether a linear ordering is well-ordered is as hard as deciding whether
a partial ordering is well-founded, or deciding whether a tree is well-
founded. The ideas in the proofs, which require building one type of
object from another, will be useful throughout the book.

Definition I.22. Given classes of reals A0 ⊆ B0 ⊆ NN and A1 ⊆
B1 ⊆ NN, we say that A0 effectively Wadge-reduces to A1 within B0

and B1 if there is a computable operator Φ: B0 → B1 such that

X ∈ A0 ⇐⇒ Φ(X) ∈ A1

for all X ∈ B0. Two classes are effectively Wadge-equivalent if they
reduce to each other.

Theorem I.23. The following classes are effectively Wadge-equivalent:

(1) The class of well-orderings within the class of linear orderings.
(2) The class of well-founded partial orderings within the class of

partial orderings.
(3) The class of well-founded trees within the class of trees (viewed

as subtrees of N<N).

The proof of this theorem requires various lemmas and definitions.
We will finish it on page 13. Let us start with the reduction from trees
to linear orderings.

Definition I.24. The Kleene–Brouwer ordering ≤
KB

is an ordering
on N<N which coincides with the lexicographic ordering on incompa-
rable strings but reverses inclusion on comparable strings: That is, for
σ, τ ∈ N<N, σ ≤

KB
τ if either σ ⊇ τ , or σ(i) < τ(i) for the least i with

σ(i) 6= τ(i).

Note that ≤
KB

linearly orders N<N.

Exercise I.25. Show that (N<N;≤
KB

) has the same order type as
Q ∩ (0, 1].
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When we refer to the Kleene–Brouwer ordering of a tree T ⊆ N<N,
we mean the linear ordering KB(T ) = (T ;≤

KB
). Notice that

(T ;≤
KB

) = (T0;≤
KB

) + (T1;≤
KB

) + (T2;≤
KB

) + · · ·+ {〈〉},
where Tn = {σ ∈ N<N : naσ ∈ T}.

The following theorem gives us the reduction from trees to linear
orderings we need:

Theorem I.26. A tree T ⊆ N<N is well-founded if and only if
(T ;≤

KB
) is well-ordered.

Proof. If T is not well-founded, then a path through T is also a
descending sequence on (T ;≤

KB
).

Suppose now that (T ;≤
KB

) is not well-ordered and that σ0 ≥KB

σ1 ≥KB σ2 ≥KB · · · is an infinite ≤
KB

-descending sequence in T ; We
claim that f ∈ N≤N, defined by f(n) = limi→∞ σi(n), is actually defined
for all n ∈ N and is a path through T . The proof that this limit exists
is by induction on n. Suppose that limi→∞ σi(m) exists for all m < n,
and hence that f � n is defined and belongs to T . Let s be a stage
at which all these values have reached their limits. That is, s is such
that, σt � n = σs � n for all t > s. Note that then f � n = σs � n ∈ T .
Since σs ≥KB σs+1 ≥KB · · · , we must have σs(n) ≥ σs+1(n) ≥ · · · . This
non-increasing sequence of natural numbers must eventually stabilize
and reach a limit. It follows that f(n) is defined and that f �n+1 ∈ T .
Since for every n, f � n ∈ T , f is a path through T . �

Exercise I.27. (a) Prove that for every well-founded tree T

rk(T ) + 1 ≤ KB(T ) ≤ ωrk(T ) + 1.

(b) Prove that, for every ordinal α > 0, there is a tree S with
rk(S) = α and KB(S) ∼= ωα + 1. See hint in footnote.‖

To reduce well-founded partial orderings to well-founded trees, we
consider the tree of descending sequences: Given an ω-presentation of
a partial ordering P = (P ;≤), let

TP = {σ ∈ P<N : σ(0) >P σ(1) >P · · · >P σ(|σ| − 1)}.
It is easy to see that TP is a tree and that it has an infinite path if and
only if P has an infinite descending sequence.

Observation I.28. The rank of the tree of descending sequences
of a partial ordering P is the same as the rank of P . The proof is, of
course, by well-founded induction. One needs to show that, for each

‖Repeat each branch infinitely often.
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p ∈ P , if σ ∈ TP is a string whose last element is p, then rkT (σ) =
rkP(p). The reason is that

rkT (σ) = sup
q<Pp

(rkT (σaq) + 1) = sup
q<Pp

(rkP(q) + 1) = rkP(p).

In particular, the rank of the tree of descending sequences of an ordinal
α is α.

Proof of Theorem I.23. The class of well-founded trees effec-
tively Wadge-reduces to the class of well-orderings via the Kleene-
Brouwer ordering as in Theorem I.26. The class of well-orderings effec-
tively Wadge-reduces to the class of well-founded partial orderings via
the inclusion map. The class of well-founded partial orderings effec-
tively Wadge-reduces to the class of well-founded trees via the tree of
descending sequences as in the paragraph above. All these reductions
stay within the classes of trees, linear orderings, and partial orderings,
respectively. �

Theorem I.23 holds the same way if, instead of considering (⊆ω)-
presentations, we consider indices for computable (⊆ω)-presentations.
That is, the sets

• {e ∈ N : Φe is the atomic diagram of a well-ordered linear
ordering},
• {e ∈ N : Φe is the atomic diagram of a well-founded partial

ordering}, and
• {e ∈ N : Φe is the characteristic function of a well-founded

subtree of N<N},
are m-equivalent. This is an important m-degree, which we will call
Kleene’s O. Before defining Kleene’s O formally as a set, the following
lemma specifies an indexing of linear orderings that is slightly nicer
than the usual one. This is just a technicality that will simplify our
notation later. The objective of this technicality is not to have to
worry about whether a number is an index for a linear ordering or not
later. Essentially, we will let Le be the linear ordering computed by
the Turing functional Φe. For the numbers e for which Φe is not the
diagram of a linear ordering, we still want Le to be a linear ordering, as
this will simplify our constructions and definitions. For this, we need
to modify the definition of Le just a tiny bit.

Lemma I.29. There is a computable sequence {Le : e ∈ N} of com-
putable (⊆ω)-presentations of linear orderings such that, if Φe happens
to be the diagram of a (⊆ω)-presentation of a linear ordering, then Le
is computably isomorphic to that linear ordering.
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Proof. For each e, we first build a finite approximation Ae,0 ⊆
Ae,1 ⊆ · · · to the linear ordering with diagram Φe. Let Ae,s be the
largest linear ordering whose domain is an initial segment of N for
which D(Ae,s), as a finite binary string, is contained in Φe,s, the step s
approximation to Φe. (I.e., for all i < |D(Ae,s)|, Φe,s(i) ↓= D(Ae,s)(i).)
The limit of the sequence Ae,0 ⊆ Ae,1 ⊆ · · · is a linear ordering with
diagram Φe. Notice that even if Φe is not the diagram of a linear
ordering, this limit is still a linear ordering. The only obstacle to
building an ω-presentation of

⋃
sAe,s is that the sequence may stabilize

and we might never know it. We thus define Le as a (⊆ω)-presentation
of this limit by letting the domain of Le be

⋃
s∈N({s}×(Ae,s r Ae,s−1)).

This is a computable set computably isomorphic to
⋃
sAe,s. �

Definition I.30. We define Owo as the index set of the computable
well-orderings according to the indexing of the previous lemma. That
is,

Owo = {e ∈ N : Le is well-ordered}.

The same way, we define O
wf

to be the set of indices for com-
putable well-founded posets. As we mentioned above, these two sets
are m-equivalent. These sets are both m-equivalent to the well-known
Kleene’s O, which is a very important object in the study of the hyper-
arithmetic hierarchy. In this book we will use Owo instead of Kleene’s
old definition of O as we find Owo more natural, more direct, and closer
to intuition. Kleene’s original definition was quite different in format
but similar in spirit. Kleene created his own way of indexing the com-
putable well-orders and then defined O to be this set of indices. His
definition has a computable successor and limit relations, though as we
will see soon enough, this does not make a big difference.

Exercise I.31. Show that Owo is m-equivalent to the set of indices
e for which Φe is total and is the diagram of a (⊆ω)-presentation of a
well-ordering.

Exercise I.32. Show thatOwo is m-equivalent to the set of indices e
for which there is no infinite sequence 〈an : n ∈ N〉 such that Φe(an+1) =
an for all n ∈ N.

Let us observe that the use of (⊆ω)-presentations instead of the
nicer ω-presentations is just to allow for finite linear orderings. This
choice is of course not essential, and other choices would have been
equally good, as for instance using congruence ω-presentations. The
reader should not put much emphasis on this, as it distracts from the
main underlying ideas.
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I.4. Computable Well-orderings

A computable ordinal is an ordinal that has a computable (⊆ω)-
presentation. We will often refer to a computable ordinal α, and mean
a computable (⊆ω)-presentation (A;≤α) of a well-ordering of order
type α. We define

ωCK1

to be the least ordinal without a computable (⊆ω)-presentation. The
‘CK’ stands for ‘Church Kleene.’ ωCK1 is the effective analog of ω1 in
the sense that it is the first ordinal for which there is no effective bijec-
tion between it and ω. Notice that the set of ordinals with computable
(⊆ω)-presentations is closed downwards, as we can always truncate an
(⊆ω)-presentation of a well-ordering. Not all countable ordinals have
computable (⊆ω)-presentations, as there are only countably many com-
putable ordinals and uncountably many countable ordinals. Thus, ωCK1

is a countable ordinal, all ordinals below it are computable, and no or-
dinal above it is.

Let us remark that Owo can compute an ω-presentation of ωCK1 :∗∗

L =
∑
e∈Owo

Le.

Since every ordinal below ωCK1 is isomorphic to some Le, we get that
L ≥ ωCK1 . Every initial segment of L is contained in a finite sum of
Le’s with e ∈ Owo , and hence is computable and below ωCK1 . It follows
that L ∼= ωCK1 .

I.4.1. Effective transfinite recursion. We showed in Theorem
I.4 how to define functions using transfinite recursion, where one is
allowed to use the values of the function at lower ordinals to define the
new value. If the way of computing this new value from the previous
ones is computable, even if we are dealing with an infinite ordinal, the
function we get is also computable.

Let α be a computable well-ordering. Given a ∈ α and e ∈ N, let
e�α<a be an index for the computable function obtained by restricting
the domain of Φe to α<a, that is,

Φe�α<a
(y) =

{
Φe(y) if y ∈ α and y <α a

↑ if y 6∈ α or y ≥α a.

∗∗This is an (⊆ω)-presentation, but, since it is infinite, one can easily make it
into an ω-presentation as in [Part 1, Observation ??].
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Theorem I.33. Let Ψ be a partial computable operator such that,
for every a ∈ α and i ∈ N, if dom(Φi) = α<a, then Ψ(a, i) is defined.
Then, there is an index e for a partial computable function Φe with
domain α such that, for all a ∈ α,

Φe(a) = Ψ(a, e�α<a).

Proof. By the Recursion Theorem, there is an index e for a partial
computable function Φe such that, for all a ∈ α, Φe(a) = Ψ(a, e�α<a),
and, for all a 6∈ α, Φe(a) is undefined.†† We claim that Φe is defined
on every a ∈ α. If not, let b ∈ α be the least element for which
Φe(b) is undefined. Then, Φe is defined everywhere on α<b, and hence
Ψ(b, e�α<b) converges. But then Φe(b) would have to be defined too. �

††Apply the Recursion Theorem as on page xiii to the function f where f(e, n) =
Ψ(n, e�α<n) for n ∈ α and f(e, n) ↑ for n 6∈ α.



CHAPTER II

Infinitary Logic

In this chapter, we introduce the infinitary language Lω1,ω, where
one is allowed to take conjunctions or disjunctions of infinite sets of for-
mulas. Chris Ash was the first to notice that the computable infinitary
language, which we will see in Chapter III, provides the appropriate
syntax to describe computational properties of structures — finitary
first-order logic does not do the job. In this chapter, we introduce the
general theory of infinitary languages. We concentrate on the part of
the theory that deals with countable structures. For a more extensive
development of infinitary logic, we recommend Marker’s recent book
[Mar16].

There is no computability theory in this chapter.

II.1. Definitions

Given a vocabulary τ , the infinitary language Lω1,ω over τ is built
the same way as the finitary language, except that one is allowed to
use infinitary conjunctions and infinitary disjunctions, so long as the
number of free variables remains finite, and the number of conjuncts
or disjuncts is countable:

Definition II.1. Fix a vocabulary τ . Let Lω1,ω be the smallest
class such that:

(1) All finitary quantifier-free τ -formulas are in Lω1,ω.
(2) If ϕ is in Lω1,ω, then so are ∀xϕ and ∃xϕ.
(3) If x̄ is a finite tuple of variables and S ⊆ Lω1,ω is a countable

set of formulas whose free variables are contained in x̄, then
both the infinitary disjunction of the formulas in S, denoted∨∨

ϕ∈S ϕ, and the infinitary conjunction of the formulas in S,

denoted
∧∧

ϕ∈S ϕ, are in Lω1,ω.

Notice that formally, according to this definition, negations occur
only at the level of the finitary quantifier-free formulas. In general, if
we want to take the negation of an Lω1,ω formula, we have to use the De
Morgan laws recursively and bring the negations down to the level of
the atomic formulas. For instance, ¬

∨∨
ϕ∈S ϕ is defined recursively to

17



18 II. INFINITARY LOGIC

be
∧∧

ϕ∈S ¬ϕ. This restriction is not essential, and the only reason for
this convention is that it will simplify the definition of the complexity
hierarchy later on.

In Section III.1, we will see how to represent Lω1,ω formulas as
concrete countable objects, but for now the definition above is good
enough. Given an Lω1,ω formula ϕ(x̄), a structure A, and a tuple
ā ∈ A|x̄|, we should also define what it means for ϕ(x̄) to be satisfied,
to hold, or to be true of a ā in A. We denote this by A |= ϕ(ā). These
definitions are straightforward, and the only reason we will pay more
attention to them in Section III.1 is to study their complexity.

The ‘ω1’ and the ‘ω’ in the notation Lω1,ω come from the following
more general setting. Given cardinals κ and λ, Lκ,λ is the language in
which one can take conjunctions and disjunctions of any size less than
κ, the number of free variables can be of any cardinality less than λ,
and one can have strings of ∀’s or strings of ∃’s of any length less than λ.
Then, for instance, Lω,ω denotes the standard finitary language where
all the disjunctions and conjunctions are finite. In L∞,ω, one allows
conjunctions and disjunctions of any size, but formulas can only have
finitely many free variables. We will only deal with Lω1,ω in this book,
and when we refer to infinitary formulas, we will mean Lω1,ω. Some of
the concepts we introduce can be generalized to uncountable structures
if one uses L∞,ω. In contrast, languages Lκ,λ for λ > ω behave quite
differently and do not have any connection to the material of this book.

II.1.1. Examples. Consider the vocabulary τ = {e, ∗} of groups.
A classical example of a class of structures that is not axiomatizable in
finitary first-order logic is torsion groups. These are groups on which
every element becomes the identity if you multiply it by itself enough
times. That torsion groups are not elementary axiomatizable can be
shown by a simple application of compactness. They are, however,
axiomatizable in Lω1,ω. The following infinitary sentence ϕ says that a
group is a torsion group:

∀x
∨∨
n∈N

x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e.

That is, a group G is a torsion group if and only if G |= ϕ.
Consider now the vocabulary τ = {E} of graphs. Another class that

is not axiomatizable by finitary first-order logic is connected graphs.
The following infinitary sentence says that a graph is connected:

∀x, y
∨∨
n∈N

∃z1, ..., zn
(
xEz1 ∧ z1Ez2 ∧ z2Ez3 ∧ · · · ∧ znEy

)
.



II.1. DEFINITIONS 19

Consider the vocabulary τ = {<} of orderings. Given two points x
and y in a linear ordering, the property of x and y being finitely apart
cannot be expressed in finitary first-order logic. The following formula
Fin(x, y) says that there are only finitely many elements between x and
y: ∨∨

n∈N

∃z1, ..., zn ∀w
(
x < w < y ⇒

∨
i≤n

w = zi
)
.

Notice that the second disjunction is finite, and that is why we use
the notation

∨
instead of

∨∨
.

Suppose now that we want to describe the linear ordering of the
integers (Z;<). In addition to the axioms of linear orderings, we need
to say the following: The structure has no first element, has no last
element, and every two elements are finitely apart. We can thus write
a single infinitary sentence that is true only of the structure (Z;<).

Exercise II.2. Write down the sentence describing the linear or-
dering Z2.

As for limitations of Lω1,ω, we will prove in Corollary II.41 that the
class of well-orders cannot be described with an infinitary sentence.

II.1.2. Quantifier complexity. We want to measure the com-
plexity of formulas in a way that matches the computational complex-
ity of the relations they define. For formulas of arithmetic, the way
to do this is by counting alternations of quantifiers. For infinitary for-
mulas, when counting alternations, we count infinitary disjunctions as
existential quantifiers and we count infinitary conjunctions as universal
quantifiers. Thus, for instance, a Σin

4 formula is one of the form:∨∨
i1∈N

∃ȳ1︸ ︷︷ ︸
∧∧
i2∈N

∀ȳ2︸ ︷︷ ︸
∨∨
i3∈N

∃ȳ3︸ ︷︷ ︸
∧∧
i4∈N

∀ȳ4︸ ︷︷ ︸︸ ︷︷ ︸
4 alternations

(
ψi1,i2,i3,i4(x̄, ȳ1, ȳ2, ȳ3, ȳ4)

)
.︸ ︷︷ ︸

finitary, quantifier free

There are infinitary formulas that are not Σin
n for any n, as, for instance,

an infinitary disjunction of formulas ϕn where ϕn is Σin
n . Such a formula

would be Σin
ω . We need to continue through the ordinals.

Definition II.3. Let α be an ordinal. A formula is Σin
α if it is of the

form
∨∨

i∈N ∃x̄i ϕi(x̄i, ȳ), where the formulas ϕi are Πin
β for some β < α.

Analogously, a formula is Πin
α if it is of the form

∧∧
i ∀x̄i ϕi(x̄i, ȳ), where

the formulas ϕi are Σin
β for some β < α. Both Σin

0 and Πin
0 are used to

denote the finitary quantifier-free formulas.
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In the examples above, the formulas for torsion of groups and con-
nectedness of graphs are Πin

2 , and the formula for finitely-apart on linear
orderings is Σin

2 . Here are examples of formulas of higher complexity.

II.1.3. Well-founded ranks. Using transfinite recursion, we de-
fine, for each countable ordinal α, a sentence ψα that is true of an
element a in a partial ordering P if and only if rkP(a) ≤ α. First, let
ψ0(x) ≡ @y (y < x). Then, assuming we have already defined ψγ for
γ < α, let ψα(x) be the formula

∀y < x
∨∨
γ<α

ψγ(y).

One can show by transfinite induction that ψα is a Πin
2·α+1 sentence.

The following lemma shows that we can do better.

Lemma II.4. For each ordinal α, there is a Σin
2·α formula ϕωα such

that, for any partial ordering P and a ∈ P,

P |= ϕωα(a) ⇐⇒ rkP(a) < ω · α.

Proof. Recursively, for each ordinal β, we define a Σin
2β formula

ϕωβ(x) that says x has rank below ω · β. If β is a limit ordinal, then
ϕωβ(x) is the formula

∨∨
γ<β ϕωγ(x), which is Σin

β . (Recall that for β

limit, β = 2β.) For the successor case, we need to take an intermediate
step. Let ϕωγ+n(x) be the Πin

2γ+1 formula which states that x has rank
below ω · γ + n for finite n ≥ 1, namely

∀y1, ..., yn
(
(y1 < y2 < · · · < yn < x)⇒ ϕωγ(y1)

)
.

Finally, if β = γ + 1, let ϕωβ(x) be the formula
∨∨

n∈ω ϕωγ+n(x), which
is Σin

2·γ+2. �

In the case of linear orderings, there is an even more efficient formula
to calculate ranks.

Lemma II.5. For each ordinal α ≥ 1, there is a Σin
2·α sentence which

is true of a linear ordering if and only if the linear ordering is well-
ordered and has order type less than ωα.

Proof. By transfinite recursion, we write a formula ϕωβ(x, y) that
holds of a, b ∈ L if and only if the interval (a, b)L is well-ordered and
has order type less than ωβ. If β = 1, then ϕω1 says that the interval
is finite, which we already saw in Section II.1.1 can be said by a Σin

2

formula we called ‘Fin(x, y).’ If β is a limit ordinal, then ϕωβ(x, y) is
the formula

∨∨
γ<β ϕωγ (x, y). To see that this formula is Σin

2·β use that,

by inductive hypotheses, the formulas ϕωγ (x, y) are Σin
2·γ when γ < β.

For the successor case we need an intermediate step. We recursively
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define a formula ϕωγ ·n that says that the interval between x and z has
order type below ωγ · n. Let ϕωγ ·n(x, z) be the formula that says that
if we split the interval x and z into n intervals, one of them must be
shorter than ωγ:

∀y0, ..., yn

(
x = y0 < y1 < · · · < yn = z ⇒

∨
i<n

ϕωγ (yi, yi+1)

)
Note that this formula is Πin

2·γ+1. Finally, for β = γ + 1, let ϕωβ(x, y)
be the formula

∨∨
n∈N ϕωγ ·n, which is a Σin

2γ+2 formula. �

II.2. Scott sentences

A Scott sentence for a structure A is a sentence ϕ that identifies A
up to isomorphism among countable structures in the sense that ϕ is
true of a countable structure B if and only if B is isomorphic to A.

The goal of this section is to show that every countable structure
has a Scott sentence. The following lemma is a first approximation.
Before proving the lemma, let us review the definition of a back-and-
forth set.

Definition II.6. Given structures A and B, we say that a set
I ⊆ A<N× B<N has the back-and-forth property if, for every 〈ā, b̄〉 ∈ I,

• DA(ā) = DB(b̄) (i.e., |ā| = |b̄|, and ā and b̄ satisfy the same
τ|ā|-atomic formulas);
• for every c ∈ A, there exists d ∈ B such that 〈āc, b̄d〉 ∈ I; and∗

• for every d ∈ B, there exists c ∈ A such that 〈āc, b̄d〉 ∈ I.

We showed in [Part 1, Lemma ??] that if I is a back-and-forth set,
and 〈ā, b̄〉 ∈ I, then there is an isomorphism from A to B mapping ā
to b̄.

Lemma II.7. If two countable structures satisfy the same Lω1,ω sen-
tences, they are isomorphic.

Proof. Let A and B be structures which satisfy the same Lω1,ω

sentences. Define I ⊂ A<N × B<N to be the set of pairs of tuples
〈ā, b̄〉 such that (A, ā) and (B, b̄) satisfy the same Lω1,ω sentences. We
claim that I has the back-and-forth property. From the hypothesis
of the theorem we get that 〈〈〉, 〈〉〉 ∈ I. Therefore, the claim would
imply that A and B are isomorphic. The first item in the definition
of the back-and-forth property is trivial, and the third is analogous to
the second, so we only prove the second item. Suppose 〈ā, b̄〉 ∈ I, and
suppose toward a contradiction that there is a c ∈ A such that, for every

∗Recall that we are using the notation āc for the concatenation āac.
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d ∈ B, 〈āc, b̄d〉 6∈ I. We then have that for each d ∈ B there is an Lω1,ω

formula ψd(x̄, z) such that A |= ψd(ā, c) but B |= ¬ψd(b̄, d). Therefore,
on one side A |= ∃z

∧∧
d∈B ψd(ā, z) as witnessed by c, while on the other

side B |= ∀z
∨∨

d∈B ¬ψd(b̄, z). We have thus found a formula true about
(A, ā) that is not true about (B, b̄), contradicting that 〈ā, b̄〉 ∈ I. �

In particular, we get that two tuples ā and b̄ from the same structure
A are automorphic if they satisfy the same Lω1,ω formulas, that is, if
they have the same Lω1,ω-type: Just consider the structures (A, ā) and
(A, b̄).

Recall that the automorphism orbit of a tuple ā ∈ A<N is the set of
all the b̄ ∈ A|ā| for which there is an automorphism of A mapping ā to
b̄.

Lemma II.8. The automorphism orbit of every tuple in a countable
structure is definable by an Lω1,ω-formula.

Proof. Fix a tuple ā from a structure A. By the previous lemma,
for each tuple b̄ not automorphic to ā, there is a formula θā,b̄(x̄) true of

ā and false of b̄ in A. We then have that the formula ϕā(x̄) defined as∧∧
b̄∈A|ā|,(A,ā)6∼=(A,b̄)

θā,b̄(x̄)

is true of ā, but not of any tuple not automorphic to ā. Since satisfac-
tion of Lω1,ω formulas is preserved under automorphisms, the formula
above is true exactly on the tuples that are automorphic to ā. �

We have already seen in [Part 1, Lemma ??] how to build a Scott
sentence if we are given definitions of all automorphism orbits. The
idea was to write down a sentence that is true of a structure B if and
only if the set

IB = {〈ā, b̄〉 ∈ A<N × B<N : B |= ϕā(b̄)}
has the back-and-forth property, where ϕā(x̄) is the formula that defines
the automorphism orbit of ā. To include the pair of empty tuples 〈〈〉, 〈〉〉
into I, we let ϕ〈〉() be a sentence that is always true. The sentence is:∧∧

ā∈A<N

∀x1, ..., x|ā|

(
ϕā(x̄)⇒

D(x̄) = DA(ā) ∧

(∧∧
c∈A

∃yϕāc(x̄y)

)
∧

(
∀y
∨∨
c∈A

ϕāc(x̄y)

))
,

where DA(ā) is the finite atomic diagram of the tuple ā in A as defined
on page xxiii and, if we let σ = DA(ā) ∈ 2<N, then “D(x̄) = σ” is the
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quantifier free formula stating that the atomic diagram of x̄ is σ as in
Observation .5 on xxiii. We get the following corollary.

Theorem II.9 (Scott [Sco65]). Every countable structure has a
Scott sentence in Lω1,ω.

Corollary II.10. A relation on a structure A is Lω1,ω definable
if and only if it is closed under automorphisms.

Proof. Clearly, a definable relation must be closed under auto-
morphisms.

For the converse, let R be a relation in Ak that is closed under
automorphism. Given a tuple ā ∈ Ak, let ϕā(x̄) be a formula that
defines the automorphism orbit of ā. Then,

∨∨
ā∈R ϕā(x̄) defines R. �

Observation II.11. If every automorphism orbit in A is definable
by a Σin

α -formula without parameters, then A has a Πin
α+1 Scott sen-

tence. To see this, just count the quantifiers in the Scott sentence given
above.

Exercise II.12. Karp [Kar65]. Just for this exercise, consider
structures of arbitrary cardinality. For structures A and B, show that
they satisfy the same L∞,ω sentences if and only if there is a set I ⊆
A<N×B<N that has the back-and-forth property and contains the pair
of empty tuples. See hint in footnote.†

II.3. Scott Rank

We dedicated [Part 1, Chapter ??] to study ∃-atomic structures,
and showed that from various viewpoints they are the simplest struc-
tures around. We will see in the next few sections how every structure
can be made ∃-atomic if one adds enough relations to the vocabulary.
This will allow us to use the whole artillery of results from [Part 1,
Chapter ??] on all structures.

Definition II.13. Given a class Γ of Lω1,ω formulas (for example
Σin
α or Πc

α), a structure A is said to be Γ-atomic if every automorphism
orbit is definable by a formula in Γ without parameters.

Example II.14. (Q;≤) is quantifier-free-atomic, as the automor-
phism type of a tuple is determined by the order of its elements.

†For the (⇐) direction, prove it for tuples within the structures and use trans-
finite induction on the rank of the formula.



24 II. INFINITARY LOGIC

(Z;Adj) is ∃-atomic,‡ as the automorphism type of a tuple is deter-
mined by the order of its elements and the distance between the el-
ements. (Z + Z + Z;Adj) is ∃-atomic over a finite set of parameters
(three actually). (Z;≤) and (N;≤) are Σin

2 -atomic but not Σin
1 -atomic

as follows from the next observation and [Part 1, Exercise ??].

Observation II.15. If A is Σin
1 -atomic, it is also ∃-atomic. This

is because if
∨∨

i∈N ψi(x̄) defines the automorphism orbit of a tuple ā,
where all the formulas ψi(x̄) are existential, then one of these disjuncts
must be true about ā too — say ψi0 . But, since ψi0(x̄) alone implies
the whole disjunction

∨∨
i∈N ψi(x̄), ψi0(x̄) can only be true on tuples

automorphic to ā. It follows that the automorphism orbit of ā is exis-
tentially definable by ψi0(x̄).

Definition II.16. We define the parameterless Scott rank of A to
be the least ordinal α > 0 such that A is Σin

α -atomic. We define the
parametrized Scott rank of A to be the least ordinal α > 0 such that,
for some finite tuple of parameters ā ∈ A<N, (A, ā) is Σin

α -atomic. In
this book we use Scott rank to mean parametrized Scott rank.

Observation II.17. If every orbit is Σin
α -definable, then so is every

automorphism-invariant relation, as these are countable unions of au-
tomorphism orbits. The complements of automorphism-invariant rela-
tions are also automorphism invariant, and hence are also Σin

α -definable.
Therefore, all automorphism-invariant relations are ∆in

α -definable, in-
cluding all orbits. The Scott rank is, thus, the least α such that, over
some finite tuple of parameters, every automorphism-invariant relation
is ∆in

α -definable.

So, for instance, from the example above we get that (Q;≤), (Z;Adj),
and (Z + Z + Z;Adj) have Scott rank 1. (Z;≤) and (N;≤) have Scott
rank 2.

Lemma II.18. ωα has a Scott rank at most 2α.

We will prove in Corollary II.40 that ωα has Scott rank exactly 2α.

Proof. Since ωα is rigid, i.e., has no non-trivial automorphisms,
we need to find formulas defining each element of ωα.

Let ϕωβ(x, y) be the Σin
2β formula from Lemma II.5 that says that

the interval between x and y has order type less than ωβ. There is a
Πin

2β+1 sentence ψωβ(x, y) that says that an interval (x, y) is isomorphic

‡By ∃-atomic we mean Γ-atomic where Γ is the set of finitary existential
formulas.
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to ωβ, namely

¬ϕωβ(x, y) ∧ (∀z(x < z < y ⇒ ϕωβ(x, z)))

Now consider γ ∈ ωα. By taking its Cantor normal form, we can write
γ as ωβ1 + ωβ2 + · · · + ωβk with α > β1 ≥ β2 ≥ · · · ≥ βk. We can
then write a formula ψγ(y) that is only true of γ within the structure
(ωα;≤):

∃z1, ...zk

(
z1 < · · · < zk = y ∧

∧
i<k

ψωβi+1 (zi, zi+1)

)
,

where the conjunct ψωβ1 (z0, z1) corresponding to i = 0 is read as saying
that the interval to the left of z1 has order type ωβ1 . This formula is
Σin

2β1+2 and in particular Σin
2α. �

Exercise II.19. Prove that the Scott rank is preserved under ∆in
1 -

bi-interpretability, where ∆in
1 -bi-interpretability is as in [Part 1, Defi-

nition ??], but using Σin
1 formulas instead of Σc

1 ones.

Exercise II.20. In a linear ordering, we say that x is an α-left
limit if it is a left limit of β-left limit points for all β < α. All points
are 0-left limits. Show that the relation of being an α-left limit is Πin

2α

definable. (Exercise II.42 asks to prove sharpness.)

We will see that the Scott rank is not only a measure of the com-
plexity of the automorphism orbits of a structure, but is also a measure
of how difficult it is to distinguish the structure from others, and also
a measure of how difficult it is to find isomorphisms between different
representations of the structure.

Let us remark that, since Scott’s original definition in 1965 [Sco65],
there have been many definitions of Scott rank — and I do not mean
equivalent definitions, I mean mathematically different. For instance,
[Sac07, Section 2] and [AK00, Section 6.7] have their own definitions
(see [Mon15a, Section 3.1] for a quick review). These different def-
initions may, depending on the structure, be off by 1, by ω, or even
by a multiplicative factor of ω. They are not even off by the same
amount on all structures; how off they are depends on the structure.
The reason we prefer our definition is that it is more robust and we
get equivalence theorems like II.23, VII.21, and VII.25 tying up various
measures of complexity very neatly, while, for the previous notions, we
did not get exact equivalences.
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II.4. The type-omitting theorem

A type-omitting theorem is one that claims the existence of struc-
tures that satisfy certain sentences but omit certain types. Here, by
type, we mean a type as in model theory, namely a set of formulas
with a shared tuple of free variables, and by omitting a type we mean
that the structure has no element satisfying all the formulas in the type.
Type-omitting theorems are extremely useful in model theory, and they
are useful in infinitary logic too. The original version is due to Henkin
and Orey who used it for omitting the type of a non-standard natu-
ral number. See Lemma II.28 for the statement of the type-omitting
theorem of finitary first-order logic.

There are various versions of the type-omitting theorem for infini-
tary logic, and, in most cases, their proofs are not too different from
the original finitary version. The instance we will see here, where we
need a sharp count of the alternations of quantifiers, is from [Mon15c],
while other versions in the literature are too coarse for our purposes.
Once the statement is set up correctly, the idea of the proof is not
new, and is based on ideas the author learned from conversations with
Julia Knight and Sy Friedman. The reader may consult Keisler’s book
[Kei71] or Barwise’s book [Bar75] for other versions and other proof
techniques, as for instance the use of Makkai’s consistency properties.

We have already proved the cases α = 1 of the results in this chapter
back in [Part 1, Chapter ??] using slightly simpler but similar proofs.
For general α we can take two possible approaches. We will take both
and give two proofs. First, in this section, we modify the proofs in
[Part 1, Chapter ??], but we do not rely on them, so the reader who
did not read [Part 1, Chapter ??] can follow them without problem.
Next, we will introduce the technique of Morleyization, which will allow
us to lift the results from [Part 1, Chapter ??] directly without redoing
the proofs.

Definition II.21. A set of infinitary formulas Φ(x̄) is Σin
α -supported

in A if there exists a Σin
α formula ϕ(x̄) such that

A |= ∃x̄
(
ϕ(x̄)

)
∧ ∀x̄

(
ϕ(x̄)⇒

∧∧
ψ∈Φ

ψ(x̄)
)
.

Lemma II.22 (Type-omitting lemma (Version from [Mon15c])).
Let A be a structure and ϕ be a Πin

α+1 sentence true of A. Let Φ(x̄) be
a partial Πin

α -type which is not Σin
α -supported in A. Then there exists

a structure B that models ϕ and omits Φ.
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By a partial Πin
α -type we just mean a set of Πin

α formulas all sharing
the same finite set of free variables. By omitting Φ we mean that no
tuple from B satisfies Φ.

Proof. Write ϕ as
∧∧

j ∀ȳjϕj(ȳj), where each ϕj is Σin
α . Let C =

{c0, c1, ...} be a set of fresh constants. Using a Henkin-type construc-
tion, we will build a set S of Σin

α sentences over the vocabulary τ ∪ C
satisfying the following properties:

(A): If
∨∨

θi ∈ S, then θi ∈ S for some i.
(B): If ∃ȳθ(ȳ) ∈ S, then θ(c̄) ∈ S for some tuple of constants c̄

from C.
(C): If

∧∧
θi ∈ S, then θi ∈ S for all i.

(D): If ∀ȳθ(ȳ) ∈ S, then θ(c̄) ∈ S for all c̄ from C.
(E): For every atomic sentence θ over τ ∪ C, either θ ∈ S or
¬θ ∈ S, but not both.

(F): For every j and every tuple c̄ from C of length |ȳj|, ϕj(c̄) ∈
S.

(G): For every tuple c̄ from C of length |x̄|, there is a formula
ψ ∈ Φ such that ¬ψ(c̄) ∈ S.

Furthermore, we will make sure along the way that every finite
subset of S is satisfiable. Then, once we have S satisfying (E), we can
build a structure B as usual: We let B have domain C, and we use the
atomic sentences in S to define a congruence τ -presentation B.§ By
induction on formulas, using properties (A)-(E), we get that B |= θ for
every θ ∈ S. From (F) we get that B |= ϕ, and from (G) we get that
B omits Φ.

The construction of S is by stages as in the usual Henkin construc-
tion. At stage s, we define a finite set of Σin

α sentences Ss, and we
will define S =

⋃
s∈ω Ss at the end. Each Ss mentions at most finitely

many of the constants from C. To ensure consistency, we make sure
that, at each s, there is an assignment vs that assigns values in A to
the constants that appear in Ss in a way that Ss holds in A. That is,
if Ss mentions the constants c0, ..., cn, and vs maps ci to ai ∈ A, then
for each formula θ(c0, ..., cn) ∈ Ss, A |= θ(a0, ..., an).

At each stage, we take care of a new instance of one of the require-
ments. Instances of the requirements (A)-(F) can all be satisfied in a
straightforward way without modifying the values in the assignment vs.
For instance, suppose that at stage s+1 we want to satisfy requirement
(B) for the sentence ∃ȳθ(c0, ..., cn, ȳ) ∈ Ss, and suppose vs maps ci to
ai ∈ A. Since A |= ∃ȳθ(a0, ..., an, ȳ), we have that for some b̄ ∈ A<N,

§I.e., if the sentence ‘ci = cj ’ is in S, we let ci and cj be equivalent in B.
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A |= θ(a0, ..., an, b̄). Let c̄ be a tuple of new constants, let vs+1 be the
extension of vs which maps c̄ to b̄, and let Ss+1 = Ss∪{θ(c̄)}. We leave
the requirements (A), (C), (D), (E) and (F) to the reader.

Requirement (G) is a standard type-omitting argument: Take a
tuple c̄ from C of the same length as x̄, and suppose we have already
built Ss. Let ϕ(c̄, d̄) =

∧
Ss, where d̄ is the tuple of constants from C

that occur in Ss but are not present in c̄. So ∃ȳ ϕ(x̄, ȳ) is a Σin
α formula

realized in A. Since Φ is not Σin
α -supported, there is a formula θ(x̄) ∈ Φ

such that A |= ¬∀x̄(∃ȳϕ(x̄, ȳ) → θ(x̄)). That is, there are tuples
ā, b̄ ∈ A<N such that A |= ϕ(ā, b̄) ∧ ¬θ(ā). Let Ss+1 = Ss ∪ {¬θ(c̄)},
and let vs+1 map c̄d̄ to āb̄. �

We will now use the type-omitting theorem to show how Scott ranks
and Scott sentences are connected.

Theorem II.23. Let A be a countable structure and α be a count-
able ordinal. The following are equivalent:

(U1) Every automorphism orbit is Σin
α -definable without parameters.

(U2) A has a Πin
α+1 Scott sentence.

(U3) Every Πin
α -type realized in A is Σin

α -supported within A.

This theorem is one of the first results in this book showing the
robustness of our notion of Scott rank introduced in [Mon15c]. Earlier
definitions of Scott rank did not produce such sharp equivalences.

Proof. We already saw how (U1) implies (U2) in Observation
II.11.

Let us now prove that (U2) implies (U3). Let ϕ be a Πin
α+1 Scott

sentence for A. Suppose, towards a contradiction, that there is a Πin
α

type p(x̄) realized in A by some tuple ā which is not Σin
α supported

within A. By Lemma II.22, there is a structure B which models ϕ and
omits p(x̄). The structure B cannot be isomorphic to A, as it omits
p(x̄), and hence this contradicts that ϕ is a Scott sentence for A.

Let us now prove that (U3) implies (U1). For each tuple ā in A, let
ϕā(x̄) be a Σin

α formula that supports Πin
α -tpA(ā). We will show that

ϕā(x̄) defines the automorphism orbit of ā.
First, note that ϕā is true of ā, as otherwise ¬ϕā would belong

to Πin
α -tpA(ā), and it would be implied by ϕā. Second, we need to

observe that if A |= ϕā(b̄), then A |= ϕb̄(ā) too. Suppose not, and that
A |= ϕā(b̄) ∧ ¬ϕb̄(ā). We would then have that ¬ϕb̄(x̄) ∈ Πin

α -tpA(ā),
and hence that ϕā(x̄) implies ¬ϕb̄(x̄), which we know is not true, as
A |= ϕā(b̄) ∧ ϕb̄(b̄).

Consider the set of pairs

P = {〈ā, b̄〉 ∈ (A<N)2 : A |= ϕā(b̄)}.
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We claim that P has the back-and-forth property. This would imply
that ā and b̄ are automorphic whenever A |= ϕā(b̄), and hence that
ϕā(x̄) defines the automorphism orbit of ā. Suppose 〈ā, b̄〉 ∈ P . Clearly
DA(ā) = DA(b̄) as DA(ā) is determined by Πin

α -tpA(ā). Let d ∈ A; we
want to show that there exists c ∈ A such that 〈āc, b̄d〉 ∈ P . Thus, we
need to show that A |= ∃y ϕb̄,d(ā, y). Suppose not. Then ∀y¬ϕb̄,d(ā, y)
is part of the Πin

α -type of ā, and hence implied by ϕā. But then, since
A |= ϕā(b̄), we would have A |= ∀y¬ϕb̄,d(b̄, y), contradicting that A |=
ϕb̄d(b̄, d). �

II.5. Morleyizations

In [Part 1, Chapter ??], we showed that a structure is ∃-atomic
if and only if it has a Πin

2 Scott sentence. In this section, we use the
technique of Morleyization to lift that result to Σin

α -atomic structures
and show that those are exactly the ones that have a Πin

α+1 Scott sen-
tence. We will also use Morleyizations to prove an α-level version of
the type-omitting theorem. Most results we prove here using Morley-
izations were already proved in the previous sections using different
proofs.

Definition II.24. Consider a vocabulary τ and a countable set Ψ
of Lω1,ω τ -formulas. The Morleyization of τ with respect to Ψ refers
to the following expansion τ̌ of the vocabulary. Let us assume that
Ψ is closed under taking sub-formulas — if not, close it. For each
formula ψ(x̄) in Ψ, consider a new relation symbol Rψ of arity |x̄|. Let
τ̌ = τ ∪ {Rψ : ψ ∈ Ψ}.

For each τ structure A, the Morley expansion of A is the τ̌ structure
Ǎ = (A, RAψ : ψ ∈ Ψ), where RAψ = {ā ∈ A|x̄| : A |= ψ(ā)}.

The objective of Morleyization is to simplify the complexity of for-
mulas. For starters, all the formulas in Ψ become atomic. When study-
ing theories, we need to ensure that the new relations have the right
meanings. However, adding the definitions of the new relations directly,
namely ∀x̄(Rψ(x̄)↔ ψ(x̄)) for ψ ∈ Ψ, has the great disadvantage that
we are adding formulas that are as complex as the formulas in Ψ, which
defeats the purpose of simplifying formulas. There is a way around this.

Definition II.25. For each formula ψ, we consider a sentence ϕψ
that defines Rψ recursively:

(1) If ψ(x̄) is atomic, then let ϕψ be ∀x̄(Rψ(x̄)↔ ψ(x̄)).
(2) If ψ(x̄) is ¬θ(x̄), then let ϕψ be ∀x̄(Rψ(x̄)↔ ¬Rθ(x̄)).
(3) If ψ(x̄) is ∃yθ(x̄, y), then let ϕψ be ∀x̄(Rψ(x̄)↔ ∃yRθ(x̄, y)).
(4) If ψ(x̄) is

∨∨
i θi(x̄), then let ϕψ be ∀x̄(Rψ(x̄)↔

∨∨
i Rθi(x̄)).
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Let MΨ be
∧∧

ψ∈Ψ ϕψ.

Note that MΨ is Πin
2 and that

MΨ ⇐⇒
∧∧
ψ(x̄)∈Ψ

∀x̄(Rψ(x̄)↔ ψ(x̄)).

Also note that the Morley expansion Ǎ with respect to Ψ is the unique
τ̌ -expansion of A that satisfies MΨ.

For our first application of Morleyization, let us consider [Part 1,
Theorem ??], which says that a structure is ∃-atomic if and only if it
has a Πin

2 Scott sentence, and [Part 1, Lemma ??], which says that a
structure is ∃-atomic over a finite tuple of parameters if and only if it
has a Σin

3 Scott sentence.

Proposition II.26. For a structure A and an ordinal α > 0, the
following are equivalent:

(1) A is Σin
α -atomic.

(2) A has a Πin
α+1 Scott sentence.

If we consider parameters, we get that the following are equivalent:

(1) A is Σin
α -atomic over a finite tuple of parameters.

(2) A has a Σin
α+2 Scott sentence.

Proof. Let us consider the first part of the theorem — the proof
of the second part is essentially the same.

(1) implies (2): We say that a formula is Πin
<α if it is Πin

β for some
β < α. Consider the set of all Σin

α formulas that define automorphism
orbits of tuples in A. Let Ψ be the set of Πin

<α formulas that appear
as sub-formulas of those Σin

α formulas. Notice that these Σin
α formulas

are Σin
1 over Ψ, meaning that if we replace the formulas in Ψ with the

corresponding relations, we are left with a Σin
1 formula. Let Ǎ be the

Morley expansion of A with respect to Ψ. Since every relation added
to the language of Ǎ was already definable in A, all automorphisms
of A remain automorphisms of Ǎ, and hence both structures have the
same automorphism orbits. These automorphism orbits in Ǎ are now
definable by Σin

1 τ̌ -formulas. By Observation II.15, this implies that all
automorphism orbits are actually definable by ∃-τ̌ -formulas. In other
words, Ǎ is ∃-atomic. By [Part 1, Theorem ??], Ǎ has a Πin

2 τ̌ -Scott
sentence ϕ̌. Let ϕ be defined by replacing each occurrence of Rψ in
ϕ̌ by ψ for each ψ ∈ Ψ. We claim that ϕ is the desired Πin

α+1 Scott
sentence for A. It is Πin

α+1 because ϕ̌ is Πin
2 and each ψ being replaced

is Πin
<α. Let B be another structure satisfying ϕ and let B̌ be its Morley

expansion with respect to Ψ. Then B̌ |= MΨ, and hence B̌ |= ϕ̌, as ϕ
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and ϕ̌ are equivalent over MΨ. Thus, Ǎ and B̌ must be isomorphic.
Their τ -reducts, namely A and B, must then be isomorphic too.

(2) implies (1): Let ϕ be the Πin
α+1 Scott sentence for A. Let Ψ

be the set of Πin
<α sub-formulas of ϕ, and consider the corresponding

Morleyization. Within ϕ, replace each maximal Πin
<α sub-formula ψ by

Rψ. We get a Πin
2 τ̌ -sentence ϕ̌. If we assume MΨ, ϕ̌ is equivalent to

ϕ. We thus get that ϕ̌ ∧MΨ is a Πin
2 Scott sentence for the Morley

expansion Ǎ of A. By [Part 1, Theorem ??], every automorphism
orbit in Ǎ is definable by a ∃-τ̌ -formula. Replacing Rψ by ψ within
each of these definitions, we get equivalent formulas in Ǎ, and hence
we get Σin

α τ -definitions for all the automorphism orbits in A. �

Corollary II.27. The parameterless Scott rank of A is the least
ordinal α such that A has a Πin

α+1 Scott sentence. The parametrized
Scott rank of A is the least ordinal α such that A has a Σin

α+2 Scott
sentence.

We can use the same technique to lift other results from [Part 1,
Chapter ??]. For instance, we can lift the ∀-type-omitting theorem
we proved in [Part 1, Lemma ??] and make it a Πin

α type-omitting
theorem. Let us first recall that [Part 1, Lemma ??] says that if K is a
Πin

2 class of structures and {pi(x̄i) : i ∈ N} a sequence of ∀-types which
are not ∃-supported in K, then there is a structure A ∈ K that omits
all the types pi(x̄i) for i ∈ N. Recall that a type p(x̄) is Γ-supported in
a class K if there is a Γ formula ϕ(x̄) realizable in K which implies all
the formulas in p(x̄) within K. First, let us deduce the classical finitary
type-omitting theorem.

Lemma II.28. Let T be a finitary first-order theory, and let {pi :
i ∈ N} be a list of finitary first-order types that are not elementary
supported over T . Then T has a model that omits all the pi’s.

In the context of finitary first-order logic, types that are elementary
supported are called principal types. Recall that an elementary formula
is a finitary first-order formula.

Proof. Let Ψ be the set of all finitary first-order formulas, and
consider the corresponding Morleyization τ̌ . Then T is equivalent to
a Πin

1 τ̌ -sentence, each pi is a quantifier free type (and in particular a
∀-type), and no pi is ∃-supported over T ∧MΨ, as otherwise they would
be elementary supported over T . We can then apply [Part 1, Lemma
??] to get a τ̌ -model of T ∧MΨ which does not realize any pi. �
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Theorem II.29. Let K be the class of models of a Πin
α+1 sentence

ϕ, and let {pi : i ∈ N} be a list of Πin
α types that are not Σin

α supported
in K. Then there is a structure in K that omits all the pi’s.

Proof. The proof is essentially the same as that of the lemma
above. Let Ψ be the set of all Πin

<α sub-formulas of ϕ and of the formulas
that appear in the types pi for i ∈ N. Then ϕ is equivalent to a Πin

2

τ̌ -sentence ϕ̌, each pi is a Πin
1 τ̌ -type (and in particular a ∀-type), and

no pi is ∃-supported over ϕ̌ ∧ MΨ, as otherwise they would be Σin
α -

supported over ϕ. We can then apply [Part 1, Lemma ??] to get a
τ̌ -model of ϕ ∧MΨ which does not realize any pi. �

The type-omitting theorem for fragments of infinitary logic is due
to Keisler [Kei71]. Our formulation above, which is from [Mon15c],
is more subtle than Keisler’s original, as Keisler was not worried about
the complexity of the formulas, and the fragments he used were coarser
than the ones we use here.

Exercise II.30. Use Morleyization on [Part 1, Theorem ??] to
prove that a countable structure is Σin

α -atomic if and only if every Πin
α

type realized in A is Σin
α supported in A.

Remark II.31. Let us briefly mention how Scott ranks work for
uncountable structures. The correct definition in this setting is based
on the previous exercise. First, we need to consider the language L∞,ω,
instead of Lω1,ω. The Scott rank of a structure is the least α such that,
over a finite tuple of parameters, every Πin

α type is Σin
α -supported. One

can then prove that the Scott rank is also the least α such that there is
a Σin

α+2 sentence that determines the structure up to L∞,ω-elementary
equivalence.

II.6. Back-and-forth relations

The back-and-forth relations measure how hard it is to differen-
tiate two structures, or two tuples from the same structure or from
different structures. They are a combinatorial device used to study
Σin
α elementary equivalence. The rough idea is that two tuples are n-

back-and-forth equivalent if we cannot differentiate them using only n
Turing jumps.

With the techniques we have seen so far, we can prove upper bounds
on Scott ranks by either giving Σin

α definitions of all orbits or exhibiting
a Σin

α+2 Scott sentence. What we do not have yet is a technique for
showing that these formulas are as simple as possible. That is where
the back-and-forth relations step in.
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Definition II.32. For each ordinal α, we define a pre-order ≤α
on the tuples of all the τ -structures by transfinite recursion. Given an
ordinal α, τ -structures A and B, and tuples ā ∈ A<N and b̄ ∈ B<N, let

(A, ā) ≤α (B, b̄) ⇐⇒ ∀γ < α

∀d̄ ∈ B<N ∃c̄ ∈ A<N (A, āc̄) ≥γ (B, b̄d̄).

For the base case, we let (A, ā) ≤0 (B, b̄) if ā and b̄ � |ā| satisfy the
same quantifier-free τ|ā|-formulas, or equivalently, if DA(ā) ⊆ DB(b̄).¶

We will sometimes write ā ≤α b̄ instead of (A, ā) ≤α (B, b̄) if one can
easily deduce from context where the tuples are coming from.

Observation II.33. In most cases, one considers back-and-forth
relations only between tuples of the same length, and the reader may
imagine that is the case for now. For tuples of different lengths, one
can show by transfinite induction that ā ≤α b̄ if and only if |ā| ≤ |b̄|
and ā ≤α b̄ � |ā|.

Observation II.34. Back-and-forth relations are preserved under
taking sub-tuples. That is, if (A, ā, ā′) ≤α (B, b̄, b̄′), then (A, ā) ≤α
(B, b̄). This can be proved by an easy transfinite induction too.

Observation II.35. It is easy to see that the α-back-and-forth
relations get finer as α grows. Furthermore, (A, ā) ≤α+1 (B, b̄) not
only implies (A, ā) ≤α (B, b̄), but also (A, ā) ≥α (B, b̄). This, again,
can be proved by an easy transfinite induction argument.

The back-and-forth relations can be visualized in terms of a game
where player I is trying to show (A, ā) 6≤α (B, b̄) by challenging player
II to come up with matchings for player I’s moves. This is a clopen
game, that is, a finitely terminating game where there are infinitely
many possibilities for each move. Fix τ -structures A and B, and tuples
ā ∈ A<N and b̄ ∈ B<N of the same length. The game G(α, (A, ā), (B, b̄))
starts with player I playing a tuple b̄1 ∈ B<N and an ordinal γ1 < α,
and player II responding with a tuple ā1 ∈ A<N of the same length.
They then continue playing the game G(γ1, (B, b̄, b̄1), (A, ā, ā1)), where
now player I is trying to show (B, b̄, b̄1) 6≤γ1 (A, ā, ā1). That is, for
the second move, and for subsequent even-numbered moves, player I
plays a tuple āk ∈ A<N and an ordinal γk < γk−1, and player II plays
a tuple b̄k ∈ B<N of the same length. At odd-numbered moves, I plays
a tuple b̄k ∈ B<N and an ordinal γk < γk−1, and player II plays a tuple
āk ∈ A<N of the same length.

¶Recall that τs refers to the step s approximation to the vocabulary τ . Recall
that to have DA(ā) be a finite string, we defined DA(ā) so that it only contains the
truth values of the τ|ā|-formulas. See page xxiii.
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Player I b̄1, γ1 ā2, γ2 b̄3, γ3 · · · · · · b̄k, γk
Player II ā1 b̄2 · · · · · · āk

The game ends when they reach γk = 0. Player II wins the game
if DA(ā, ā1, ..., āk) = DB(b̄, b̄1, ..., b̄k), and player I wins otherwise. One
can show by transfinite induction that player II has a winning strategy
for the game G(α, (A, ā), (B, b̄)) if and only if (A, ā) ≤α (B, b̄).

There is yet a third way of visualizing back-and-forth relations. The
following theorem, due to Carol Karp, characterizes the back-and-forth
relations in terms of Πin

α -types.

Theorem II.36 (Karp [Kar65]). Let α be a nonzero ordinal, A
and B τ -structures, and ā and b̄ tuples in A<N and B<N. The following
are equivalent:

(1) (A, ā) ≤α (B, b̄).
(2) Πin

α -tpA(ā) ⊆ Πin
α -tpB(b̄), that is, every Πin

α formula true about
ā in A is true about b̄ in B.

Proof. The proof is by transfinite induction on α.
The theorem was stated for α > 0 because for α = 0 we have

that (A, ā) ≤α (B, b̄) if and only if DA(ā) ⊆ DB(b̄), and recall that
DA(ā) only deals with atomic formulas over the finite sub-vocabulary
τ|ā|. This small discrepancy disappears at higher levels.

For the downward direction, consider a Πin
α formula

∧∧
i∈N ∀ȳiϕi(x̄, ȳi)

true of ā in A, where each ϕi is Σin
αi

and αi < α — we need to show this

Πin
α formula holds of b̄ in B. Take i ∈ N and d̄ ∈ B|ȳi| — we need to

show that B |= ϕi(b̄, d̄). Since (A, ā) ≤α (B, b̄), there is a tuple c̄ ∈ A|ȳi|
such that (A, ā, c̄) ≥αi (B, b̄, d̄). Since A |= ∀ȳiϕi(ā, ȳi), A |= ϕi(ā, c̄).
By the induction hypothesis, applied to ¬ϕi, we get B |= ϕi(b̄, d̄) as
needed. (When αi = 0, we need to extend d̄ to any string d̄′ that is long
enough so that all the symbols in ϕi are in the finite approximation τ|d̄′|
to the vocabulary τ . We would then get c̄′ with (A, ā, c̄′) ≥0 (B, b̄, d̄′),
and hence A |= ϕi(ā, c̄) implies B |= ϕi(b̄, d̄).)

For the upward direction, we prove the contra-positive. Suppose
(A, ā) 6≤α (B, b̄), and let d̄ ∈ B<N and β < α be such that, for all
c̄ ∈ A<N, (A, ā, c̄) 6≥β (B, b̄, d̄). By the induction hypothesis, for each

c̄ ∈ A|d̄|, there is a Πin
β formula ψc̄ true of b̄d̄ in B, but not of āc̄ in A.

Then
∀ȳ
∨∨
c̄∈A|d̄|

¬ψc̄(ā, ȳ)

is a Πin
α formula true of ā in A, but not of b̄ in B as witnessed by d̄. �

We will see later in Theorem VII.30 that the back-and-forth re-
lations can also be characterized in descriptive set theoretic terms:
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A ≤α B if and only if distinguishing the copies of A from the copies of
B is Σ0

α hard.
In the literature, one can find definitions of what are also called

back-and-forth relations, but which are not equivalent to the one we
give here. The key advantage of the definition we use here is Karp’s
characterization in terms of Πin

α types, Theorem II.36. As we men-
tioned before, there are also various different non-equivalent definitions
of Scott rank in the literature. Most of them are based on some notion
of back-and-forth relation. We will see how our definition of Scott rank
can be defined in terms of this back-and-forth relation, and compare
it to Ash and Knight’s [AK00, Section 6.7] definition of Scott rank in
Section II.9

II.6.1. Example: Linear Orderings. There are various classes
of structures whose back-and-forth relations have been thoroughly an-
alyzed: The back-and-forth relations of interval Boolean algebras of
ordinals are calculated in [AK00, Proposition 15.14]; The back-and-
forth relations on F -vector spaces are calculated in [AK00, Section
15.3.2]; The back-and-forth relations on linear orderings are simple up
to level two, but they get messy after that. The most comprehensive
analysis of the back-and-forth relations on scattered linear orders to
date can be found in Alvir and Rossegger’s paper [AR20a].

Linear orderings are a good case study for playing with back-and-
forth calculations. The first level only involves the order among the
different elements of the tuple:

(A, a0, ..., ak) ≤0 (B, b0, ..., bk) ⇐⇒
ai ≤A aj ↔ bi ≤B bj for all i, j ≤ k.

At the next level, we compare sizes:

A ≤1 B ⇐⇒ |A| ≥ |B|,

where |A| is the cardinality of A, which is either a finite number or∞.
This is because for every n ≤ |B|, if one chooses a tuple of different
elements b̄ ∈ Bn, one has to be able to match it in A, and hence A
needs to have size at least n. To decide if (A, ā) ≤1 (B, b̄), one needs to
look inside the segments defined by the tuples. The following lemma
shows how, in linear orderings, back-and-forth calculation can be vastly
simplified by comparing segments.

Lemma II.37. (See [AK00, Lemma 15.7 ]) For α > 0, when com-
paring tuples on linear orderings under ≤α, it is enough to compare the
segments determined by them. That is, if A and B are linear orderings,
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and we have tuples a1 ≤A a2 ≤A · · · ≤A ak and b1 ≤B b2 ≤B · · · ≤B bk,
then

(A, ā) ≤α (B, b̄) ⇐⇒ (ai, ai+1)A ≤α (bi, bi+1)B for all i ≤ k, ‖

interpreting a0 and b0 as −∞, and ak+1 and bk+1 as +∞.

Proof. The proof is a straightforward transfinite induction. �

The next level up, namely ≤2, is a bit more complicated, but it
can still be reasonably well understood. See [Mon10, Section 4.1].
The relations ≤3 get much messier, except when we restrict ourselves
to particular classes of linear orderings as, for instance, the class of
ordinals.

Lemma II.38. Let A and B be linear orderings, and assume both
have a first element. Let α be an ordinal. Then

ωα · A ≤2α+1 ωα · B, ⇐⇒ |A| ≥ |B|.
Proof. This is a purely combinatorial proof, and the reader should

work it out with pen and paper while reading the details.
The proof is by transfinite induction. In the case α = 0, we have

2α + 1 = 1 and ωα = 1, which puts us in the setting we already
mentioned above.

For the (⇐) direction, assume |A| ≥ |B|. Consider a tuple

〈γ1,1, b1〉, ..., 〈γ1,`1 , b1〉︸ ︷︷ ︸
∈ωα×{b1}

, 〈γ2,1, b2〉, ..., 〈γ2,`2 , b2〉︸ ︷︷ ︸
∈ωα×{b2}

, . . . ..., 〈γk,`k , bk〉︸ ︷︷ ︸
∈ωα×{bk}

from ωα · B, where the γi,j’s belong to ωα and the bi’s to B. Assume
the tuple is given in increasing order. Also, by adding elements to the
tuple if necessary, we may assume that γi,1 is the first element of ωα

for each i ≤ k, and that b1 is the first element of B.∗∗ We need to find
a matching tuple in ωα · A. Using that |A| ≥ |B| ≥ k, we can pick a
tuple a1 <A · · · <A ak from A, where a1 is the first element of A. We
keep the γi,j’s unchanged. Thus, our matching tuple looks like this:

〈γ1,1, a1〉, ..., 〈γ1,`1 , a1〉︸ ︷︷ ︸
∈ωα×{a1}

, 〈γ2,1, a2〉, ..., 〈γ2,`2 , a2〉︸ ︷︷ ︸
∈ωα×{a2}

, . . . ..., 〈γk,`k , ak〉︸ ︷︷ ︸
∈ωα×{ak}

.

We now need to verify that each of the intervals in ωα · A determined
by this tuple is ≥2α-above the corresponding interval on the ωα ·B side.
There are two types of intervals. First, we have the intervals of the form
(〈γi,j, bi〉, 〈γi,j+1, bi〉)ωαB, which are contained in a copy of ωα and are

‖Recall that (a, b)A denotes the open interval {x ∈ A : a < x < b}.
∗∗Notice that when proving that a back-and-forth relation holds, we can add

elements to the tuples without loss of generality by Observation II.34.
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isomorphic to their corresponding intervals (〈γi,j, ai〉, 〈γi,j+1, ai〉)ωαA,
and hence ≥2α-back-and-forth related. Second, we have the inter-
vals of the form (〈γi,`i , bi〉, 〈γi+1,1, bi+1〉)ωαB and their corresponding in-
tervals (〈γi,`i , ai〉, 〈γi+1,1, ai+1〉)ωαA, which are isomorphic to intervals
of the form ωα · Bi and ωα · Ai respectively, where Bi = [bi, bi+1)B
and Ai = [ai, ai+1)A are linear orderings with first elements. Note
that this is also the case for the last intervals (〈γk,`k , bk〉,+∞)ωαB and
(〈γk,`k , ak〉,+∞)ωαA. To prove that these intervals are ≥2α-back-and-
forth related as needed, it is enough to show the following: If A and B
are linear orderings with first elements (and no assumptions on their
sizes), then ωα · A ≥2α ω

α · B.
The proof starts pretty much the same way as the paragraph above.

Consider a tuple c1, ..., ck from ωα · A and an ordinal β < α. Adding
elements if necessary, assume that if an element from a copy of ωα

is one of the ci’s, so is the first element of that copy. This way, the
intervals we get are either isomorphic to an ordinal smaller than ωα,

or of the form ωα · Ã, where Ã is a segment of A with a first element.
The last segment (ck,+∞)ωαA is always of the latter form. We now
need to match these elements to elements from ωα · B. We proceed as
follows. All the ci’s will be matched to elements di in the first copy of
ωα. We do it in a step-by-step fashion. Map the intervals which are
isomorphic to ordinals below ωα to isomorphic copies of them. Map

the intervals of the form ωα · Ã to intervals of the form ωβ. Since ωα

is closed under addition, all these intervals can be found one after the
other within the first copy of ωα in ωα ·B. By the inductive hypothesis,

we know that ωα · Ã, which is isomorphic to ωβ ·ωα−β · Ã, is ≤2β+1 ω
β.

The last interval (ck,+∞)ωαA, which is of the form ωα · Ã, is matched
with the last interval of ωα ·B. Both last intervals are infinite multiples
of ωβ. So, all the matching intervals we defined are ≤2β+1-less than
their corresponding intervals in A.

For the (⇒) direction, assume |A| < |B| — we need to pick a tuple
in ωα ·B without a matching tuple in ωα ·A. For this, let b0 < · · · < b|A|
be |A|+ 1 distinct elements from B, and consider the tuple

〈0, b0〉, 〈0, b1〉, ..., 〈0, b|A|〉

from ωα ·B. All the intervals are isomorphic to ωα · [bi, bi+1)B. Consider
a matching tuple in ωα · A. By the pigeon-hole principle, two elements
of this tuple must come from the same copy of ωα. The interval between
those two elements is then isomorphic to some ordinal below ωα — say

γ. We now need to prove that for all γ < ωα and all B̃, γ 6≥2α ω
α · B̃.
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To prove this, consider the partition of γ into two intervals splitting
γ as γ0 + ωδ, where ωδ is the last term in the Cantor normal form of
γ. If γ is already of the form ωδ, let γ0 = 0. Consider now a potential

matching partition of ωα · B̃ into two intervals. The second interval
must be isomorphic to ωα · B̌ ∼= ωδ · (ωα−δ) · B̌ for some end segment B̌
of B̃. Since 1 < |ωα−δ · B̌|, we get from the induction hypothesis that
ωδ 6≤2δ+1 ω

α · B̌. So, there is no way to match the partition of γ in

ωα · B̃, showing that γ 6≥2α ω
α · B̃. �

Corollary II.39. Let A be any linear ordering. Then

ωα ≥2α+1 ω
α + ωα · A, but ωα 6≤2α+1 ω

α + ωα · A.
We are now ready to calculate the precise Scott rank of an ordinal

[Mil83, Lemma 3.5]. Given an ordinal δ, define logω(δ) to be the
ordinal α such that ωα ≤ δ < ωα+1.

Corollary II.40. The parametrized Scott rank of an ordinal δ is
2 logω(δ).

Thus, in particular, the Scott rank of ωα is 2α.

Proof. We already know from Lemma II.18 that ωα has Scott
rank at most 2α. If δ is of the form δ = ωα0 + ωα1 + · · · + ωαk , where
α0 ≥ α1 ≥ · · · ≥ αk, then it has Scott rank at most 2α0 (which equals
2 logω(δ)), as one can add parameters to separate the summands of the
form ωαi .

For the lower bound, by the lemmas above, δ ≥2α0+1 ω
β + ωα1 +

· · · + ωαk for any β > α0.†† It follows that every Σin
2α0+1 sentence true

about δ is also true about ωβ +ωα1 + · · ·+ωαk , and hence it cannot be
a Scott sentence for δ. Thus, using Proposition II.26, the Scott rank
of δ must be at least 2α0. �

Corollary II.41 (Morley [Mor65], Lopez-Escobar [LE66]‡‡ ).
There is no Lω1,ω sentence whose countable models are exactly the
countable well-orderings.

Proof. Suppose ϕ is a Σin
α sentence true of all ordinals. Since it

is true of ωα, it is also true of ωα · A for any linear ordering A with
a first element, and hence in particular of ωα + ωα · Q, which is not
well-founded. �

††We are using here that if A ≤α B, then A+ C ≤α A+ C. This can be proved
easily by transfinite induction on α. For the case when C has a least element, which
is the situation we are applying it to, it just follows from Lemma II.37. We are also
using Corollary II.39 to get that ωα0 ≥2α0+1 ω

β , noting that ωβ = ωα0 +ωα0 ·ωβ−α0 .
‡‡Lusin and Sierpinski had already proved the class of countable well-orderings

is not Borel.
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Exercise II.42. Show that the Πin
2α formula defining the relation

of α-left limit in Exercise II.20 is best possible in the sense that there is
no Σin

2α formula defining the α-left limit relation in all linear orderings.
See hint in footnote.∗

Exercise II.43. (a) Show that the Σin
2α sentence ϕωα from Lemma

II.5 that says that a linear ordering is strictly less than ωα is the best
possible in the sense that there is no Πin

2α sentence expressing the same
thing. See hint in footnote.†

(b) Write a Πin
2α+1 sentence that is true exactly of the well-orderings

less than or equal to ωα. Show that there is no such Σin
2α+1 sentence.

Exercise II.44. ([Ash86a, Lemma 7]) This exercise provides a
complete description of the back-and-forth relations on ordinals. Given
different ordinals β and γ, decompose them as follows:

β = ωαβ1 + δ, & γ = ωαγ1 + δ,

where β1, γ1 6= 0, δ < ωα, and α is the largest for which such a de-
composition exists. To find such a decomposition, one needs to look
for the rightmost term in the Cantor normal forms of β and γ that is
different. Prove:

(a) Let m and n be the remainders of β1 and γ1 in the division
over ω. (I.e., β1 = ω · β2 + m, and γ1 = ω · γ2 + n.) Prove that either
|β1| 6= |γ1| or m 6= n, where |β| represents the size of β, that is, |β| = β
if β < ω and |β| =∞ if β ≥ ω.

(b) β ≤2α+1 γ if and only if |β1| ≥ |γ1|.
(c) If β1 and γ1 are both infinite, then β ≤2α+2 γ if and only if

n ≥ m.

Goncharov, Harizanov, Knight, McCoy, and R. Miller [GHK+05]
proved that

Zα · ω ≡2α+1 Zα · ω∗, but Zα · ω 6≤2α+2 Zα · ω∗,
and gave a complete analysis of the back-and-forth tuples within these
structures.

Exercise II.45. Prove that the Scott rank of Zα · A is 2α plus the
Scott rank of A.

Exercise II.46. Show that the parameterless Scott rank of an
ordinal δ is either 2 logω(δ) or 2 logω(δ) + 1, depending on whether

∗Consider ωα+ωα, and show that every Πin
<2α formula that holds of some tuple

also holds of some tuple contained in the left copy of ωα.
†Show that if a Πin

<2α formula is true about some tuple in ωα, then it also true
of some tuple inside a smaller ordinal.
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the Cantor normal form of δ starts with only one copy of ωlogω(δ) and
then continues with smaller terms, or starts with at least two copies of
ωlogω(δ).

Exercise II.47. What are the possible parametrized and parame-
terless Scott ranks of equivalence structures?

Exercise II.48. What are the possible parametrized and parame-
terless Scott ranks of Q-vector spaces?

II.6.2. Σ0
1- and Σ0

2-hardness. As we mentioned before, another
way of defining the back-and-forth relations is in terms of how difficult
it is to distinguish the ω-presentations of one structure from the ω-
presentations of the other. In this section, we work out the cases of
≤1 and ≤2, as to give the reader an idea of how these work. To get
the general characterization of ≤α we will need to use the technique of
forcing for the boldface case, which we will see in Chapter VII (Theorem
VII.30), and to use the technique of iterated true stages for the lightface
case, which we will see in Chapter IX (Theorems VIII.7 and IX.10).

Let us start with the ≤1-case.

Definition II.49. Given computable ω-presentations A and B, we
say that distinguishing A from B is Σ0

1-hard if there is a computable
operator Γ such that, for all X ∈ 2N, ΓX is an ω-presentation of a
structure, and

ΓX ∼=

{
A if X 6= 0∞

B if X = 0∞,

where 0∞ is the infinite sequence of all zeros.

Theorem II.50. Let A0 and A1 be computable ω-presentations such
that A1 ≤1 A0. Then distinguishing A1 from A0 is Σ0

1-hard.

Proof. Given X ∈ 2N, we build a structure BX uniformly com-
putable from X such that BX ∼= A1 if X contains some 1 and BX ∼= A0

if X is always 0. Let X̂ ∈ 2N be defined as follows:

X̂(s) = 1 ⇐⇒ ∃t ≤ s (X(t) = 1).

Thus, if X = 0∞, then X̂ = 0∞, and if X 6= 0∞, then X̂ starts
with a few zeros, and then it is all ones from some point on. At each
stage s we will define a finite tuple ās of length s that belongs to A0

if X̂(s) = 0, and to A1 if X̂(s) = 1. Let Bs be the finite structure
with domain {0, ..., s − 1} obtained as the pullback of ās. That is
D(Bs) = DA

X̂(s)
(ās). We will define BX as the limit of the structures
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Bs, so we need to ensure that they are nested. Equivalently, we need
to ensure that, for all s ∈ N,

DA
X̂(s)

(ās) ⊆ DA
X̂(s+1)

(ās+1).

We will end up with

D(BX) =
⋃
s

D(Bs) =
⋃
s

DA
X̂(s)

(ās).

In the construction, while X̂(s) = 0, we let ās consist of the first s
elements of A0. This way, if X = 0∞, we will end up with BX = A0 as
wanted.

Otherwise, there is a point at which X̂ changes its value from

X̂(s) = 0 to X̂(s + 1) = 1, and we need to switch and start taking
tuples from A1 instead of A0. Since A1 ≤1 A0, there is a tuple b̄ ∈ As1
so that (A1, b̄) ≥0 (A0, ās), i.e., DA0(ās) = DA1(b̄). Define ās+1 to be b̄,
together with some extra element from the domain of A1 so that it has

length s+ 1. From this point on we have that X̂ is all ones. When we

have X̂(s) = X̂(s + 1) = 1, we define ās+1 extending ās in A1 making
sure all elements of A1 will eventually show up. This way, we will end
up with BX ∼= A1. �

Let us now consider the ≤2 case.

Definition II.51. Given computable ω-presentations A and B, we
say that distinguishing A from B is Σ0

2-hard if there is a computable
operator Γ such that, for all X ∈ 2N, ΓX is an ω-presentation of a
structure and

ΓX ∼=

{
A if X has finitely many zeros

B if X has infinitely many zeros.

Theorem II.52. Let A0 and A1 be computable ω-presentations such
that A1 ≤2 A0, and such that the set

{〈ā, b̄〉 ∈ A<N
0 × A<N

1 : (A0, ā) ≤1 (A1, b̄)}

is c.e. Then distinguishing A1 from A0 is Σ0
2-hard.

Proof. Given X ∈ 2N, we build a structure BX uniformly com-
putable from X such that BX ∼= A0 if X has infinitely many zeros
and BX ∼= A1 if X is always one from some point on. As above, at
each stage s we will define a tuple ās ∈ AX(s) of length s satisfying
DAX(s−1)

(ās−1) ⊆ DAX(s)
(ās). As above, we can then define BX as the
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limit of a nested sequence of finite structures Bs defined as the pullback
through ās of AX(s). We end up with

D(BX) =
⋃
s

DAX(s)
(ās).

In the case where there is a point after which X(s) is always 1,
if we ensure that after that point we have ās ⊆ ās+1, we will end up
with BX ∼= A1. This will follow from the case X(s− 1) = X(s) in the
construction below.

In the case where X has infinitely many zeros, to ensure that the
limit structure is isomorphic to A0, we will require that

• if t < s and X(t) = X(s) = 0, then āt ⊆ ās ∈ A<N
0 .

We will then have that g =
⋃
s:X(s)=0 ās is a bijection from BX to A0.

Suppose that we have X(t) = X(s) = 0 and that X(r) = 1 for all r
between t and s. Suppose that we have already defined ās−1 ∈ A<N

1

and we want to define ās. We need to find ās ∈ A0 extending āt and
satisfying that DA1(ās−1) ⊆ DA0(ās). What condition would guarantee
the existence of such ās? The answer is: (A0, āt) ≤1 (A1, ās−1). So, let
us impose that condition too:

• if t < r, X(t) = 0 and X(r) = 1, then (A0, āt) ≤1 (A1, ār).

This adds an additional burden in the construction of ār. The condition
that guarantees the existence of such ār is A0 ≥2 A1.

Let us be more precise in the construction of ās:

(1) If X(s− 1) = X(s), let ās extend ās−1 by adding one element,
say the least element in the ω-presentation AX(s) that is not
already in ās−1.

(2) If X(s) = 1 and X(s − 1) = 0, define ās ∈ As1 so that
(A0, ās−1) ≤1 (A1, ās). The existence of such ās follows from
the hypothesis that A0 ≥2 A1. We can find ās computably by
our effectiveness condition on ≤1.

(3) If X(s) = 0 and X(s − 1) = 1, let t < s − 1 be the largest
with X(t) = 0. Because of the way we have carried out the
constructions so far, we have that

āt ≤1 āt+1 ⊆ āt+2 ⊆ · · · ⊆ ās−1.

Thus (A0, āt) ≤1 (A1, ās−1). We then know that there exists
ās ∈ As0 with ās ⊇ āt and (A0, ās) ≥0 (A1, ās−1).

This finishes the construction of the sequence of tuples 〈ās : s ∈ N〉
satisfying the conditions we imposed above. �
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II.7. Scott sentence complexity

The Scott rank of a structure was defined in Section II.3 as a mea-
sure of the complexity of the automorphism orbits of tuples in the
structure. We then saw in Proposition II.26 that the Scott rank also
measures the complexity of the Scott sentences for the structure: A
structure is Σin

α -atomic over parameters (i.e., it has Scott rank α) if
and only if it has a Σin

α+2-Scott sentence. The former is a measure of
complexity from within, measuring the difficulty of distinguishing tu-
ples within the structure. The latter is a measure of complexity from
the outside, measuring the difficulty of distinguishing the structure
from other structures.

In this section, we analyze the second approach further and look for
the simplest Scott sentences. We will see that when the Scott rank of
a structure is a successor ordinal, using the parameterless Scott rank
and the parametrized Scott rank of a structure we can deduce its Scott-
sentence complexity, and vice versa, as in Table 1 below. If the Scott
rank of a structure is a limit ordinal, we get new interesting cases.

We use d-Σin
α to denote Σin

α ∧ Πin
α , that is, the class of formulas of

the form ϕ∧ ψ, where ϕ is Σin
α and ψ is Πin

α . (The ‘d’ is for difference,
as these formulas can be viewed as the difference of two Σin

α formulas.)
As we will see in Theorem II.57 below, if a structure has both a Σin

α+1

Scott sentence and a Πin
α+1 Scott sentence, then it has a d-Σin

α Scott
sentence.

Remark II.53. Alvir and Harrison-Trainor [AGHTT21] showed
that the Wadge degree of the set of ω-presentations of a structure can
only be Σ0

α, Π0
α, or d-Σ0

α. Alvir, Greenberg, Harrison-Trainor, and
Turetsky [AGHTT21] do a deep analysis of the landscape of Scott
sentence complexities.

Definition II.54. The Scott-sentence complexity of a structure A
is the complexity of the simplest Scott sentence for A, which could be
Σin
α , Πin

α , or d-Σin
α for some ordinal α.

Let us start by ruling out a few cases. Harrison-Trainor [AGHTT21]
(and previously Arnold Miller [Mil83] for relational languages only)
showed that no infinite structure has a Σin

2 Scott sentence.
Finite structures have d-Σin

1 Scott sentences, but we will not worry
about them. Thus, the simplest Scott-sentence complexity of an infinite
structure is Πin

2 , which is the Scott-sentence complexity of ∃-atomic
structures [Part 1, Theorem ??]. We can also rule out Σin

α and d-Σin
α

for limit ordinals α as possible Scott-sentence complexities: This is
because if a structure satisfies a Σin

α formula, it must satisfy one of its
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Scott sentence parametrized parameterless complexity of
complexity Scott rank Scott rank parameters

Σin
α+2 α α + 2 Πin

α+1

d-Σin
α+1 α α + 1 Πin

α

Πin
α+1 α α none

α limit ordinal:
Σin
α+1 α α + 1 Πin

α

Πin
α α α none

Table 1. This table shows all the possible Scott-
sentence complexities for structures of Scott rank α. The
first three rows are for all α ≥ 1, and the last two lines
occur only when α is a limit ordinal. All these cases are
attainable. The left column reflects the Scott-sentence
complexity, the second column the Scott rank, the third
column the parameterless Scott rank, and the last col-
umn the complexity of the parameters over which the
structure is Σin

α -atomic.

disjuncts which is Σin
β for some β < α. Therefore, if a structure has

a Σin
α Scott sentence, it has a simpler one. Also, if a structure has a

d-Σin
α Scott sentence, the Σin

α -conjunct could be simplified to Σin
β for

some β < α, and hence the structure would have a Πin
α Scott sentence.

All other Scott-sentence complexities are attainable — we will give
examples or references below.

Suppose we have a structureA of Scott rank α. We dedicate the rest
of this section to analyzing the possible Scott-sentence complexities of
A. We know from Proposition II.26 that A has a Σin

α+2 Scott sentence
and no Σin

β+2 Scott sentence for any β < α. This does not say anything
about whether A has a Πin

α+1 or Πin
α+2 Scott sentence, which, as we will

see, will depend on the complexity of the parameters over which A is
Σin
α -atomic. Also, when α is a limit ordinal, this does not rule out A

having a Σin
α+1 Scott sentence and still having Scott rank α.

Let p̄ ∈ A<N be such that (A, p̄) is Σin
α -atomic. The first observation

is that the orbit of these parameters must be Πin
α+1-definable: We know

that (A, p̄) has a Πin
α+1 Scott sentence ϕ(p̄) (Proposition II.26), and

hence ϕ(x̄) is a Πin
α+1 formula defining the automorphism orbit of p̄.

Let us now consider three cases depending on the complexity of these
parameters.
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Case 1. The automorphism orbit of p̄ is not Σin
α+1 definable. In

this case we know from Proposition II.26 that A does not have a Πin
α+2

Scott sentence, and hence its Scott-sentence complexity must be Σin
α+2.

Here is an example.

Exercise II.55. (due to A. Miller) Show that the adjacency linear
ordering (2 · Q + 1 + Q;≤,Adj) has Scott rank 1 and Scott-sentence
complexity Σin

3 . See hint in footnote.‡

Case 2. The automorphism orbit of p̄ is Σin
α+1 definable, but not

Σin
α definable. As we prove below, in this case, the structure must

have a d-Σin
α+1 Scott sentence. We know from Proposition II.26 that

A does not have a Πin
α+1 Scott sentence. This implies that the Scott-

sentence complexity must be either d-Σin
α+1 or Σin

α+1. When α is a
successor ordinal, the latter case would imply that the structure has
Scott rank α−1, and hence the only possibility is to have Scott-sentence
complexity d-Σin

α+1.

Exercise II.56. Show that ωα +ωα has Scott sentence complexity
d-Σin

2α+1. See hint in footnote.§

When α is a limit ordinal, an example of a structure with Scott-
sentence complexity Σin

α+1 was recently built by Alvir, Greenberg, Harrison-
Trainor, and Turetsky [AGHTT21].

Theorem II.57 (A. Miller [Mil83], D.Miller [Mil78]). Let A be a
structure and α an ordinal. The following are equivalent:

(1) A has both a Σin
α+2 Scott sentence and a Πin

α+2 Scott sentence.
(2) A is Σin

α -atomic over a tuple of parameters whose automor-
phism orbit is Σin

α+1-definable.
(3) A has a d-Σin

α+1 Scott sentence.

Proof. (Alvir [AKM20]) Start by assuming (1) and let us prove
(2). Since A has a Σin

α+2 Scott sentence, A must be Σin
α -atomic over

some tuple of parameters. Since A also has a Πin
α+2 Scott sentence, the

automorphism orbit of every tuple is definable by a Σin
α+1 formula as in

Proposition II.26.
Let us now assume (2) and prove (3). Let p̄ be the parameters over

which A is Σα-atomic. Let ϕ(p̄) be a Πα+1 Scott sentence for (A, p̄),
and let γ(x̄) be a Σin

α+1 formula defining the automorphism orbit of p̄.
The following formula is a Σin

α+1 ∧ Πin
α+1 Scott sentence for A:

∃x̄γ(x̄) ∧ ∀x̄(γ(x̄)→ ϕ(x̄)).

‡Show that it is ∃-atomic over the middle ‘1,’ but that the middle ‘1’ is not
Σin

2 -definable as it is ≥2 all elements to its right.
§Use Exercise II.42 on α-limits.
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To see that this is a Scott sentence for A, suppose it is true about B.
Let b̄ ∈ B<N be such that B |= γ(b̄). We then have that (B, b̄) |= ϕ(b̄),
and hence that (A, p̄) ∼= (B, b̄).

The implication (3) ⇒ (1) is straightforward. �

If we keep on simplifying the parameters, the next step is when the
parameters are Πin

α , which turns out to be equivalent to the case above.

Lemma II.58. In the theorem above, we have a fourth equivalent
statement

(4) A is Σin
α -atomic over a tuple of parameters whose automor-

phism orbit is Πin
α -definable.

Proof. It is clear that (4) implies (2). For the converse, assume
the statements in the theorem are true about A. We then have that
A is Σα-atomic over a tuple p̄ of parameters which is Σin

α+1 definable.
If an automorphism is Σin

α+1 definable, one of the disjuncts must be
true about the tuple, and hence that disjunct must define its auto-
morphism orbit too. We thus have that p̄ is definable by a formula
of the form ∃ȳ γ(x̄, ȳ), where γ is Πin

α . Let b̄ ∈ A<N be a witness for
A |= γ(p̄, b̄). Recall that since every automorphism orbit is definable
by a Σin

α formula over p̄, so is every automorphism invariant relation
(as an automorphism invariant relation is a union of automorphism
orbits). Taking complements, we get that all automorphism invariant
sets are Πin

α definable, and in particular so are all automorphism or-
bits. We thus get that the automorphism orbit of b̄ is Πin

α definable
over p̄; let δ(x̄, ȳ) be such that if A |= δ(p̄, b̄′), then b̄′ is automor-
phic to b̄ via some automorphism that fixes p̄. We claim now that
the automorphism orbit of p̄b̄ is Πin

α definable without parameters by
the formula γ(x̄, ȳ) ∧ δ(x̄, ȳ). This would finish the proof of the the-
orem because A is Σin

α -atomic over p̄b̄. To prove the claim, suppose
A |= γ(p̄′, b̄′) ∧ δ(p̄′, b̄′) — we need to show that p̄′b̄′ is automorphic to
p̄b̄. First, since A |= ∃ȳ γ(p̄′, ȳ), we get that p̄ and p̄′ are automorphic.
Let b̄′′ be the tuple matching b̄′ under this automorphism so that p̄′b̄′

is automorphic to p̄b̄′′. Then, since A |= δ(p̄′, b̄′), we also have that
A |= δ(p̄, b̄′′) and then that p̄b̄′′ is automorphic to p̄b̄. �

Case 3. The orbit of the parameters p̄ is Σin
α definable. In that case,

all orbits would be Σin
α definable without parameters, and A would be

Σα-atomic over no parameters. Thus, A would have a Πin
α+1 Scott

sentence. In the case when α is a successor ordinal, A does not have a
Σin
α+1 Scott sentence, as otherwise it would have Scott rank α−1, so the

Scott sentence complexity must be Πin
α+1. An example of a structure of

Scott sentence complexity Πin
2α+1 is the linear ordering ωα (see Exercise
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II.46). In the cases where α is a limit ordinal, the structure could have
Scott sentence complexity Πin

α . (Recall that d-Σin
α and Σin

α are not
possible.) An example of a structure with Scott-sentence complexity
Πin
α for limit α is given by the disjoint union of structures of Scott ranks

αn, where supn∈N αn = α, having unary predicates to distinguish the
domains of the different structures.

Historical Remark II.59. Most of the analysis of the last section
was also done independently and almost simultaneously by Rachel Alvir
[Alv].

The original proof of Theorem II.57 by A. Miller [Mil83] was no more
than an observation using D. Miller’s descriptive set theoretic result [Mil78]
that when we have a Polish group acting continuously on a Polish space,
two disjoint Π0

α+1 invariant sets of reals can be separated by a countable

union of invariant Σ0
α ∧ Π0

α sets of reals. A. Miller’s paper [Mil83] ana-
lyzes which Scott-sentence complexities are possible by studying the Borel
complexity of the sets of ω-presentations. A. Miller also proves that Σin

2 is
not a possible Scott-sentence complexity when the vocabulary is relational.
Matthew Harrison-Trainor [AGHTT21] then proves this for all vocabular-
ies. A. Miller shows Πin

ω is a possible Scott-sentence complexity, and claims
his proof can be extended to Πin

λ for all limit ordinals λ, but it is not clear
how to do that. However, our construction above (due to Harrison-Trainor)
easily works for all λ. A. Miller left open whether Σin

λ+1 for λ limit is a pos-
sible Scott sentence complexity. Alvir, Greenberg, Harrison-Trainor, and
Turetsky’s have recently shown it is [AGHTT21].

The proof of Theorem II.57 given above is quite recent and due to Rachel
Alvir [AKM20]. In that paper, they also prove a computability theoretic
version: If A has both a computable Σα+1 and a computable Πα+1 Scott
sentence, then it has a computable Σα ∧Πα one.

The most comprehensive analysis of the Scott sentence complexity
of structures within a class of structures is Alvir and Rossegger’s study
of scattered linear orderings [AR20b].

II.8. The Löwenheim-Skolem theorem

We say that an Lω1,ω sentence is satisfiable if it is true in some
structure. In finitary first-order logic, this is equivalent to being con-
sistent. Versions of this equivalence have been proved for infinitary
logic once the correct notion of infinitary proof is defined. We will not
get into infinitary proofs in this book — the interested reader may con-
sult [Bar75, Chapter III]. However, we would still like to understand
the complexity of the satisfiability predicate. As we defined it, it uses
an existential quantifier over models of arbitrary size — this is way
too complex for us. Fortunately, the Löwenheim-Skolem theorem from
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finitary first-order logic works for infinitary logic too, as we will see
below. This implies that an Lω1,ω sentence is satisfiable if and only if
it is true in some countable structure, which will allow us to conclude
that the satisfiability predicate is Σ1

1.

Lemma II.60 (Vaught’s criterion). Let Ψ be a set of Lω1,ω formulas
closed under taking sub-formulas. Consider structures A ⊆ B such
that, for every ψ(x̄, y) ∈ Ψ and ā ∈ A|x̄|, if B |= ∃y ψ(ā, y), then there
exists a c ∈ A such that B |= ψ(ā, c). Then, for every θ(x̄) ∈ Ψ and
ā ∈ A|x̄|, A |= θ(ā) ⇐⇒ B |= θ(ā).

Proof. The proof is by induction on formulas the same way as in
the standard proof of Vaught’s criterion. The only difference is that
now we need to use well-founded induction. For atomic formulas this
is immediate. For negations too. For infinitary conjunctions, apply
the inductive hypothesis to each conjunct. Do the same for infinitary
disjunctions. Lastly, given an existential formula ∃y ψ(ā, y) and ā ∈
A<N, B |= ∃y ψ(ā, y) if and only if B |= ψ(ā, c) for some c ∈ A by
our assumptions on A and B, which by the induction hypothesis holds
if and only if A |= ψ(ā, c) for some c ∈ A, which is equivalent to
A |= ∃y ψ(ā, y). For universal formulas, negate existential ones. �

Theorem II.61 (Löwenheim-Skolem). If an Lω1,ω sentence is satis-
fied in some model of any cardinality, then it is satisfied in a countable
structure.

Proof. Let θ be an Lω1,ω sentence and B an uncountable model of
θ. Let Ψ be the set of all sub-formulas of θ, including θ itself. We will
build a countable sub-structure A of B satisfying Vaught’s criterion for
Ψ. Since θ ∈ Ψ and B |= θ, this will imply that A |= θ.

The construction of A is a standard closure argument. Let A0 be
the countable sub-structure of B generated by the constants in the
vocabulary τ . Given An, we define An+1 with An ⊆ An+1 ⊆ B by
first adding a witness c ∈ B for each formula ψ(x̄, y) ∈ Ψ and tuple

ā ∈ A|x̄|n such that B |= ∃y ψ(ā, y) and then closing under the functions
of the vocabulary to obtain a sub-structure An+1. Note that since An
and Ψ are countable, we are adding at most countably many witnesses,
keeping An+1 countable. Finally, let A =

⋃
n∈NAn, and observe that

the sub-structure A of B with domain A satisfies the hypothesis of
Vaught’s criterion for Ψ, and hence satisfies θ. �

II.9. Scott rank via back-and-forth relations

In this last section we will see how the Scott rank can be defined in
terms of the back-and-forth relations using the notion of α-free tuple.
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This will allow us to calculate the Scott rank of a structure if we know
how to calculate the back-and-forth relations on it. This section is a
bit technical, so some readers may want to skip it. We will use results
from this section in Theorem VII.21 later in the book.

As we mentioned before, there are various non-equivalent definitions
of Scott rank in the literature. Most of them are defined out of some
notion of back-and-forth relation, of which there are also various non-
equivalent definitions. The closest definition to ours is from Ash and
Knight [AK00, Section 6.7], who use the same back-and-forth relations
we use but a slightly different definition of rank. They define r(A) to be
the least α for which the relation ≤α coincides with the automorphism
relation on A, that is, the least α such that, for all ā, b̄ ∈ A<N, ā ≤α b̄
implies ā ∼= b̄. We will prove below that

r(A) ≤ SR
p-less

(A) ≤ r(A) + 1

for all structures A, where SR
p-less

(A) denotes the parameterless Scott
rank of A.

We start with a lemma that shows that all Πin
α types realized in a

structure A are Πin
α -principal within the structure.

Lemma II.62. For every ā ∈ A<N and every ordinal α, there is a
Πin
α formula ϕā(x̄) true about ā which, within A, implies all other Πin

α

formulas true about ā. In other words

A |= ∀x̄
(
ϕā(x̄) ↔

∧∧
ψ∈Πin

α -tpA(ā)

ψ(x̄)
)
,

or equivalently, for all b̄ ∈ A|ā|,
A |= ϕā(b̄) ⇐⇒ ā ≤α b̄.

Proof. About the equivalence of the last two statements, recall
from Theorem II.36 that ā ≤α b̄ if and only if b̄ satisfies all the formulas
in Πin

α -tpA(ā).
We know from Theorem II.36 that for every c̄ ∈ A|ā| with ā 6≤α c̄

there is a Πin
α formula ψc̄(x̄) true about ā, false about c̄. It follows that∧∧

c̄∈A|ā|
ā6≤αc̄

ψc̄(x̄)

is true about ā and false about any c̄ 6≥α ā. Since this formula is Πin
α ,

again by Theorem II.36, it must also be true about all b̄ ≥α ā. �

It follows that if ≤α coincides with the automorphism relation on A,
then every automorphism orbit is Πin

α -definable, as every automorphism
orbit is of the form {b̄ ∈ A|ā| : ā ≤α b̄} for some ā ∈ A<N. Conversely, if
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every automorphism orbit is Πin
α -definable, every automorphism orbit

is of the form {b̄ ∈ A|ā| : ā ≤α b̄}, and hence ≤α coincides with the
automorphism relation on A. Therefore, r(A) is the least ordinal α
such that every automorphism orbit in A is Πin

α -definable. Since Πin
α -

definable implies Σin
α+1-definable, we get that SR

p-less
(A) ≤ r(A) + 1.

Since having all orbits Σin
α -definable implies that all automorphism-

invariant sets are also Σin
α -definable, and hence Πin

α -definable (by taking
complements), it follows that SR

p-less
(A) ≤ r(A) as we had claimed

above. In any case, we get that if β > SR
p-less

(A) then ≤β coincides
with the automorphism relation on A, and if β < SR

p-less
(A) then ≤β

does not coincide with the automorphism relation on A.
For some structures, we have r(A) = SR

p-less
(A) while for other

structures, we have r(A) = SR
p-less

(A) + 1.

Exercise II.63. Give an example of a structure with r(A) =
SR

p-less
(A) and another example with r(A) = SR

p-less
(A) + 1.

To distinguish between these two cases, we need to introduce the
notion of an α-free tuple.

Definition II.64. (Ash and Knight [AK00, Section 17.4]) We say
that a tuple ā is α-free in A if for every tuple b̄ ∈ A|ā| and every β < α,
there are tuples ā′, b̄′ such that

āb̄ ≤β ā′b̄′ and

ā 6≤α ā′.

Lemma II.65. A tuple ā is α-free if and only if its Πin
α type is not

Σin
α supported within A.¶

Proof. For the (⇒) direction, suppose that the Πin
α type of ā is

Σin
α supported within A by the formula ∃ȳϕ(x̄, ȳ) where ϕ is Πin

β for
some β < α. (Recall that if the Πin

α type of ā is supported by a formula
of the form

∨∨
i ∃ȳϕi(x̄, ȳ), then whichever of these disjuncts is true

about ā would also support its Πin
α type.) Let b̄ be a witness to this

formula, i.e., A |= ϕ(ā, b̄). Now, for every ā′, b̄′, if āb̄ ≤β ā′b̄′, then
A |= ϕ(ā′, b̄′) as ϕ is Πin

β . Since ∃ȳϕ(x̄, ȳ) supports Πin
α -tpA(ā), we get

that ā′ satisfies all the formulas in Πin
α -tpA(ā) and hence that ā ≤α ā′.

This shows that ā is not α-free.
Conversely, suppose that ā is not α-free, and that b̄ and β < α are

such that for every pair of tuples ā′, b̄′, if āb̄ ≤β ā′b̄′ then ā ≤α ā′. Let
ϕ(x̄, ȳ) be the Πin

β -formula given by the previous lemma which implies

¶Supported types were defined in II.21.
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the whole Πin
β type of āb̄. We claim that ∃ȳ ϕ(x̄, ȳ) supports the Πin

α -
type of ā. To see this, suppose that A |= ∃ȳ ϕ(ā′, ȳ) for some tuple ā′

— we need to show that ā ≤α ā′. Let b̄′ be such that A |= ϕ(ā′, b̄′). It
follows that āb̄ ≤β ā′b̄′, and hence that ā ≤α ā′. �

Theorem II.66 (Ash and Knight [AK00, Proposition 6.11]). The
parameterless Scott rank of A is the least α for which no tuple is α-free.

Proof. Follows directly from Theorem II.23. �

We can use this characterization of Scott rank to build infinitary
sentences that are true of structures with certain Scott ranks.

Lemma II.67. For each vocabulary τ and ordinal α, there is a Πin
2α+2

sentence ρα such that

A |= ρα ⇐⇒ SR(A) ≥ α

for all τ -structures A.

Proof. The idea is for ρα to say that for every possible tuple
of parameters z̄ there is no tuple x̄ that is α-free over z̄. (For the
parameterless Scott rank just omit the parameters.) Thus, we can
define ρα as

∀z̄ ∀x̄ (x̄ is not α-free over z̄), ‖

and we can write down x̄ being α-free over z̄ as∧∧
β<α

∀ȳ ∃x̄′ȳ′ (z̄x̄ȳ ≤β z̄x̄′ȳ′ ∧ z̄x̄ 6≤α z̄x̄′).

We need to show that the back-and-forth relations≤β are Lω1,ω-definable.
In other words, we need formulas ϕβ(x̄, ȳ) for β ≤ α such that

A |= ϕβ(ā, b̄) ⇐⇒ (A, ā) ≤β (A, b̄).
These formulas can be easily defined by transfinite recursion by spelling
out the definition of ≤β from Definition II.32. That is, define

ϕβ(x̄, ȳ) as
∧∧
γ<β

∀w̄ ∃z̄ ϕγ(ȳw̄, x̄z̄).

The base case needs to say that x̄ and ȳ have the same diagrams:
ϕ0(x̄, ȳ) is the formula

∨
σ∈2

`|x̄| D(x̄) = σ ∧D(ȳ) = σ.

To see that ρα is Πin
2α+2, we first need to observe that ϕβ is Πin

2β. To
see this, we need to change the definition of ϕβ that we give above in
the case when β is a limit ordinal. When β is a limit ordinal, we can
define ϕβ as

∧∧
γ<β ϕγ. We can then use transfinite induction to show

‖ A tuple ā is α-free over a tuple b̄ in A, if it is α-free in (A, b̄).
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that ϕβ is Πin
2β. Then, we get that the formula saying that x̄ is α free

is Πin
2α+1, and that ρα is Πin

2α+2. �



CHAPTER III

Computably Infinitary Languages

To study the computational properties of structures syntactically
the appropriate language is the computable infinitary language, as first
noticed by Chris Ash in [Ash86b]. We are referring to the subset of
Lω1,ω that consists of the infinitary formulas that have computable
representations. It can also be defined as the set of Lω1,ω formulas
where the infinitary conjunctions and disjunctions must be taken over
computable lists of formulas. We have already worked with the first
few levels of the computable infinitary language in [Part 1]. The
main result connecting these formulas with computational complex-
ity is the Ash-Knight-Manasse-Slaman–Chisholm Theorem [Part 1,
Theorem ??], which states that a relation is r.i.c.e. if and only if it is
Σc

1 definable over parameters. We will see in Theorem VII.18 that this
result extends through the arithmetic and hyperarithmetic hierarchies.

III.1. Representing infinitary formulas as trees

When we defined infinitary formulas in the past chapter, we did
not really represent them as concrete objects — such formality was
not necessary. However, now that we want to talk about computable
representations of formulas, we need to settle on some way of repre-
senting them. We will represent infinitary formulas with trees, where
each node is labeled with either VV,

VV

,

A

x, or

E

y, and each leaf of the
tree is labeled with a finitary quantifier-free formula.

Definition III.1. A tree representation for a τ -Lω1,ω formula con-
sists of

(1) a well-founded tree T ,
(2) a labeling function ` that assigns to each node of T a string

of characters satisfying that, if σ is a leaf of T , then `(σ) is a
finitary quantifier-free τ -formula, and if σ is not a leaf, then
`(σ) can be one of: VV,

VV

,

A

x, or

E

y, where x and y can be
any variable symbols. When `(σ) is either

A

x or

E

y, σ has a
unique child in the tree T .

53
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A

x

A

y

VV

xEy

E

z1

xEz1 ∧ z1Ey

E

z1

E

z2

xEz1 ∧ z1Ez2 ∧ z2Ey

...
. . ....

. . .
. . .

Figure III.1. Tree for the infinitary sentence that says
that a graph is connected.

(3) a free-variable function var(·) that assigns to each node of T a
finite set of variables satisfying that, if `(σ−) = VV or `(σ−) =VV

, then var(σ) ⊆ var(σ−); if `(σ−) =

A

y or `(σ−) =

E

y, then
var(σ) ⊆ var(σ−) ∪ {y}; and if σ is a leaf of the tree, then the
quantifier-free formula `(σ) only uses variables from var(σ).∗

Now that we know what a formula is, the next step is to describe
what it does. That is, we need to define the satisfaction relation |=
that, given a formula ϕ(x̄), a structure A, and a tuple ā, decides if
ϕ is true of ā in A, written A |= ϕ(ā). For this, we need to define
the notion of valuation, which is a function that assigns a truth value
to every sub-formula of ϕ with every possible interpretation for their
variables.

Definition III.2. Consider an infinitary formula ϕ as in the def-
inition above with free variables x̄ = var(〈〉), a structure A, and a
tuple ā ∈ A|x̄|. A valuation for ϕ and A is a function v that assigns
to each σ ∈ T and each variable assignment p̄ : var(σ) → A, a truth
value v(σ, p) in {True, False}. A valuation v is valid if it satisfies the
obvious rules of logic, that is:

• If `(σ) = VV, then v(σ, p) = True if and only if, for some i with
σai ∈ T , v(σai, p) = True.
• If `(σ) =

VV

, then v(σ, p) = True if and only if, for all i with
σai ∈ T , v(σai, p) = True.
• If `(σ) =

E

x and τ is the unique child of σ in T , then v(σ, p) =
True if and only if, for some b ∈ A, v(τ, p[7→ b]) = True.
• If `(σ) =

A

x and τ is the unique child of σ in T , then v(σ, p) =
True if and only if, for all b ∈ A, v(τ, p[x 7→ b]) = True.

∗ We use σ− to denote σ without its last entry.
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• If σ is a leaf of the tree, then v(σ, p) = True if and only if A
satisfies the quantifier-free formula `(σ) with the variables in
var(σ) assigned according to p.†

It can be shown by transfinite recursion that, for every structure A
and formula ϕ as above, a valid valuation exists and is unique.

Definition III.3. We let A |= ϕ(ā) if v(〈〉, p) = True, where v
is the unique valid valuation v for ϕ and A, and p is the variable
assignment mapping x̄ to ā.

Observation III.4. We will introduce Π1
1 and Σ1

1 sets in the next
chapter, but for those readers already familiar with these notions, let
us observe that A |= ϕ(ā) is a Σ1

1 property of A, ϕ, and ā: one needs
a 2nd-order existential quantifier to say that there exists a valuation
and then checking that a valuation is valid is arithmetical. By the
uniqueness of valuations, it is also a Π1

1 property.

Definition III.5. The computable infinitary formulas are the ones
with computable tree representations, meaning that the tree T and the
functions `(·) and var(·) are all computable. We use Lc,ω to denote the
set of all computable infinitary formulas.

Example III.6. The formulas for torsion, connectedness, and finitely
apart from Section II.1.1 are all computable. So are the formulas that
give bounds for well-founded ranks and well-orderings from Lemmas
II.4 and II.5 when the given ordinal is computable. To see this, one
has to use effective transfinite recursion (Theorem I.33). Let us look,
for instance, at the formula ψα(x) from Section II.1.3 that expresses
that the well-founded rank of x in a partial ordering is at most α.
Recall that we defined

ψα(x) as ∀y < x
∨∨
γ<α

ψγ(y).

Suppose we were already given a computable ω-presentation β of an
ordinal, and we are thinking of α as a member of β. We need to define a
computable function with domain β, such that for every γ in β, it gives
us an index for a computable tree-representation of the formula ψγ(x).
This is a direct application of effective transfinite recursion (Theorem
I.33): If we are given a function that gives us the indices for the tree-
representations of ψγ(y) for γ < α, we can easily build a computable
tree-representation of ∀y < x

∨∨
γ<α ψγ(y).

†By p[x 7→ b] we mean the variable assignment that maps x to b and behaves
like p on the variables different from x.
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The sentence from Lemma II.67 that hold on a structure if and only
if the structure has Scott rank at least α is also computable provided
α is a computable ordinal.

We now want to classify the computable infinitary formulas accord-
ing to their alternation-of-quantifier complexity. The process of count-
ing alternations of quantifiers in infinitary formulas is not necessarily
computable. Thus, for technical reasons, in the definition below we ask
for the existence of a computable function that counts alternations.

Definition III.7. The computable infinitary Σα formulas, which
we denote by Σc

α, are the computable infinitary formulas for which we
can computably witness that they are Σin

α . That is, given a computable
ordinal α, a computable infinitary formula is Σc

α if there is a computable
ranking function that assigns Σc

α to the root of the tree. A ranking
function assigns to each node in the tree representation a symbol of
the form Σc

β or Πc
β for β ∈ α+ 1 following the obvious rules: Formulas

that start with

A

and

VV

are assigned Πc’s, and formulas that start withE

and VV are assigned Σc’s; every time a node switches with respect to
its parent node from either

A

or

VV

to either

E

and VV or vice versa, its
ranking goes down;‡ and the finitary quantifier-free sub-formulas may
be assigned either Σc

0 or Πc
0.

Every computable infinitary formula is Σc
α or Πc

α for some com-
putable ordinal α: Given a formula ϕ as above, let α be the Kleene-
Brouwer ordering on T , and assign to each node σ of T either Σc

σ or
Πc
σ according to whether `(σ) is

E

or VV, or

A

or

VV

. Let us note that
this is far from the optimal ranking function for ϕ.

III.2. Representations from the bottom up

Another way of defining computable infinitary formulas is by re-
quiring the infinitary conjunctions and disjunctions to be over lists of
formulas that are computable. For this to make sense, we need to have
already defined indices for the formulas of smaller rank, so that we can
talk about conjunctions and disjunctions over a c.e. set of indices. We
then need to define indices for computable infinitary formulas by effec-
tive transfinite recursion. The idea is that a Σc

α formula with index e is
the disjunction of all the formulas with indices in We, the e-th c.e. set.
We use the same idea as when we defined indices for the Σc

1 formulas

‡We do not ask for the ordinal assigned to a node to be the least one with
these properties. Thus, this ranking function does not need to be the least ranking
function.
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in [Part 1, Section ??]. Let ϕ
qf

i,j(x̄) for i, j ∈ N be an effective enumer-
ation of the quantifier-free finitary τ -formulas, where j is the number

of free variables (i.e. j = |x̄|). Let ϕ
Πc

0
i,j (x̄) = ϕ

Σc
0
i,j (x̄) = ϕ

qf

i,j(x̄). Given

a computable ordinal α, we define ϕΣc
α
e,j (x1, ..., xj), the e-th Σc

α formula
with j free variables as follows:

ϕΣc
α
e,j (x1, ..., xj) is

∨∨
〈i,k,β〉∈We

β∈α

∃y1, ..., yk ϕ
Πc
β

i,j+k(x̄, ȳ),

and define

ϕΠc
α
e,j (x1, ..., xj) as

∧∧
〈i,k,β〉∈We

β∈α

∀y1, ..., yk ϕ
Σc
β

i,j+k(x̄, ȳ).§

By effective transfinite recursion on a computable well-ordering α,
one can define a function that, given β < α, an index e, and a number

j, produces computable tree representations for the formulas ϕ
Σc
β

e,j and

ϕ
Πc
β

e,j , and computable ranking functions. Conversely, again by effective
transfinite recursion, given a tree representation with a computable
ranking function for a Σc

α formula, we can effectively find an index for
it.

§When we write Πc
β for β ∈ α, we are identifying the ordinal β with the corre-

sponding element of the given ω-presentation for α.





CHAPTER IV

Pi-one-one Sets

In this chapter, we explore the tight connection between Π1
1-ness

and well-orderness. This connection is one of the pillars of higher re-
cursion theory.

Recall that a formula in the language of second-order arithmetic is
arithmetic if it has no quantifiers over second-order objects (see page
xx). Throughout this section, we will use the variables F and G to
range over functions N → N. We call them second-order variables.
We call the elements of 2N and NN reals. We use n, m, x, y, z, etc.
for variables that range over numbers in N. We call them first-order
variables.

Definition IV.1. A Π1
1 formula is one of the form

∀F ∈ NN ϕ(F ),

where ϕ is an arithmetic formula which may have both first-order and
second-order free variables other than F . A Σ1

1 formula is one of the
form ∃F ∈ NN ϕ(F ), where ϕ is an arithmetic formula.

A subset of either N or NN is said to be Π1
1 if it can be defined by

a Π1
1 formula.

Observation IV.2. Standard arguments show that Π1
1 formulas

are closed under conjunctions and disjunctions. It is not hard to
see that they are also closed under first-order universal quantification:
∀x∀F θ(F, x) is equivalent to ∀F∀x θ(F, x). They are also closed under
first-order existential quantification, but this requires an argument; one
has to observe that

∃n ∈ N ∀F ∈ NN θ(F, n) ⇐⇒ ∀F ∈ NN ∃n ∈ N θ(F [n], n),

where F [n](m) = F (〈n,m〉). The (⇒) direction is straightforward. For
the (⇐) direction, prove the contra-positive as follows: If ∀n ∃Fn¬θ(Fn, n),
then F =

⊕
n Fn witnesses that ∃F ∀n ¬θ(F [n], n).

59
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IV.1. Well-orders

Recall from Definition I.30 that Kleene’s Owo is the set of indices for
computable well-orderings, using the indexing from Lemma I.29 that
assigns a linear ordering Le to each natural number e.

Observation IV.3. Kleene’s Owo is a Π1
1 subset of N. Just write

down its definition and count quantifiers: e ∈ Owo if and only if no
function from N to Le is a descending sequence in Le, that is, if
∀F ∃n (F (n+ 1) 6<Le F (n)).

Similarly, WO, the set of (⊆ω)-presentations of well-orderings, is a
Π1

1 subset of 2N.

Definition IV.4. A set X ⊆ N is Π1
1-complete if it is Π1

1 and every
other Π1

1 set Y ⊆ N m-reduces to it. A set X ⊆ NN is Π1
1-complete if it

is Π1
1 and every other Π1

1 set Y ⊆ NN effectively Wadge∗ reduces to it.

We will show that Owo is Π1
1-complete as a set of numbers and that

WO is Π1
1-complete as a set of reals.

Lemma IV.5 (Kleene normal form). Every Σ1
1 formula of arithmetic

is equivalent to one of the form ∃G ∈ NN ϕ(G), where ϕ is Π0
1.

Proof. Let ψ be a formula of the form

∃F∀n1∃m1∀n2∃m2 . . . ∀nk∃nk θ(F, n1,m1, n2,m2, ..., nk,mk),

where θ is a bounded formula of arithmetic.† We will prove that ψ is
equivalent to a formula of the form ∃G ∈ NN ∀n ∈ N ϕ(G, n), where
ψ is a bounded formula. The key point is that a formula of the form
∀n ∃m θ(n,m) is equivalent to ∃G ∈ NN∀n θ(n,G(n)) — the function
G is called a Skolem function for θ. Iterating this idea, we get that ψ
is equivalent to

∃F,G1, ..., Gk ∈ NN ∀n1, n2, ..., nk

θ(F, n1, G1(n1), n2, G2(n1, n2), ...., nk, Gk(n0, ..., nk)),

which is equivalent to

∃G∀n
(
∀n1, ..., nk < n θ(G[0], n1, G

[1](n1), ...., nk, G
[k](n1, ..., nk))

)
. �

Recall that for every Π0
1 formula ψ(F ), there is a computable tree

T such that ψ(F ) holds if and only if F is a path through T . (See page
xx or [Part 1, Definition ??].)

∗See Definition I.22.
†Recall from page xix that a bounded formula of arithmetic is one where all

quantifiers are of the form ∀x < a or ∃y < b.
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Corollary IV.6. (1) Let S ⊆ NN be a Σ1
1 set of reals. There is a

computable tree T such that

X ∈ S ⇐⇒ ∃F (X ⊕ F ∈ [T ]).

(2) Let S ⊆ N be a Σ1
1 set of numbers. There is a computable

sequence of trees {Tm : m ∈ ω} such that m ∈ S if and only if Tm is
ill-founded.

Proof. For the first part, write the formula defining S in the form
∃Fϕ(X,F ), where ϕ is Π0

1. Let T be a computable tree such that
ϕ(X,F ) holds if and only if X ⊕ F is a path through T .

For the second part, the formula defining S is of the form ∃Fϕ(m,F ),
where ϕ is Π0

1. Let T be a computable tree such that ϕ(m,F ) holds if
and only if maF is a path through T , and let Tm = {σ ∈ N<N : maσ ∈
T}. �

Corollary IV.7. WO is a Π1
1-complete set of reals.

Proof. Given a Π1
1 set of reals Y ⊆ NN, let T be as in the corollary

above for the complement of Y. For each X ∈ NN, let

TX = {σ ∈ N<N : (X � |σ|)⊕ σ ∈ T}.
Note that TX is a tree and that it can be built computably from X.
We then have that X ∈ Y if and only if ∀F (X⊕F 6∈ [T ]), which holds
if and only if TX is well-founded. Thus,

X ∈ Y ⇐⇒ (T X ;≤
KB

) ∈WO. �

Theorem IV.8. Kleene’s Owo is a Π1
1-complete set of numbers.

Proof. Consider a Π1
1 set S ⊆ N. By Corollary IV.6 applied to

the complement of S, there is a computable sequence of trees {Tm :
m ∈ ω} such that m ∈ S if and only if Tm is well-founded. Let
f be a computable function that, given m, outputs an index for the
computable linear ordering (Tm;≤

KB
). We then have that m ∈ S if

and only if Tm is well-founded, if and only if f(m) ∈ Owo . �

To emphasize such an important theorem, let us state it again: A
set of numbers is Π1

1 if and only if it is many-one reducible to Owo . This
is the defining property of Owo as a many-one degree. As a corollary,
we get that the first step of the projective hierarchy is proper.

Corollary IV.9. Kleene’s Owo is not Σ1
1.

Proof. If Owo were Σ1
1, the set

R = {e : Φe(e)↓ ∧ Φe(e) 6∈ Owo}
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would be Π1
1. But then there would be a total computable function f

such that e ∈ R ⇐⇒ f(e) ∈ Owo . Let e0 be a computable index for
f . We would then have that

e0 ∈ R ⇐⇒ f(e0) ∈ Owo ⇐⇒ Φe0(e0) ∈ Owo ⇐⇒ e0 6∈ R. �

In terms of its Turing degree, the main use of Kleene’s Owo is that
it computes paths through ill-founded trees:

Lemma IV.10. Owo can compute paths through every computable
tree that has a path.

Proof. Let T be a computable tree with a path. Let S ⊆ T be the
set of σ ∈ T for which Tσ is not well-founded, where Tσ is the subtree
of T extending σ. Notice that S is computable from Owo . Since T is
ill-founded, so is S. Furthermore, S has no end nodes, so one can climb
it straight up in a step-by-step way without ever getting stuck. This
process produces an S-computable path. �

Exercise IV.11. Given X ∈ 2N, let OX
wo

be Kleene’s Owo relativized
to X, that is, the set of e’s such that LXe is well-ordered, where LXe is
the eth X-computable linear ordering (as in Lemma I.29).

Prove that A ⊆ 2N is Π1
1 if and only if there exists an n ∈ N such

that, for all X ∈ 2N, X ∈ A ⇐⇒ n ∈ OX
wo

.

IV.2. Sigma-one-one bounding

In this section, we prove an extremely useful lemma called Σ1
1

bounding. An important property of ω1 is that every countable set
of countable well-orderings has a least upper bound in ω1. The same is
true for ωCK1 if we consider Σ1

1 sets of computable well-orderings. There
are two versions, one for sets of indices of computable well-orderings
and one for sets of ω-presentations of well-orderings.

Theorem IV.12 (Σ1
1 bounding for numbers). For every Σ1

1 subset
A ⊆ Owo, there is an α < ωCK1 such that each e ∈ A is an index for a
well-ordering smaller than α.

We give two proofs. The first is a short application of the fact that
Owo is not Σ1

1. The second is more hands-on and shows us how to obtain
the upper bound α effectively from a Σ1

1 index for A.

Proof. Let

B = {e : ∃n (n ∈ A & there exists an embedding Le → Ln)}.
Note that B is Σ1

1 and that B ⊆ Owo . Since Owo is not Σ1
1 itself, there

must be an e ∈ O r B. Let α be the order type of Le. Then α 64 Ln
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for all Ln for n ∈ A. We then have that α = Le is an upper bound for
all Ln for n ∈ A. �

Theorem IV.13 (Σ1
1 bounding for sets of reals). Let A be a Σ1

1 set
of atomic diagrams of ω-presentations of well-orderings. There is an
α < ωCK1 such that every β ∈ A is below α.

Proof. The proof is the same as that of the theorem above. Let

B = {e : ∃L (L ∈ A & there exists an embedding Le → L)}.

Note that B is Σ1
1 and that B ⊆ Owo . Since Owo is not Σ1

1 itself, there
must be an e ∈ O r B. We then have that α = Le is an upper bound
for all L ∈ A. �

The above proofs do not specify how to construct the upper bounds.
However, in both cases, the upper bound α can be computed from an
index for the Σ1

1 set A or A, as we will see in the proofs below. The
ideas in these proofs are useful tools for other results in the literature
too. A key operation used in the proof is the product of trees, whose
rank is the minimum of the ranks of the input trees:

Definition IV.14. The merging of strings σ = 〈a0, ..., ak〉 and
τ = 〈b0, ..., bk〉 of the same length is defined as follows:

σ ∗ τ = 〈〈a0, b0〉, ..., 〈ak, bk〉〉.

We define the product of trees S and T as

S ∗ T = {σ ∗ τ : σ ∈ S, τ ∈ T, |σ| = |τ |}.

A path through S ∗T is obtained by merging a path through S and
a path through T . Thus, S ∗ T is ill-founded if and only if both S and
T are ill-founded. Much more can be said about S ∗ T :

Lemma IV.15. For all trees T and S,

rk(S ∗ T ) = min{rk(S), rk(T )}.

Proof. To see that rk(S ∗ T ) ≤ rk(S), consider the (-preserving
map π1 : S ∗ T → S given by π1(σ ∗ τ) = σ, and apply Lemma I.21.
Do the same with T to get rk(S ∗ T ) ≤ rk(T ). It follows that rk(S ∗
T ) ≤ min{rk(S), rk(T )}. Suppose now that rk(S) ≤ rk(T ) and hence
that min{rk(S), rk(T )} = rk(S) — the case where rk(T ) ≤ rk(S) is
completely symmetric. By Lemma I.21, there is a (-preserving map
f : S → T . Define g : S → S∗T by g(σ) = σ∗(f(σ)�|σ|), and note that
g is (-preserving. It follows that min{rk(S), rk(T )} ≤ rk(S ∗ T ). �
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Uniform proof of Theorem IV.12. Since A is Σ1
1 and Owo is

Π1
1-complete, there is a computable f such that

e ∈ A ⇐⇒ f(e) 6∈ Owo ⇐⇒ Lf(e) 6∈WO.
For each e ∈ N, consider the tree

Se = TLe ∗ TLf(e)
,

where TL is the tree of finite descending sequences of L as defined
on page 12. Since A ⊆ Owo , for every e, either e ∈ Owo or e 6∈ A. It
follows that one of Le or Lf(e) must be well-founded, and thus Se is well-
founded for all e. Recall from Observation I.28 that if L is well-ordered,
then rk(TL) ∼= L, and if L is not well-ordered, then rk(TL) = ∞. If
e ∈ A, then rk(TLf(e)

) = ∞, and hence rk(Se) = rk(TLe)
∼= Le. Recall

from Exercise I.27 that rk(T ) < (T ;≤
KB

) for every well-founded tree
T . (We include a proof in this footnote.‡) What we have so far is that
the linear ordering (Se;≤KB

) is always well-ordered, and for e ∈ A, we
have

Le ∼= rk(TLe) = rk(Se) 4 (Se;≤KB
).

Finally, add together all the linear orderings and define

L =
∑
e∈ω

(Se;≤KB
).

It follows that L is a computable well-ordering that is longer than Le
for all e ∈ A. �

Uniform proof of Theorem IV.13. In the previous theorem,
we added up all the linear orderings (Se;≤KB

) for e ∈ N, but that is not
possible in this proof, as there are continuum many linear orderings to
consider. Instead, we will merge them all together.

Since we are talking about ω-presentations of linear orderings, the
only important part of the diagram is the ordering, which is a subset
of N2. So, let us assume that A is a set of orderings <L on N, all of
which happen to be well-ordered.

Since A is Σ1
1, there is a computable tree S such that L ∈ A ⇐⇒

∃X ∈ NN L ⊕X ∈ [S]. Consider the Π0
1 class P of triples L ⊕X ⊕ Z,

where L ∈ 2N2
is an ω-presentation of a linear ordering, X is a witness

that L ∈ A (i.e., L ⊕X ∈ [S]), and Z ∈ NN is a descending sequence
in the linear ordering with diagram L. Since A contains only well-
orderings, if there exists a witness X that L ∈ A, then no descending
sequence Z exists. Let us consider the tree T associated with this Π0

1

‡The proof is again by transfinite induction. Show that for each τ ∈ T ,
rk(Tτ ) < (Tτ ;≤

KB
) by observing that (Tτ ;≤

KB
) ∼= (

∑
n∈N(Tτan;≤

KB
)) + 1 ≥

supn∈N((Tτan;≤KB) + 1).
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class; Let T be the set of all strings σ such that if we write σ as λ⊕ξ⊕ζ,
then λ⊕ξ ∈ S, and ζ appears to be a descending sequence according to
λ, that is, λ(〈ζ(i+1), ζ(i)〉) = 1 for all i with 〈ζ(i+1), ζ(i)〉 < |λ|. It is
easy to see that [T ] = P . Now, since A consists only of well-orderings,
this Π0

1 class is empty, and T has no paths. Thus, T is a computable
well-founded tree. We now claim that the rank of T is a bound for A,
that is, that for every L ∈ A, the order type of L is below the rank of T .
Fix L ∈ A and a witness Y that L ∈ A. Note that (L �n)⊕ (Y �n) ∈ S
for every n. Let TL be the tree of descending sequences through L.
TL has rank L (Observation I.28). We can easily embed TL into T by
ζ 7→ (L � |ζ|)⊕ (Y � |ζ|)⊕ ζ, getting that the rank of T is greater than
that of TL. �

Let Owo≤α = {e : Le 4 α}, where A 4 B if there is an embedding

from A to B. Σ1
1 bounding can be stated as saying that if A ⊆ Owo is

Σ1
1, then A ⊆ Owo≤α for some α < ωCK1 . Notice that the sets Owo≤α are

∆1
1 (that is, both Π1

1 and Σ1
1): The definition we gave is Σ1

1, and also
e ∈ Owo≤α ⇐⇒ e ∈ Owo & α + 1 64 Le, which is Π1

1. This observation
can be stated more generally as follows:

Theorem IV.16 (Σ1
1 separation). Let A and B be disjoint Σ1

1 sets.
There exists a ∆1

1 set C such that A ⊆ C ⊆ Bc.

Proof. Let f be an m-reduction from Bc to Owo . By Σ1
1 bounding,

since f(A) is a Σ1
1 subset of Owo , there is an α ∈ Owo such that Lf(e) 4 α

for all e ∈ A. Let C = {e ∈ N : Lf(e) 4 α} = f−1(Owo≤α). It is clear

that A ⊆ C ⊆ Bc. Since Owo≤α is ∆1
1, so is C. �

Theorem IV.17 (Σ1
1 separation for sets of reals). Let A and B be

disjoint Σ1
1 subsets of NN. There exists a ∆1

1 set C such that A ⊆ C ⊆
Bc.

Proof. Apply Corollary IV.6 to B to get a computable tree T
such that

X ∈ B ⇐⇒ ∃F (X ⊕ F ∈ [T ]).

For each X, let

TX = {σ ∈ N<N : (X � |σ|)⊕ σ ∈ T}.
So, we have that X ∈ Bc if and only if TX is well-founded, and only if
(T X ;≤

KB
) is well-ordered. The set {(TX ;≤KB) : X ∈ A} is a Σ1

1 set of
well-orderings, and hence from Σ1

1-bounding (Theorem IV.13), we get
an ordinal α such that for every X ∈ A, (TX ;≤KB) is below α. Let

C = {X ∈ 2N : (TX ;≤KB) 4 α}.
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It is clear that A ⊆ C ⊆ Bc. Since the existence of embeddings is Σ1
1,

C is Σ1
1. Notice that X 6∈ C if and only if, either TX is ill-founded, or

α + 1 4 (TX ;≤KB). Thus, Cc is also Σ1
1, and hence C is ∆1

1. �

Corollary IV.18. A set C ⊆ N is ∆1
1 if and only if C ≤m Owo≤α

for some α < ωCK1 .

Proof. The (⇐) direction follows from the observation above that
the sets Owo≤α are ∆1

1. For the (⇒) direction, we have to look at the
proof of the theorem above applied to A = C and B = Cc. We get
that the only separator, namely C, is equal to f−1(Owo≤α), and hence
C ≤m Owo≤α. �

Another corollary of Σ1
1 bounding is Spector’s theorem:

Theorem IV.19 (Spector [Spe55]). Every Σ1
1 well-order L = (L;≤

) is isomorphic to a computable one.§

Proof. Let

B = {e : there exists an embedding Le → L}.

Note that B is Σ1
1 and that B ⊆ Owo . By Σ1

1 bounding, there is a
bound α < ωCK1 for B. We must have L ≤ α < ωCK1 , and hence L has
a computable presentation. �

Corollary IV.20. Let T ⊆ N<N be a Σ1
1 well-founded tree. Then

rk(T ) < ωCK1 .

Proof. Consider (T ;≤KB) and apply the previous theorem. �

IV.3. Gandy basis theorem

This is another extremely useful theorem. It is often the case that
we want to find reals with a certain property that are not too complex.
For instance, if the property is Π0

1, the low basis theorem of Jockusch
and Soare [JS72] states that there has to be a low X with that property
(i.e., an X with X ′ ≡T 0′). We now consider the case where the
property is Σ1

1. First, let us look at the limitations we may have in
finding such a real. The following lemma shows that there are Σ1

1 sets
of reals without easily definable members. Recall that a set is ∆1

1 if it
has both a Π1

1 definition and a Σ1
1 definition.

Lemma IV.21. The class D = {Y ⊆ N : Y is ∆1
1} is Π1

1.

§By Σ1
1 well-order, we mean an ω-presentation of a well-ordering (L;≤) where

both L and ≤ are Σ1
1.
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We thus have a Σ1
1 class of reals without ∆1

1 members, namely the
class of all non-∆1

1 reals.

Proof. We claim that Y is ∆1
1 if and only if there exist computable

sequences {Tn : n ∈ N} and {Sn : n ∈ N} of trees such that if n ∈ Y
then Sn 64 Tn , and if n 6∈ Y then Tn 64 Sn, where T 4 S means that
there is a (-preserving map from T to S. Note that the existence of
such a sequence of trees is a Π1

1 statement about Y , as the existence of
(-preserving maps is Σ1

1. Thus, it will follow from the claim that D is
Π1

1.
To show the claim, let us first recall that there is a (-preserving

map from T to S if and only if rk(T ) ≤ rk(S) by Lemma I.21. It follows
that for any two trees T and S, either T 4 S, or S 4 T , or both. Then,
if we have sequences of trees {Tn : n ∈ N} and {Sn : n ∈ N} as above,
we have that, for every n ∈ N,

n ∈ Y ⇐⇒ Sn 64 Tn ⇐⇒ Tn 4 Sn.

This gives us a ∆1
1 definition of Y .

Conversely, if we know Y is ∆1
1, by Corollary IV.6, there exist two

computable sequences of computable trees — {Tn : n ∈ N} and {Sn :
n ∈ N} — such that, for every n ∈ N,

n ∈ Y ⇐⇒ Tn is well-founded ⇐⇒ Sn is ill-founded.

Thus, Sn 64 Tn if n ∈ Y , and Tn 64 Sn if n 6∈ Y , as needed. �

We need to go higher up in the complexity hierarchy to find a
member of a Σ1

1 class.

Lemma IV.22. Kleene’s Owo computes a member of every non-
empty Σ1

1 class of reals.

Proof. Let S ⊆ NN be a non-empty Σ1
1 class of reals. As in

Corollary IV.6, let T be a computable tree such that, for all X ∈ NN,

X ∈ S ⇐⇒ TX = {τ ∈ N<N : X � |τ | ⊕ τ ∈ T} is ill-founded.

Since S is non-empty, T is ill-founded. Kleene’s Owo can then compute
a path X ⊕ Y ∈ [T ], as proved in Lemma IV.10. Owo then computes
X ∈ S. �

Not only does Owo compute members of every non-empty Σ1
1 class,

it computes members that are low in a sense we need to specify.

Definition IV.23. Given X ∈ 2N, let ωX1 be ωCK1 relativized to X,
that is, ωX1 is the least ordinal that does not have an X-computable
ω-presentation.
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Definition IV.24. A set X ⊆ N is low for ω1 if ωX1 = ωCK1 .

Lemma IV.25. For every X ⊆ N, ωX1 > ωCK1 if and only if Owo is
∆1

1 relative to X.

Proof. For the (⇒) direction, suppose that ωX1 > ωCK1 , and hence
that there is an X-computable presentation of ωCK1 . Since the Le’s are
computable, we have that Le is well-ordered if and only if there exists
an embedding from Le to ωCK1 . The existence of such an embedding
can be expressed with a Σ1

1 in X formula that uses X to describe the
presentation of ωCK1 . Therefore, Owo is Σ1

1 in X. Since Owo is Π1
1, this

implies it is ∆1
1 in X.

For the (⇐) direction, suppose Owo is Σ1
1 relative to X. Consider

the linear ordering

L =
∑
e∈Owo

Le,

which, as we saw on page 15, is isomorphic to ωCK1 . We claim that
L is Σ1

1 in X. The domain is {〈e, n〉 : e ∈ Owo , n ∈ Le}, which is Σ1
1

in X. The ordering is given by 〈e0, n0〉 ≤L 〈e1, n1〉 if e0 <N e1, or
e0 =N e1 and n0 <Le n1, which is computable. We thus have a Σ1

1-in-
X ω-presentation of L. By Spector’s theorem (Theorem IV.19), L is
isomorphic to an X-computable well-ordering. �

The following proof of Gandy’s theorem is more tricky than it is in-
formative. There is a more informative proof using Gandy–Harrington
forcing, but since this type of technique is not central to this book, we
include only the shorter proof.

Theorem IV.26 (Gandy basis theorem). Every non-empty Σ1
1 set

S of reals has a member that is computable in Owo and low for ω1.

Proof. Consider the set R of pairs X ⊕ Y such that X ∈ S and
Y is not ∆1

1 in X. Relativizing Lemma IV.21, one can see that the set
of pairs {Y ⊕X : Y is ∆1

1 in X} is Π1
1. Thus, R is Σ1

1. R is non-empty
because once you pick X ∈ S, you can pick any Y that is not ∆1

1 in X.
Then Owo computes a member X ⊕ Y of R (Lemma IV.22). Since Y
is computable in Owo and not ∆1

1 in X, Owo cannot be ∆1
1 in X either.

From the previous lemma, we then get that ωX1 = ωCK1 . Putting it all
together, X ∈ S, X ≤T Owo , and ωX1 = ωCK1 as needed. �

Exercise IV.27. Prove that if A ⊆ N is Π1
1 but not ∆1

1, then Owo

is ∆1
1 in A.
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IV.4. An application of the Gandy basis theorem

Let us build some interesting-looking structures.

Theorem IV.28. If a Π1
1 set of indices of computable infinitary

sentences has a model, it has one with an ω-presentation that is low
for ω1.

Proof. As we mentioned before (Observation III.4), the satisfia-
bility predicate A |= ϕ is a Σ1

1 property of A and ϕ. In other words,
there is a Σ1

1 formula ψ(X, x) such that, if D(A) is the diagram of
some structure and e is the index for an Lc,ω sentence ϕe (as in Section
III.2), then ψ(D(A), e) ⇐⇒ A |= ϕe. Now, if S is a Π1

1 set of indices
of computable infinitary sentences, then the set of ω-presentations A
such that ∀e (e ∈ S → A |= ϕe) is Σ1

1. It is also non-empty, as we are
assuming that this set of sentences has a model, and by the Löwenheim-
Skolem theorem, Theorem II.61, it must have a countable one. By the
Gandy basis theorem (Theorem IV.26), there is an ω-presentation A
in that set with ω

D(A)
1 = ωCK1 . �

In Section VI.2, we will study structures of high Scott rank. These
are structures whose Scott rank is an ordinal they cannot compute. We
give a proof of their existence here.

Corollary IV.29. There is an ω-presentation A whose Scott rank
is an ordinal that is not computable in A.

Proof. Consider the set of sentences that say that “SR(A) ≥ Le”
for e ∈ Owo , as defined in Lemma II.67, say for the vocabulary τ of
linear orderings. This is a Π1

1 set of computable infinitary sentences,
and it has a model — as, for instance, the linear ordering ωCK1 viewed
as a structure has rank ωCK1 . By the previous theorem, it has a model

A with ω
D(A)
1 = ωCK1 . Since A satisfies all these sentences, A must

have Scott rank at least ωCK1 . �

We will improve this corollary later on and show there is a com-
putable structure whose Scott rank is not computable (Lemma VI.9).
We will also show that the Scott rank of such a structure can be at
most ωCK1 + 1 (Corollary VI.19).

The following corollary assumes ZFC is ω-consistent, i.e., that it has
a model where the ω of the model looks exactly like the standard N.
The reader not comfortable with this assumption may take a fragment
of ZFC instead.
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Corollary IV.30. (Assume ZFC is ω-consistent.) There is a
countable modelM of ZFC for which the chain of ordinals (ONM;∈M)
is ill-founded and has a well-founded part isomorphic to ωCK1 .

Proof. Let τ be the vocabulary of set theory {∈}. Let Γ be a
sentence that consists of the infinitary conjunction of all the axioms of
ZFC plus one more sentence that says that the natural numbers look like
N. To say that the natural numbers in the model are like the standard
natural numbers, one first has to observe that ω, zero, and the successor
function S(·) are definable in ZFC. Then, using these definitions, we
can write down the formula ∀x ∈ ω

∨∨
n∈N x = S(S(....S︸ ︷︷ ︸

n

(0))).

The assumption that ZFC is ω-consistent says that Γ has a model
and, by the Löwenheim-Skolem theorem (Theorem II.61), a countable
one. The theorem above then implies that Γ has a countable model

M with ω
D(M)
1 = ωCK1 . Since ωM ∼= N, everything that can be defined

in arithmetic can be defined in M. In particular, every computable
well-ordering of ω has an ω-presentation inM. SinceM satisfies ZFC,
every well-ordering of ω is isomorphic to an ordinal, and henceM con-
tains ordinals isomorphic to every computable well-ordering. It follows
that all computable ordinals are initial segments of ONM. In other
words, ωCK1 is an initial segment of ONM. However, there cannot be
an element in ONM isomorphic to ωCK1 , as otherwise we could use the
diagram D(M) of M to compute an ω-presentation of ωCK1 , contra-

dicting that ω
D(M)
1 = ωCK1 . Thus, ONM r ωCK1 has no least element,

and hence the well-founded part of ONM is exactly ωCK1 . �

On the one hand M is a model of ZFC satisfying all true Π1
1 sen-

tences, and on the other hand M believes ONM is well-ordered while
in reality it is not. This has some interesting consequences, which are
often quite useful in proofs.



CHAPTER V

Hyperarithmetic Sets

The hyperarithmetic hierarchy extends the arithmetical hierarchy
through the computable ordinals, giving us new complexity levels that
are sometimes necessary to describe the complexity of relations or iso-
morphisms on structures.

V.1. Computably infinitary definable sets

A set A ⊆ N is arithmetic if it can be defined in

N = (N; +,×, 0, 1, <)

by a finitary first-order formula. We now take a step beyond the
arithmetic.

Definition V.1. A set A ⊆ N is hyperarithmetic if it can be defined
in N = (N; +,×, 0, 1, <) by a computable infinitary formula, that is,
if there is a computable infinitary formula ϕ(x) in the vocabulary of
arithmetic such that

A = {n ∈ N : N |= ϕ(n)}.

For example, 0(ω) =
⊕

n∈N 0(n) is not arithmetic, but it is hyper-
arithmetic:

〈n,m〉 ∈ 0(ω) ⇐⇒
∨∨
k∈N

n = k ∧ m ∈ 0(k),

where k is shorthand for 1 + · · ·+ 1 k times, and 0(k) is shorthand for
the Σ0

k formula defining 0(k).

Observation V.2. The hyperarithmetic sets are closed downward
under Turing reducibility and closed under Turing jumps: Suppose
that X ⊆ N is hyperarithmetic and definable by ϕ(x). Then, if Y is
computable from X via the eth Turing functional,

n ∈ Y ⇐⇒
∨∨
σ∈2<N

Φσe (n)=1

σ ⊆ X

71
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and
n ∈ X ′ ⇐⇒

∨∨
σ∈2<N

Φσn(n)↓

σ ⊆ X,

where σ ⊆ X is shorthand for∧
i<|σ|
σ(i)=1

ϕ(i) ∧
∧
i<|σ|
σ(i)=0

¬ϕ(i).

Lemma V.3. The following are equivalent:

(1) A is hyperarithmetic.
(2) There is a computable list {ϕn : n ∈ N} of computable infini-

tary sentences in the empty vocabulary such that

n ∈ A ⇐⇒ ϕn holds.

For (2), we allow for the use of symbols > and ⊥, representing propo-
sitions that are always true and always false respectively.∗

Proof. To prove that (2) implies (1), consider the formula ϕ(x)

defined as
∧∧

n∈N(x = n→ ϕn), where n is short for

n times︷ ︸︸ ︷
1 + · · ·+ 1.

The interesting direction is (1) implies (2). Let A be definable in
(N; +,×, 0, 1, <) by a computable infinitary formula. As an interme-
diate step, we show that A is computably infinitary definable by a
formula ψ(w) in the structure (N; 0,1,2, ....) over the vocabulary that
only contains constants naming each natural number, but does not
contain any relation or operation. For this, replace each sub-formula
x+ y = z by ∨∨

c,d,e∈N,
c+d=e

x = c ∧ y = d ∧ z = e.

Do the same for each sub-formula of the form x × y = z and x ≤ y.
In this way, we obtain an equivalent formula that does not use the
symbols +, ×, or ≤.

Now, replace each universal quantifier ∀x by
∧∧

m∈N and, within the
disjunct corresponding to m, replace x with m. The same way, replace
existential quantifiers with infinitary disjunctions. That is, if we have
a sub-formula of the form ∃x ψ(x), replace it with

∨∨
m∈N ψ(m).

We now have an equivalent formula ϕ(w) which mentions no vari-
ables other than w. For the last step, for each n ∈ N, consider the

∗We may use a conjunction over the empty set to represent > and a disjunction
over the empty set to represent ⊥. In terms of complexity, count > and ⊥ as both
Σc

0 and Πc
0 formulas.
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formula ϕn, where the free variable w is replaced by n. This way we
eliminate all the variables, and all the atomic sub-formulas are of the
form a = b for some a, b ∈ N. Replace each of those atomic formulas
by either > or ⊥ depending on whether the equality is true or false.

We are now left with computable infinitary formulas ϕn whose only
symbols are

∨∨
,
∧∧

, ⊥, and >, and such that n ∈ A if and only if ϕn
holds. �

We call these formulas, which only use the symbols
∨∨

,
∧∧

, ⊥, and
>, infinitary propositional sentences.

Observation V.4. It is not hard to see from the proof above that
the complexity of the formulas is preserved. That is, that for α > 0,
A can be defined by a Σc

α formula of arithmetic if and only if there is
a computable sequence of Σc

α formulas over the empty language as in
part (2) of the lemma.

Definition V.5. We say that a set A is Σ0
α if it is definable by a

Σc
α formula of arithmetic.

For n ∈ N, this definition of Σ0
n set coincides with the one we gave

in the background section on page xix.

Lemma V.6. Let A be a computable ω-presentation of a τ -structure
and ϕ(x̄) a Σc

α τ -formula for α ≥ 1. The set {ā : A |= ϕ(ā)} ⊆ N|ā| is
Σ0
α.

Proof. Each atomic formula about A can be replaced by its com-
putable definition in N = (N; +,×, 0, 1, <), which can be chosen to be
Σ0

1 or Π0
1, depending on whether the atomic formula appears negatively

or positively and what complexity is wanted for it.
For instance, suppose ϕτ (x̄) is a Σc

1 τ -formula of the form∨∨
i∈N

∃ȳ
(
ψτi (x̄, ȳ) ∧ θτi (x̄, ȳ)

)
,

where ψτi is a conjunction of atomic τ -formulas and θτi is a conjunc-
tion of negations of τ -atomic formulas. Since each atomic τ -formula
is computable in this particular ω-presentation of A, each atomic τ -
formula is equivalent to both a Σc

1 N-formula about (N; +,×, 0, 1, <)
and a Πc

1 N-formula about (N; +,×, 0, 1, <).† If we replace each atomic
τ -formula in ψτi by its equivalent Σc

1 N-formula, we get that ψτi is equiv-
alent to a Σc

1 N-formula ψNi . If we replace each atomic τ -formula in
θτi by its equivalent Πc

1 N-formula, we get that θτi is equivalent to a
Σc

1 N-formula θNi . We then get that ϕτ (x̄) is itself equivalent to a Σc
1

† By N-formula, we mean a formula in the vocabulary of arithmetic.
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N-formula ϕN (x̄) given by
∨∨

i∈N ∃ȳ
(
ψNi (x̄, ȳ) ∧ θNi (x̄, ȳ)

)
. That is, if

ā ∈ A<N = N<N, then

A |= ϕτ (ā) ⇐⇒ (N; +,×, 0, 1, <) |= ϕN (ā).

If we start with a Σc
α formula instead of a Σc

1 formula, apply the
same procedure to the maximal Σc

1 and Πc
1 sub-formulas of ϕ. �

Lemma V.7. Given a Σc
α τ -sentence ϕ and an index e for a com-

putable structure Ae, deciding if Ae satisfies ϕ is Σ0
α.

We remark that for e to be the index of some computable structure
we must have that Φe is total and that it is of the form D(Ae) of some
structure Ae, meaning that the function symbols are represented by
functions, etc. This is a Π0

2 property about e.

Proof. Let ϕτ be a Σc
α τ -sentence. In the proof of the lemma

above, we described a procedure to go from an index e for a computable
ω-presentation Ae with diagram D(Ae) = Φe ∈ 2N to a Σc

α N -sentence
ϕN ,e such that

Ae |= ϕτ ⇐⇒ (N; +,×, 0, 1, <) |= ϕN ,e.

We then have that the set of indices of structures satisfying ϕτ can be
defined in (N; +,×, 0, 1, <) by the formula ψ(x) given by∨∨

e∈N

(x = e) ∧ ϕN ,e. �

Lemma V.8. Given a computable ordinal α, the set of indices of
computable well-orderings less than α and the set of indices of com-
putable well-founded trees of rank less than α are hyperarithmetic.

Furthermore, if α = ωβ, the former set is Σ0
2β, and if α = ωγ, the

latter set is Σ0
2γ.

Proof. This follows immediately from the previous lemma using
the computable infinitary formulas we defined in Lemmas II.4 and II.5.

�

Theorem V.9. (Kleene) Let A be a subset of N. The following are
equivalent:

(1) A is hyperarithmetic.
(2) A is ∆1

1.
(3) A ≤m Owo≤α for some α < ωCK1 .

Recall that Owo≤α = {e : Le 4 α} and that {Le : e ∈ N} is a
computable enumeration of the computable linear orderings defined in
Lemma I.29.
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Proof. For (1)⇒(2), recall from Observation III.4 that there is
a Σ1

1 formula that decides if an infinitary sentence is true on an ω-
presentation. Thus, hyperarithmetic sets are Σ1

1 sets. Since the com-
plement of a hyperarithmetic set is also hyperarithmetic, they are also
Π1

1.
That (2)⇒(3) was proved in Corollary IV.18.
That (3)⇒(1) follows from the previous lemma and Observation V.2

that hyperarithmetic sets are closed under many-one reducibility. �

Lemma V.10. A Σ0
α disjunction of Σc

α formulas is equivalent to a
Σc
α formula. A Σ0

α conjunction of Πc
α formulas is equivalent to a Πc

α

formula.

By “Σ0
α disjunction” we mean an infinitary disjunction of formulas

whose indices come from a Σ0
α set.

Proof. Consider a formula ϕ of the form
∨∨

e∈I ϕ
Σc
α
e , where I is Σ0

α.
By Lemma V.3, there is a computable sequence {ψn : n ∈ N} of Σc

α

propositional sentences such that n ∈ I ⇐⇒ ψn. Then ϕ is equivalent
to the following Σc

α formula:∨∨
e∈N

(
ψe ∧ ϕΣc

α
e

)
.

For the second part,
∧∧

e∈I ϕ
Πc
α
e is equivalent to

∧∧
e∈N(ψe → ϕΠc

α
e ), which

is Πc
α. �

Historical Remark V.11. The hyperarithmetic sets were in-
troduced independently in the early 1950s by Martin Davis, Andrej
Mostowski and Stephen Cole Kleene.

V.2. The jump hierarchy

Another way of defining the hyperarithmetic hierarchy is using
transfinite iterates of the Turing jump. We know that a set A ⊆ N
is arithmetic if and only if it is computable in 0(n) for some n ∈ N
(page xix). Correspondingly, we will see that a set is hyperarithmetic
if and only if it is computable in 0(α) for some computable ordinal α.

Definition V.12. Given a computable linear ordering L, a jump
hierarchy on L is a set H ⊆ L× N such that

(∀a ∈ L) H [a] = (H [<La])′, (JH)
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where

H [a] = {n ∈ ω : 〈a, n〉 ∈ H} and

H [<La] = {〈b, n〉 ∈ L× ω : b <L a & 〈b, n〉 ∈ H}
= H ∩ (L(<α) × ω).

If L is a computable well-ordering, we use 0(L) to denote the jump
hierarchy corresponding to L. If α ∈ L, we often write 0(α) as shorthand
for 0(L�α). Recall that L � α is the same as L(<α), the restriction of the
linear ordering to the elements below α.

Given a well-ordering L, it is not hard to prove by transfinite recur-
sion that L admits a jump hierarchy, and then by transfinite induction
that such a jump hierarchy is unique. We will consider ill-founded lin-
ear orderings in future chapters. We will see that in the ill-founded
case, jump hierarchies may or may not exist, and if they exist, they
need not be unique. For now, let us concentrate on the case where L
is well-ordered.

Suppose that 0L, 1L, 2L, ... are the first elements of L, and H is the
jump hierarchy along L. Then H [0L] = H [<0L]′ = ∅′. We then have that
H [1L] ∼=1 0′′, where ∼=1 means computably isomorphic or 1-equivalent.
We did not write ‘equals’ because H [<1L] is not equal to 0′ but to
{0L} × 0′. Continuing on, we see that H [nL] ∼=1 0(n+1) for all n ∈ N:

H [nL] = H [<LnL]′

=
(⋃
i<n

{iL} ×H [iL]
)′

∼=1

(⋃
i<n

{iL} × 0(i+1)
)′

∼=1

(⊕
i<n

0(i+1)
)′

∼=1 (0(n))′

= 0(n+1),

and hence

H [<LmL] ∼=1 0(m) for all m ∈ N.

In particular, if m is the finite linear ordering with m elements, then
0(m) is Turing equivalent to the m-th iterate of the Turing jump.
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Observation V.13. If L is a computable well-ordering, the set 0(L)

is ∆1
1 (and hence hyperarithmetic). This is because, for k ∈ L × N,

k ∈ 0(L) ⇐⇒ (∃H ⊆ L× N) H is a jump hierarchy on L and k ∈ H
⇐⇒ (∀H ⊆ L× N) if H is a jump hierarchy on L, then k ∈ H,

and H being a jump hierarchy on L is a Π0
2 property of H and L (see

equation JH).

Observation V.14. If we want to define the Lth jump of a real X,
we need to modify the definition of jump hierarchy at the start and let
H [0L] = X ′. We then define X(L) to be the unique such jump hierarchy.

V.2.1. Jump hierarchies and Lc,ω. We can pinpoint the com-
plexity of 0(α) much better than just saying that it is ∆1

1. We will
prove in Theorem V.16 below that 0(α+1) is a complete Σ0

1+α set for all
computable well-orderings α.‡ We start by proving the easier direction
of completeness.

Lemma V.15. For each computable ordinal α, 0(α+1) is Σ0
1+α.

Proof. Let L be a computable well-ordering extending α, so that
we can think of α as a member of L. Let H be the jump hierarchy
along L. We need to show that for each α ∈ L, H [≤Lα] is Σ0

1+α. Notice

that H [≤Lα] is the same thing as 0(α+1).
The first idea is to use induction on α ∈ L. One has to be careful

with the limit cases though, because, to prove that H [≤Lλ] is Σ0
1+λ for

λ limit, we will need more than just knowing that H [≤Lβ] is Σ0
1+β for

all β < λ: We will need to know that this happens uniformly.
What we will do is to use effective transfinite recursion (Theorem

I.33) to define a computable function f : L → N, such that for each
γ ∈ L, f(γ) is an index for a Σc

1+γ formula of arithmetic defining H [γ].

This will give that H [≤Lγ] =
⊕

β∈L≤γ H
[β] is Σc

1+γ too. We are now

ready to get into the details to define f .
If a set X is ∆c

γ-definable, its jump is Σc
γ definable. To see this, use

that
x ∈ X ′ ⇐⇒

∨∨
σ∈2<N

Φσx(x)↓

σ ⊆ X

‡The indices α+ 1 and 1 + α may seem to be off. Unfortunately, the 0(β) and
the Σ0

β hierarchies were historically defined in a way that causes this mismatch.

For finite n, 0(n) is Σ0
n complete, while it is 0(ω+1) which is Σ0

ω complete. What we
can say about 0(ω) is that it is ∆0

ω Turing complete. For infinite α, the complete
Σ0
α set is 0(α+1) (Theorem V.16).
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to produce an index for the Σc
γ formula ψ defining X ′ from indices for

the Σc
γ and Πc

γ formulas θΣ and θΠ defining X:

ψ(x) is
∨∨
σ∈2<N

Φσx(x)↓

 ∧
i<|σ|
σ(i)=1

θΣ(i) ∧
∧
i<|σ|
σ(i)=0

¬θΠ(i)

 .

We can use this to calculate f(γ), the Σc
1+γ-index for H [γ], using a

∆c
1+γ index for H [<Lγ]. To get a ∆c

1+γ index for

H [<Lγ] =
⊕
β∈L�γ

H [β],

recall that we are using effective transfinite recursion, and we have
access to a computable index for f �L(<γ) to get Σc

1+β indices for each

H [β] for β < γ. We can easily transform a Σc
1+β index to both a Σc

1+γ

index and a Πc
1+γ index for each β < γ, and thus obtain a ∆c

1+γ index

for H [<Lγ]. �

Theorem V.16. For each computable well-ordering α, 0(α+1) is a
complete Σ0

1+α set.

Proof. Again, let L be a computable well-ordering extending α,
so that we can think of α as a member of L.§

We will use effective transfinite recursion (Theorem I.33) to de-
fine a computable function f : L × N → N that assigns to each Σc

1+α-

propositional sentence ϕ
Σc

1+α
e over the empty language (as in Theorem

V.3) a number f(α, e) such that

ϕ
Σc

1+α
e holds if and only if 〈α, f(α, e)〉 ∈ 0(L).

The case α = 0 just says that 0′ is Σ0
1-complete, which we already

know, and we know how to define f(0, e).¶ Let us now define f(α, e)
assuming we have access to a computable index for f � α× ω.

Recall that ϕ
Σc

1+α
e , the eth Σc

1+α-sentence over the empty language,

was defined as‖ ∨∨
〈m,1+γ〉∈We

1+γ<1+α

ϕ
Πc

1+γ
m .

§We can view 1+L as a computable well-ordering too, and when we write 1+α,
we are thinking of an initial segment of 1 + L.

¶By α = 0, we just mean that α is the first element of L.
‖We are assuming that α 6= 0, so we may assume that Πc

0 formulas do not show
up in the disjunction.
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Thus, ϕ
Σc

1+α
e holds if and only if

∃γ ∈ L � α ∃m ∈ ω (〈m, 1 + γ〉 ∈ We and 〈γ, f(γ,m)〉 6∈ 0(α)).

There is a number k such that this holds if and only if k ∈ 0(α)′. Let

f(α, e) be that number k. Then, we have that ϕ
Σc

1+α
e holds if and only

if 〈α, f(α, e)〉 ∈ 0(L), as needed. �

This theorem gets us a new characterization of the hyperarithmetic
sets:

Corollary V.17. A set A ⊆ N is hyperarithmetic if and only if
A ≤T 0(L) for some computable well-ordering L.

V.2.2. Independence on presentation. Given an ω-presentation
of a well-ordering α, there is a unique jump hierarchy along α. But
different ω-presentations of α would give different jump hierarchies.
The goal of this section is to show that, for computable ordinals α, the
Turing degree of 0(α) is independent of the ω-presentation of α.

When we have a computable isomorphism between two different
ω-presentations of α, it is not too difficult to show that the respective
jump hierarchies are Turing equivalent (Lemma V.18). However, the
isomorphism between two ω-presentations of an ordinal may be quite
hard to compute. We will see that 0(α) itself can compute such iso-
morphisms. We will see how this is just good enough to show that
the jump hierarchies along such different ω-presentations of α are still
Turing equivalent.

Lemma V.18. Let α and β be computably isomorphic computable
well-orderings. Then 0(α) ≡T 0(β).

Proof. Let Hα and Hβ be the jump hierarchies along α and β,
respectively. Let f be the computable isomorphism from α to β. We
will use effective transfinite recursion on a ∈ α to define a computable
sequence of indices ia for Turing reductions such that

H
[f(a)]
β ≤T via ia H

[a]
α ,

where X ≤T via i Y is shorthand for ΦY
i = X. Observe that

H
[<βf(a)]

β =
⋃

d∈β�f(a)

{d} ×H [d]
β =

⋃
c∈α�a

{f(c)} × ΦH
[c]
α

ic
.

Since we are using transfinite recursion, we can assume we have access
to an index for the computable function c 7→ ic for c ∈ α � a. We can
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then find an index e for the Turing reduction

H
[<βf(a)]

β =
⋃
c∈α�a

{f(c)} × ΦH
[c]
α

ic
≤T via e

⋃
c∈α�a

{c} ×H [c]
α = H [<aa]

α .

(Notice that this would not work if we did not assume f was com-
putable, and we will have to deal with non-computable such f ’s later
on.) Once we have e, let ia be an index for the following Turing reduc-
tion

H
[<βf(a)]′
β ≤T via ia H

[<αa]′
α . �

In the next lemma, we will show that 0(α) can compute the isomor-
phism between α and another computable copy of α. However, if we
want uniformity, we need an extra jump:s

Lemma V.19. Let α and β be isomorphic computable ω-presentations
of an ordinal and let f : α→ β be the isomorphism between them. Let
Hα be the jump hierarchy along α. Then, for every a ∈ A, f � α(<a) is

uniformly computable from H
[a]
α .∗∗

Proof. We use effective transfinite induction on a ∈ α to define a
computable sequence of indices ea for Turing reductions such that

f � α(<a) ≤T via ea H
[a]
α .

Consider a ∈ α. We want to find ea using an index for the computable
sequence {ec : c ∈ α � a}.

If a is the first element of α, f �α(<a) is the empty function. Let us
assume a is not the first element of α. We split the construction into
three cases:

(1) a is a limit ordinal;
(2) a = b+ 1 and b is a limit ordinal;
(3) a = b+ 1 and b = c+ 1.

Use 0′′, which is computable from H
[a]
α , to determine which case we are

in and to find b and c.
Case (1): If a is a limit ordinal, then f � α(<a) =

⋃
c∈α�a f � α(<c).

So, using an index for the sequence {ec : c ∈ α � a}, we can figure out
an index for

f � α(<a) ≤T H [<αa]
α ≤T H [a]

α .

(Notice that in this limit case we did not need the full power of H
[a]
α

and that H
[<αa]
α was enough. We will use this a few times later.)

∗∗Recall that f � D is the partial function obtained by restricting f to the
domain D.



V.2. THE JUMP HIERARCHY 81

Case (2): If a = b + 1 and b is a limit ordinal, then f � α(<a) =
f � α(<b) ∪ {〈b, f(b)〉}. We saw before that we can compute f � α(<b)

from H
[<αb]
α . We now use oracle H

[a]
α ≡T H [<αb]′′

α ≥T (f �α(<b))
′′ to find

f(b), which is the least element of β that is not in the image of f �α(<b).
That is, use (f � α(<b))

′′ to find d ∈ β such that

• for all c ∈ α � b, d 6= f(c), and
• for all e ∈ β � d, there is some h ∈ α � b such that e = f(h).

Case (3): Suppose now that a = b+ 1 = c+ 2. We can use H
[b]
α to

get an index for f �α(<b). To find f(b), just use 0′′ to find the successor
of f(c) in β. �

Theorem V.20. If α and β are isomorphic computable ω-presentations
of an ordinal, then 0(α) ≡T 0(β).

Proof. Let Hα and Hβ be the jump hierarchies along α and β,
respectively. Let f be the isomorphism from α to β. From the lemma
above, we have a computable sequence of indices ea such that f �
α(<a) ≤T via ea H

[a]
α .

As in Lemma V.18, we will use effective transfinite recursion on a ∈
α to define a computable sequence of indices ia for Turing reductions
such that

H
[f(a)]
β ≤T via ia H

[a]
α .

This time we will have to be a bit more careful. Since we are using
transfinite recursion, we can assume we have access to an index for the

computable function c 7→ ic for c ∈ α � a. First, we want to use H
[a]
α to

find an index for the Turing reduction

H
[<βf(a)]

β ≤T H [<αa]
α .

Recall from the proof of Lemma V.18 that

H
[<βf(a)]

β =
⋃
c∈α�a

{f(c)} × ΦH
[c]
α

ic
.

So, using f � α(<a) and the sequence {ic : c ∈ α � a}, we can compute

H
[<βf(a)]

β from H
[<αa]
α . However, we know that f � α(<a) is computable

from H
[a]
α but not necessarily from H

[<αa]
α — it is close though.

We split the construction into two cases:

(1) a is a limit ordinal;
(2) a = b+ 1.

Use 0′′, which is computable from H
[a]
α , to determine which case we are

in and to find b in the latter case.
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Case (1): If a is a limit ordinal, we saw in the proof of Lemma V.19

that f � α(<a) ≤T H [<αa]
α .

Case (2): If not, and a = b + 1, then we know that f � α(<b) ≤T
H

[b]
α ≤T H [<αa]

α . We are missing the value of f(b) which H
[a]
α can com-

pute. Using the value of f(b) as a parameter, we can find an index for
the reduction ⋃

c∈α�a

{f(c)} × ΦH
[c]
α

ic
≤T H [<αa]

α .

One way or another, we have shown that H
[<βf(a)]

β ≤T H [<αa]
α , and

we have used H
[a]
α to find an index for that reduction. We can then

use H
[a]
α to find an index for H

[<βf(a)]′
β ≤T H [<αa]′

α and thus computably
find an index ia for

H
[f(a)]
β ≤T via ia H

[a]
α . �

Corollary V.21. If α and β are isomorphic computable ω-presentations
of a successor ordinal, then 0(α) and 0(β) are computably isomorphic.

Proof. Recall that if two sets are Turing equivalent, their jumps
are computably isomorphic. �

V.3. Hyperarithmetically infinitary formulas

An infinitary formula is said to be hyperarithmetically infinitary if
it has a hyperarithmetic tree representation as in Definition III.1.

In this section, we show an important closure property of the hy-
perarithmetic sets: a set defined in (N; +,×, 0, 1, <) by a hyperarith-
metically infinitary formula is still hyperarithmetic. If in a rush, the
reader may skip this section, as we will not use this result in the rest
of the book.

Theorem V.22. Every hyperarithmetically infinitary formula is
equivalent to a computable infinitary formula.

The rest of this section is dedicated to proving this theorem.
First, every hyperarithmetically infinitary formula is anX-computable

infinitary formula for some hyperarithmetic X ∈ 2N. As in Section
III.2, if a formula has an X-computable tree representation, it has a
Σ

cX
α index for some X-computable well-ordering α. Recall that the Σ

cX
α
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formula with index e (denoted ϕΣ
cX
α
e ) is the disjunction of the ∃-over-

Π
cX
<α formulas†† with indices in WX

e . That is,

ϕΣ
cX
α
e is

∨∨
〈i,β〉∈WX

e
β<α

∃ȳ ϕ
Π
cX
β

i (x̄, ȳ).

(In Section III.2, we also used a sub-index j describing the arity of the
formula. We omit it here to simplify the notation.)

Let L be a hyperarithmetic well-ordering extending α, so that we
can think of α as a member of L. We want to show that every Σ

cX
β

formula, for β ∈ L, is equivalent to a computable one. There are
two obstacles. The first obstacle is that the infinitary disjunctions and
conjunctions are not c.e. but X-c.e. The second obstacle is that the
ordinals L � β indexing the complexity classes are also not computable
but X-computable. We will resolve the first issue by recursively ap-
plying Lemma V.10, which states that a Σ0

α disjunction of Σc
α formulas

is equivalent to a Σc
α formula. We will resolve the second issue using

Spector’s theorem (Theorem IV.19), which states that every hyper-
arithmetic well-ordering has a computable copy.

By Spector’s theorem, there is a computable well-ordering K iso-
morphic to L. Furthermore, the isomorphism h : L → K is hyperarith-
metic: Recall from Lemma II.18 that there are computable infinitary
formulas ψγ(x) for γ ∈ K such that

L |= ψγ(α) ⇐⇒ L � α ∼= K � γ ⇐⇒ h(α) = γ.

The formulas ψγ are defined computably uniformly in γ ∈ K. Since
L and K are ω-presentations, we can think of h as a hyperarithmetic
function N → N. Let Z be a hyperarithmetic real that computes X
and computes the isomorphism h from L to K.

Lemma V.23. Every Σ
cX
<L formula is equivalent to a Σ

cZ
<K formula.‡‡

Proof. Using Z-effective transfinite recursion (Theorem I.33), de-
fine a Z-computable function g : L × N→ N that, for each α ∈ L and
e ∈ N, produces an index g(α, e) for a Σ

cZ
h(α) formula equivalent to the

eth Σ
cX
α formula. That is, g(α, e) will be defined so that

ϕ
Σ
cZ
h(α)

g(α,e) ⇐⇒ ϕΣ
cX
α
e .

††The ∃-over-Π
cX
<α formulas are the ones generated from the Π

cX
<α and Σ

cX
<α

formulas using finitary conjunctions and disjunctions and existential quantifiers.
‡‡Recall that a Σ

cX
<L formula is a Σ

cX
β formula for some β ∈ L.
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For this, let g(α, e) be an index for the Z-c.e. set given by

WZ
g(α,e) = {〈g(β, i), h(β)〉 : β ∈ L � α and 〈i, β〉 ∈ WX

e },
so we get that

ϕ
Σ
cZ
h(α)

g(α,e) is
∨∨

〈i,β〉∈WX
e

β<α

∃ȳ ϕ
Π
cZ
h(β)

g(β,i)(x̄, ȳ),

which by transfinite induction is equivalent to ϕΣ
cX
α
e . �

The next step is to show that every Σ
cZ
<K formula is equivalent to a

computable infinitary formula — now knowing that K is computable.
Let π be a computable ordinal that is large enough that Z is ∆0

π.∗

Lemma V.24. For every γ ∈ K, every Σ
cZ
γ formula is equivalent to

a Σc
π+γ formula.

Proof. We use effective transfinite recursion (Theorem I.33) to
define a function f : K×N→ N such that, for γ ∈ K and e ∈ N, f(γ, e)
is an index for a Σc

π+γ formula equivalent to the eth Σ
cZ
γ formula; that

is, f(γ, e) will be defined so that

ϕ
Σc
π+γ

f(γ,e) ⇐⇒ ϕ
Σ
cZ
γ
e .

Recall that we defined

ϕ
Σ
cZ
γ

e as
∨∨

〈i,δ〉∈WZ
e

δ∈K�γ

∃ȳ ϕ
Π
cZ
δ
i .

Using the same idea as in Lemma V.10, this is equivalent to∨∨
〈i,δ〉∈N×K�γ

〈i, δ〉 ∈ WZ
e ∧ ∃ȳ ϕ

Π
cZ
δ
i . (3)

Recall that we chose π so that WZ
e is Σ0

π. Thus, the formula “〈i, δ〉 ∈
WZ
e ” can be replaced by a Σc

π sentence ψe,〈i,δ〉 over the empty vocabu-
lary (Lemma V.3), defined uniformly on e and 〈i, δ〉.

To define f(γ, e) recursively, we define an auxiliary function f̃ . Let

f̃(δ, i) be the index of the Πc
π+δ formula “〈i, δ〉 ∈ WZ

e ∧ ϕ
Πc
π+δ

f(δ,i).” By

the induction hypothesis, the formula (3) is equivalent to∨∨
〈i,δ〉∈N×K�γ

∃ȳ
(
〈i, δ〉 ∈ WZ

e ∧ ϕ
Πc
π+δ

f(δ,i)︸ ︷︷ ︸
ϕ

Πc
π+δ

f̃(δ,i)

)
.

∗So that WZ
e is Σ0

π for all e.
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Finally, we define f(γ, e) as the index for the c.e. set

Wf(γ,e) = {〈f̃(i, δ), π + δ〉 : 〈i, δ〉 ∈ N×K � γ}. �

V.4. Complexity classes in Cantor Space

Infinitary formulas can also be used to define sets of reals. Con-
sider formulas ϕ(D) in the language of arithmetic with an extra unary
relation symbol D, which we treat as a second-order variable.† Let us
call these, N-formulas. If Γ is a class of N-formulas, a set A ⊆ 2N is
said to be Γ-definable if there is an N-formula ϕ(D) in Γ such that
A = {A ∈ 2N : ϕ(A)}. As in Lemma V.3, one can show that ev-
ery N-Lω1,ω-formula ϕ(D) is equivalent to a quantifier-free one in the
vocabulary containing only the relation D, where, by ‘equivalent,’ we
mean equivalent when evaluated within the structure of the natural
numbers. To see this, replace sub-formulas of the form ∀xϕ(x) and
∃x(ϕ(x)) by

∧∧
n∈N ϕ(n) and

∨∨
n∈N ϕ(n) respectively, where n is short

for

n times︷ ︸︸ ︷
1 + · · ·+ 1, and then replace atomic sentences that do not use D

by > or ⊥ depending on whether they are true or false.
The standard topology on 2N has a sub-base of open sets that consist

of the sets of the form

On,i = {A ∈ 2N : A(n) = i},
for n ∈ N and i ∈ 2. With this topology, the open sets are the countable
unions of finite intersections of sub-basic open sets, which are exactly
those defined by infinitary disjunctions of finite conjunctions of formu-
las of the form D(n) or ¬D(n), namely the Σin

1 -formulas. The closed
sets are the Πin

1 definable sets.

Definition V.25. The class of Borel sets is the smallest class of
subsets of 2N which contains all the sub-basic open sets and is closed
under countable unions, countable intersections, and complements.

Theorem V.26. A set A is Borel if and only if it is N-Lω1,ω-
definable.

Proof. First observe that the class of N-Lω1,ω-definable sets con-
tains all the basic open sets is closed under countable unions, countable
intersections, and complements, because the Lω1,ω-formulas include the
quantifier-free formulas and are closed under countable disjunctions,

†This is still an infinitary first-order formula which, on top of the standard
vocabulary of first-order arithmetic, has atomic sub-formulas of the form D(x) for
x ranging over the natural numbers.
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countable conjunctions, and negations. So, all Borel sets are Lω1,ω-
definable.

The other direction is proved by transfinite induction on the com-
plexity of the Lω1,ω definition of the set. Suppose that A is Σin

α de-
finable, say by the formula

∨∨
i∈I ∃ȳi(ϕi(ȳi, D)) where each ϕi is Πin

<α.
We can then write A as the countable union of the sets defined by the
formulas ϕi(n̄, D) for i ∈ I and n̄ ∈ N|ȳi|, and by the induction hy-
pothesis, we may assume each of these sets is Borel. It follows that A
is Borel too. �

Theorem V.27. (Souslin) A set A is Borel if and only if it ∆1
1

relative to some oracle A ∈ 2N.

Proof. For the (⇒) direction, suppose that A is Borel and hence
Lω1,ω-definable. Let A be such that A is Lc,ω-definable relative to A.
Recall from Observation III.4 that there is a Σ1

1 formula that decides
if an infinitary sentence is true. We thus have that A is Σ1

1 relative to
A. Applying the same argument on its complement, we get that A is
Π1

1, and thus ∆1
1, relative to A.

For the (⇐) direction, apply Corollary IV.6 to the complement of
A to get an A-computable tree T such that

X ∈ A ⇐⇒ ∀F (X ⊕ F 6∈ [T ]).

For each X, let

TX = {σ ∈ N<N : (X � |σ|)⊕ σ ∈ T}.
So, we have that X ∈ A if and only if TX is well-founded, and only if
(T X ;≤

KB
) is well-ordered. The set {(TX ;≤KB) : X ∈ A} is a Σ1

1(A) set
of well-orderings, and hence from the Σ1

1-bounding theorem (Theorem
IV.13), we get an A-computable ordinal α such that for every X ∈ A,
(TX ;≤KB) is below α. Using Lemma II.4, and using T as an oracle,
one can write a N-Lω1,ω-formula ϕ(X) which says that (TX ;≤KB) is
below α. This shows that A is Borel. �

Remark V.28. If A is ∆1
1, it is not just N-Lω1,ω-definable, but also

N-Lc,ω-definable. To see this notice in the (⇐) direction of the proof
above, when A = ∅, the tree T and the ordinal α can be taken to be
computable, and hence the formula ϕ is computable too.

V.4.1. The space of presentations. Fix a vocabulary τ . Let
Modτ be the set of all ω-presentations of all τ -structures. Each τ -
structure is determined by its diagram, so Modτ is essentially 2N, with
the difference that we think of the elements Modτ as ω-presentations
of τ -structures instead of binary sequences. We equip Modτ with the
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same topology as 2N. Notice that the sub-basic open sets are now of
the form

{K ∈ Modτ : K |= ϕ
at

n [xj 7→ j : j ∈ N]}
and

{K ∈ Modτ : K |= ¬ϕat

n [xj 7→ j : j ∈ N]},
where ϕat

n is the nth atomic τ -formula.
Given a τ -sentence ϕ, we let

Mod(ϕ) = {K ∈ Modτ : K |= ϕ}.
As in Lemmas V.6 and V.7 one can see that, if ϕ is a Σc

α sentence, then
Mod(ϕ) is Σ0

α. We will see in our chapter on forcing that the converse
is also true (Theorem VII.25).





CHAPTER VI

Overspill

VI.1. Non-standard jump hierarchies

We saw in Section V.2 that over every computable well-ordering
we have a jump hierarchy, and that it is unique. The definition was
for jump hierarchies over linear orderings in general, but we did not
say much about what happens when the linear ordering is not well-
ordered. The following lemma uses an overspill argument to show that
there are jump hierarchies over certain non-well-ordered computable
linear orderings.

Lemma VI.1. There is a non-well-ordered computable linear order-
ing over which there exists a jump hierarchy.

Proof. Let J be the set of indices of computable linear orderings
over which there exists a jump hierarchy.

J = {e ∈ N : ∃H ⊆ Le × N ∀a ∈ Le (H [a] = (H [<a])′)}.

Deciding if a set H is a jump hierarchy over a linear ordering Le is a
Π0

2 property of H and e. Thus, J is Σ1
1. As we saw in the previous

chapter, over every well-ordering there is a jump hierarchy. So we have
that

Owo ⊆ J.

We proved in IV.9 that Owo is not Σ1
1 and that it is actually Π1

1-
complete. So, J cannot be equal to Owo ; it must overspill! That is, Owo

must be a proper subset of J , and there must exist some e ∈ J rOwo

that is an index for a non-well-ordered computable linear ordering over
which there is a jump hierarchy. �

These jump hierarchies are hard to visualize, as there does not seem
to be a way to build them. The lemma above just says they exist. The
next lemma shows that, indeed, they cannot be hyperarithmetic.

Lemma VI.2. Let {Xi : i ∈ N} be a sequence of reals such that
X ′i+1 ≤T Xi for every i. Then all the Xi’s compute all the hyperarith-
metic sets.

89
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Proof. We prove that, for every α < ωCK1 , every Xi computes 0(α)

by transfinite induction on α. This is obvious for α = 0. Assume this
is true for α. Then for every i, since Xi+1 computes 0(α), Xi computes

0(α)′ ≡T 0(α+1), and hence it is true for α + 1. For a limit ordinal λ,
suppose that every Xi computes every 0(β) for β < λ. Observe that
0(λ) ≡T ⊕β<λ0(β). The fact that Xi computes each 0(β) does not mean
that it computes them uniformly – we need a couple of jumps to get
that uniformity: Given e, X ′′ can check if ϕXe is a jump hierarchy along
β (recall that checking this is Π0

2). That is, Xi can compute the set of

pairs 〈β, e〉 such that ϕ
Xi+2
e is a jump hierarchy along β. It can then

compute their join and hence compute 0(λ). �

Let HYP be the class of all hyperarithmetic sets.

Theorem VI.3. (Spector–Gandy [Spe60, Gan60]) If ψ(X) is a
Π1

1 formula of arithmetic, then

∃X ∈ HYP ψ(X)

is equivalent to a Π1
1 formula.

Conversely, every Π1
1 formula ϕ(Y ) is equivalent to one of the form

∃X ∈ HYP (ψ(X)), where ψ is Π0
2.

The formulas above may have 1st- or 2nd-order free variables.

Proof. For the first part, the idea is to replace the second-order
quantifier “∃X ∈ HYP” with a first-order quantifier over the indices
of hyperarithmetic sets. Let ϕΣc

a
e (x) be the eth Σc

La-formula with one
free variable x, where La is the computable linear ordering with index
a (as in Lemma I.29). Notice that for ϕΣc

a
e (x) to be an Lc,ω formula,

we need to have a ∈ Owo . Therefore, the set of pairs 〈a, e〉 which can
be used as indices for Lc,ω formulas is Π1

1. We then have that

∃X ∈ HYP ψ(X) ⇐⇒
∃a, e ∈ N (a ∈ Owo & ∀X(if ϕΣc

a
e (x) defines X → ψ(X))).

Recall that satisfaction of Lω1,ω formulas is ∆1
1 (Observation III.4) and

hence that saying that a formula ϕΣc
a
e (x) defines a set X, namely

∀n (n ∈ X ↔ ϕΣc
a
e (n)),

is a ∆1
1 property ofX, a and e. So the right-hand-side of the equivalence

above is Π1
1.

For the second part, let Lϕ be a linear ordering such that ϕ holds
if and only if Lϕ is well-ordered. We can build L uniformly from ϕ
and the parameters in ϕ. We know from Section V.2 that if Lϕ is
well-ordered, there exists a jump hierarchy on it and this hierarchy
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is hyperarithmetic. Conversely, if Lϕ is not well-ordered, then either
there is no jump hierarchy over it, or if there is one, it cannot be
hyperarithmetic by the previous lemma. We then get that

ϕ ⇐⇒ ∃H ∈ HYP (H is a jump hierarchy over Lϕ). �

Jump hierarchies over ill-ordered linear orderings produce≤T -descending
sequences {Xi : i ∈ ω} satisfying X ′i+1 ≤T Xi for all i. As we see in
the following lemma, such sequences cannot be uniform.

Lemma VI.4 (Steel [Ste75]). There is no sequence {Xi : i ∈ N}
where Xi computes X ′i+1 for all i uniformly, that is, where for some
computable operator Γ, X ′i+1 = Γ(Xi) for all i ∈ N.

Proof. Assume such a sequence exists. Using the Recursion The-
orem, we will find an e0 ∈ N such that for all i ∈ N,

e0 ∈ X ′i ⇐⇒ (∃j > i) e0 6∈ X ′j.

Before showing the details of how to find such an e0, let us show how
we get a contradiction from it. If for some i0 ∈ N we have e0 ∈ X ′i0 ,
then for some i1 > i0, e0 6∈ X ′i1 . Thus, one way or another, there exists
i1 with e0 6∈ X ′i1 . Then, for all j > i1, e0 ∈ X ′j. But if e0 ∈ X ′i1+1, there
must exits i2 > i1 with e0 6∈ X ′i2 , contradicting the previous line.

Let us now prove that such an e0 exists. Using Γ, find a computable
operator Φ such that for all Xj, Φ(Xj) = Xj+1. Given k, let Γk =
Γ ◦ Φk−1. This way, we have that, for i < j, X ′j = Γj−i(Xi). Now, to
apply the Recursion Theorem, we define a computable function f on
indices of computable operators as follows: Given e, let f(e) be the
index of a computable operator such that, for all n,

ΦX
f(e)(n) ↓ ⇐⇒ ∃k > 0 e 6∈ Γk(X).

Using the Recursion Theorem, let e0 be such that ΦX
f(e0) = ΦX

e0
for all

X. Substituting Xi for X and e0 for e, f(e), and n above, we get

e0 ∈ X ′i ⇐⇒ ΦXi
e0

(e0) ↓ ⇐⇒ ∃k > 0 e0 6∈ X ′i+k. �

Exercise VI.5. Prove that if L is a computable linear ordering
over which there is a jump hierarchy, then L has no hyperarithmetic
descending sequences. See hint in footnote.∗

∗ Use the same idea as in the previous lemma, using the fact that the columns
along a hyperarithmetic descending sequence compute the sequence.



92 VI. OVERSPILL

VI.1.1. Harrison’s linear ordering. The Harrison linear order-
ing is one of the most interesting objects in higher computable structure
theory. It is a computable linear ordering with an initial segment iso-
morphic to ωCK1 . It will thus allow us to fix indices for all ordinals
below ωCK1 . It follows from Exercise VI.5 that there is a computable,
non-well-founded linear ordering without hyperarithmetic descending
sequences. We give a more direct proof:

Theorem VI.6. (Harrison [Har68]) There is a computable linear
ordering that is not well-ordered but has no hyperarithmetic descending
sequences.

Proof. Let S be the set of indices of computable linear orderings
without hyperarithmetic descending sequences. Since well-orders have
no descending sequences, S contains all of Kleene’s Owo . The set S
is definable by a formula of the form ¬∃X ∈ HYP φ(X) where φ is
arithmetic, and hence by the Spector–Gandy Theorem VI.3 applied to
the negation of this formula, the set S is Σ1

1. Therefore, the set S must
overspill. That is, since S ⊇ Owo and S is Σ1

1, we must have Owo ( S.
Any element of SrOwo is an index for a computable, ill-founded linear
ordering without hyperarithmetic descending sequences. �

Note that a computable linear ordering has no hyperarithmetic de-
scending sequences if and only if every hyperarithmetic subset has a
least element. This is because, given a hyperarithmetic descending se-
quence {an : n ∈ N}, the set {b ∈ L : ∃n (an <L b)} is hyperarithmetic
and has no least element, and conversely, given a hyperarithmetic set
A with no least element, the sequence defined by an+1 as the ≤N-least
b ∈ A with b <L an is a hyperarithmetic descending sequence.

Theorem VI.7. ([Har68]) Every computable linear ordering with-
out hyperarithmetic descending sequences is isomorphic to an initial
segment of ωCK1 + ωCK1 ·Q.

Proof. Let L be a computable linear ordering without hyperarith-
metic descending sequences. Consider the equivalence relation on L
defined by a ∼ b if the interval [a, b] in L is well-ordered. This is, of
course, a convex equivalence relation in the sense that if a < b < c and
a ∼ c, then a ∼ b ∼ c. We will prove the following three facts about
∼ that together imply that L is isomorphic to an initial segment of
ωCK1 (1 + Q):

(1) Every equivalence class is well-ordered.
(2) The quotient is isomorphic to either 1, 1 + Q, or 1 + Q + 1.
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(3) Every equivalence class has order type ωCK1 except possibly
the last one. If there is a last one, it must be isomorphic to a
proper initial segment of ωCK1 .

Part (1) is the crux of the proof. Pick an element b ∈ L. It is easy to
see that the upper half of b’s equivalence class, {c ∈ L : c >L b∧b ∼ c},
is well-ordered by L. To show that the bottom half, {a ∈ L : a <L

b∧ a ∼ b}, is well-ordered, we must show it has a first element. Notice
that as a decreases within the ∼-equivalence class of b, the order type
of [a, b] either grows or stays the same. If there is a maximum order
type among the order types of [a, b] for a ∼ b, say α, then we would
have that, for a <L b, a ∼ b if and only if [a, b] 4 α, which we know we
can decide in a hyperarithmetic way by Theorem V.9. We could then
conclude that there is a least such a, as every hyperarithmetic subset
of L as a least element.

Suppose now that is not the case. That is, suppose that there is no
maximum order type among the order types of [a, b] for a ∼ b. This
will lead us to a contradiction. Let us define a sequence of elements
b >L a0 >L a1 >L · · · , all equivalent to b as follows. Let a0 be the
least among all the elements a <L b for which the order type [a, b] is
least possible. That is, a0 <L b satisfies that, for all c ∈ [a0, b) we have
[a0, b] ∼= [c, b], and for all c < a0, [a0, b] + 1 4 [c, b]. We continue on
by recursion. Given an, let an+1 be the least among all the elements
a <L an for which the order type [a, b] is least possible. Since we are
assuming there is no maximum order type among the order types of
[a, b] for a ∼ b, this process will continue for all n ∈ N. Notice that an+1

is defined from an by the following Σ1
1 property: for all c ∈ [an+1, an)

we have [an+1, b] ∼= [c, b], and for all c < an+1, [an+1, b] + 1 4 [c, b]. One
can then show that the set {an : n ∈ N} is Σ1

1, as it can be defined as
the set of all a’s for which there is a finite sequence a = an <L an−1 <L

· · · <L a0 <L b, where each ai+1 is defined from ai as above. The set
of computable well-orderings {[an, b] : n ∈ N} is then Σ1

1, and hence
bounded below ωCK1 . Let α ∈ ωCK1 be the supremum of this set. Then,
we would have that, for c <L b,

(∃n ∈ N) an <L c ⇐⇒ [c, b] + 1 4 α.

The set of all these c would then be hyperarithmetic and have no least
element, contradicting our assumptions on L.

For part (2), first observe that since L must have a first element,
so must its quotient. What is left to prove is that the quotient has no
adjacent classes: If a <L b were in adjacent equivalence classes, [a, b]
would be the sum of two well-orders and hence well-ordered itself, and
a and b would actually be equivalent.
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For part (3), if a belonged to a class isomorphic to some α < ωCK1

but not to the last class, then the set of c >L a such that α+ 1 4 [a, c]
would be hyperarithmetic and have no least element.

If there is a last equivalence class, since it has a first element, the
class would be computable. Since it is well-order, it must be isomorphic
to some α < ωCK1 . �

We call ωCK1 + ωCK1 · Q the Harrison linear ordering. By the pre-
vious theorems, it has a computable copy which does not have any
hyperarithmetic descending sequence. We denote it by H.

Exercise VI.8. Show that if L is a computable linear ordering with
an initial segment isomorphic to ωCK1 , it must have an initial segment
isomorphic to ωCK1 + ωCK1 ·Q. See hint in footnote.†

Lemma VI.9. H has Scott rank at least ωCK1 + 1.

We will show in Corollary VI.19 that ωCK1 + 1 is the largest Scott
rank a computable structure can have and hence that SR(H) = ωCK1 +
1.

Proof. Let a be an element that is the first in a copy of ωCK1 other
than the first copy.‡ The automorphism orbit of a consists of all the
elements that are the first in a copy of ωCK1 other than the first copy.
We claim that this orbit is not Σin

ωCK1
definable. Recall that if an orbit

is Σin
ωCK1

definable, it must be Σin
α definable for some α < ωCK1 . But the

orbit of a cannot be Σin
α -definable, because if we let b = a+ωα, then the

intervals above a and b are isomorphic to each other, and the intervals
below are isomorphic to ωα · ωCK1 · (1 +Q) and ωα(·ωCK1 · (1 +Q) + 1),
respectively. By Lemma II.38, these are 2α-back-and-forth equivalent
and hence satisfy the same Σin

α formulas.
We have proved that H is not Σin

ωCK1
-atomic. If we add parameters

p1 < · · · < pk, (H, p̄) is still not Σin
ωCK1

-atomic because, for some i ∈
{0, ..., k}, the interval [pi, pi+1] (where p0 = −∞ and pk+1 = +∞) is
isomorphic to H and hence not Σin

ωCK1
-atomic. �

Exercise VI.10. Prove that all the automorphism orbits in the
ill-founded part of H are Πin

ωCK1
.

Lemma VI.11. There is a computable operator H such that for ev-
ery X ∈ 2<N, HX is an ω-presentation of the Harrison linear ordering

†Show that the set of b ∈ L for which there is a hyperarithmetic descending
sequence starting at b is Π1

1.
‡By a copy of ωCK1 within H, we mean a maximal interval isomorphic to ωCK1 .



VI.2. STRUCTURES OF HIGH SCOTT RANK 95

relative to X. That is, it has order type ωX1 · (1 + Q) and has no
X-hyperarithmetic descending sequences.

Proof. The set of Y ∈ 2N which are not hyperarithmetic in X is
Σ1

1 in X (Lemma IV.21). Thus, we can build a tree T X whose paths
are of the form Y ⊕Z, where Y is not hyperarithmetic in X, and Z is a
witness that Y is not. Furthermore, T X is computably uniform in X.
In other words, we consider the tree T corresponding to the Π0

1 class of
reals X ⊕ Y ⊕Z ∈ ωω such that Z is a witness for the Σ1

1 formula that
says that Y is not hyperarithmetic in X (Corollary IV.6), and then let
T X be as in the proof of Corollary IV.7 or Theorem IV.17. This tree
T X is not well-founded for any X, as there are lots of Y ’s which are
not hyperarithmetic in X. But it has no path hyperarithmetic in X.
The Kleene–Brouwer ordering of this tree is then ill-founded (Definition
I.24). Furthermore, if we look into the proof of Theorem I.26, we can
see that if f is a descending sequence in the Kleene–Brouwer ordering
of a tree, its jump, f ′, can compute a path through the tree (as it is
obtained using a limit). Thus, in the current case, our Kleene–Brouwer
ordering has no X-hyperarithmetic descending sequence. (T X ,≤

KB
) is

thus isomorphic to an initial segment of ωX1 (1+Q). LetHX = (T X ,≤
KB

)× ω. HX still has no hyperarithmetic descending sequences and it is
now isomorphic to ωX1 · (1 + Q). �

We can even assume that in HX , the basic operations on ordinals,
like successor, addition, and deciding if an element is a limit or a succes-
sor, are all computable. To see this, we have to observe that if A is any
ordinal, ωA is an ordinal where all these operations are computable.
It is not hard to see that ωH ∼= H. If we also want multiplication
to be computable, one would need to consider ωω

A
. If we also want

exponentiation to be computable, we would need to consider εA as in
[MM11].

Exercise VI.12 (Jockusch [Joc68, Theorem 4.1(3) and Corollary
4.3]). The ωCK1 initial segment of H is clearly Π1

1 and not Σ1
1. Prove

that it is not Π1
1-complete. See hint in footnote. §

VI.2. Structures of high Scott rank

If a structure is computable, does it have a computable Scott sen-
tence? The answer is no, and the Harrison linear ordering is the main
counterexample. We show below that a computable structure has a
computable Scott sentence if and only if its Scott rank is computable.

§Use a priority argument to diagonalize against all computable many-one re-
ductions from a Π1

1 set you build. It is enough to build a Σ0
2 set.
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Definition VI.13. A computable structure whose Scott rank is
not a computable ordinal is said to have high Scott rank.

More generally, we define ωA1 = min{ωD(B)
1 : B ∼= A}. Thus, if A

has a computable ω-presentation, ωA1 = ωCK1 . A structure, computable
or not, is said to have high Scott rank if SR(A) ≥ ωA1 .

Since the Harrison linear ordering has Scott rank ωCK1 + 1 (Lemma
VI.9), it is a structure of high Scott rank. In this section, we prove
that the computable structures of high Scott rank are the ones that do
not have computable Scott sentences. Before that, we prove a lemma
that shows that every Πin

α -type realized in a computable structure is
equivalent to a Πc

2α-formula.

Lemma VI.14. Let A be a computable τ -structure. For every ā ∈
A<N and every computable ordinal α, there is a Πc

2α formula ϕā,α such
that, for any other τ -structure B and tuple b̄,

B |= ϕā,α(b̄) ⇐⇒ (A, ā) ≤α (B, b̄).
Furthermore, we can find ϕā,α uniformly in ā and α.

Proof. For the transfinite recursion to work, we also need to define
ψā,α(x̄) such that

B |= ψā,α(b̄) ⇐⇒ (A, ā) ≥α (B, b̄).
The definitions of ϕā,α and ψā,α are by simultaneous effective transfinite
recursion: Let ϕā,α(x̄) be the formula∧∧

β<α

∀ȳ
∨∨
c̄∈A<N

ψāc̄,β(x̄, ȳ)

and ψā,α be the formula∧∧
β<α

∧∧
c̄∈A<N

∃ȳ ϕāc̄,β(x̄, ȳ).

It is not hard to prove by transfinite induction that these formulas are
as needed. �

Theorem VI.15 (Nadel [Nad74]). A computable structure has a
computable infinitary Scott sentence if and only if its Scott rank is a
computable ordinal.

Proof. For the (⇒) direction, if A has a computable infinitary
Scott sentence, that sentence must be Σc

α or Πc
α for some α < ωCK1 ,

and hence A has Scott rank below ωCK1 .
For the (⇐) direction, let α < ωCK1 be the Scott rank of A. Then,

all automorphism orbits are Σin
α definable over parameters, and all of
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them are Σin
α+2 definable with no parameters. We thus have that, given

ā ∈ A<N, another tuple b̄ is automorphic to ā if and only if ā ≤α+3 b̄.
From Lemma VI.14, we get a Πc

2α+6 formula ϕā,α+3 that defines the
automorphism orbit of ā. Once we have all these formulas, we can
build a Scott sentence exactly as in Theorem II.9. �

The computable Scott sentence we defined in the previous theorem
is not of optimal complexity.

Exercise VI.16. (Alvir, Knight, McCoy [AKM20]) Prove that if
A has a computably infinitary Πα-Scott sentence, then A is Σc

<α-atomic
(not necessarily uniformly so). See hint in footnote.¶

VI.2.1. Structures of high Scott rank. We already saw that
Scott theorems do not effectivize, in the sense that computable struc-
tures do not need to have computable Scott ranks or computable Scott
sentences. However, Lemma II.7, which states that Lω1,ω-elementary
countable structures are isomorphic, does effectivize: Computable struc-
tures that satisfy the same computable infinitary sentences are isomor-
phic (Corollary VI.18).

Theorem VI.17. If A and B are computable ω-presentations, and
A ≡α B for all α < ωCK1 , then A and B are isomorphic.

Proof. We say that a family {Eξ : ξ ≤ α} of sets

Eξ ⊆
(
A<N ×B<N) ∪ (B<N × A<N)

for α ∈ H is a bf-family if it satisfies the properties of the back-and-forth
relations, that is, āE0b̄ if and only if DH(ā) ⊆ DH(b̄) and āEξ b̄↔ ∀ζ <
ξ∀d̄∃c̄ (b̄d̄Eζ āc̄). Consider the set of α ∈ H for which such an E exists
and the empty tuples of A and B are Eα-related (i.e., (〈〉, 〈〉) ∈ Eα).
This set is Σ1

1 and contains ωCK1 — it must overspill. We have some
α∗ ∈ H r ωCK1 for which we have a bf-family {Eξ : ξ < α∗} with
〈〉Eα∗〈〉.

Now consider the set

I = {(ā, b̄) ∈ A<N ×B<N : ∃ξ ∈ Hr ωCK1 , (ā, b̄) ∈ Eξ}.
Since E satisfies the property of a back-and-forth relation, one can

easily show that I has the back-and-forth property (Definition II.6)
and hence that A and B are isomorphic [Part 1, Lemma ??]. �

The following corollary is a particular case of a more general result
due to Ressayre [Res73, Res77].

¶Use Morleyization as in Proposition II.26.
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Corollary VI.18. If two computable structures satisfy the same
computable infinitary sentences, they are isomorphic.

Proof. Recall from Lemma VI.14 that for each computable struc-
ture A and ordinal α < ωCK1 , there is a Πc

2α sentence ϕA,α such that
for any other structure B,

B |= ϕA,α ⇐⇒ A ≤α B.
Therefore, if A and B are computable structures and satisfy the same
computable infinitary sentences, they must be α-back-and-forth equiv-
alent for all α < ωCK1 . �

Corollary VI.19. [Nad74] The Scott rank of a computable struc-
ture is at most ωCK1 + 1.

Proof. Every automorphism orbit is determined by the conjunc-
tion of all the computable infinitary formulas true about it. This is a
Πin
ωCK1

formula. Thus, every computable structure is Πin
ωCK1

-atomic. �

This leaves two possible ranks for computable structures of high
Scott rank: ωCK1 and ωCK1 + 1. In the former case, every orbit is Σin

ωCK1

definable over parameters, and hence Σin
<ωCK1

-definable. In the latter

case, there must exist at least one orbit that is not Σin
<ωCK1

-definable.

We already saw an example of a computable structure of Scott rank
ωCK1 +1, namely the Harrison linear ordering, from which we can build
the Harrison tree, the Harrison Boolean algebra, and the Harrison p-
group, all of high Scott rank: the Harrison tree is just the tree of
descending sequences of H (see page 12); the Harrison Boolean algebra
is the interval algebra of H; and the Harrison abelian p-group has one
generator for each node in the Harrison tree, the root of the tree being
the identity of the group, and these generators satisfy that if σ is a
node of the tree, σ time p is equal to the parent of σ. For a while,
these were the only examples of computable structures of Scott rank
ωCK1 + 1. A conceptually different example of a structure of Scott rank
ωCK1 + 1 was recently built by Harrison-Trainor [HT18].

A computable structure of Scott rank ωCK1 was built by Knight and
Millar [KM10], improving a construction of an arithmetical structure
of Scott rank ωCK1 by Makkai [Mak81].

Theorem VI.20. There is a computable structure of Scott rank
ωCK1 .

Proof. ([CKM06]) We start by defining a computable sequence
of sets

A0 ⊆ A1 ⊆ · · · ⊆ H
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satisfying the following properties:

(1) Each An has order type at most ωn+1.
(2) A0 is cofinal in H.
(3) For each n ∈ N and a ∈ An, a = sup{b + 1 ∈ An+1 : b < a}.

In other words, if a is a successor, then a − 1 ∈ An+1, and if
a is a limit, then there exists b0 < b1 < b2 < · · · ∈ An+1 with
limit a.

(4)
⋃
n∈NAn = H.

It is not hard to build the sets An by recursion on n: For each a ∈ An−1,
add to An a sequence ba0 < ba1 < ba2 < · · · → a that may be finite or
infinite, where ban is the ≤N-least element b such that ban−1 < b < a, if
such an element exists. If a is a successor ordinal, we will eventually
have ban = a − 1 and stop finding new elements in the sequence. If a
is a limit ordinal, this sequence will be infinite, and for every c < a
we must have c < ban for some n, because for the least n with ban ≥N c
(in the ordering of N), if c ≥H ban−1 then c would be chosen as ban. We
claim that

⋃
nAn = H: Otherwise take h ∈ H r

⋃
nAn and, for each

n, let an be the least element of An greater than h, which exits because
An is computable and all hyperarithmetic subsets of H have a least
element. Note that 0′ can compute an, and by (3), an < an−1 for all n,
contradicting that H has no 0′-computable descending sequences.

Now that we have the sets An, let us define a tree T ⊆ (H ×N)<N,
which we will prove has Scott rank ωCK1 :

T = {〈〈h0, n0〉, 〈h1, n1〉, ..., 〈hk, nk〉〉 ∈ (H × N)<N :

(∀i ≤ k) hi ∈ Ai & hi <H hi−1}.

Notice the second coordinate of each entry of the tuple is ignored, and
it is the first coordinate that must be a decreasing sequence in H and
belong to the right set Ai. The second coordinate is only there to make
sure that each branch is repeated infinitely often. Let us use h(σ) to
denote the first coordinate of the last entry of σ. We view T as a
graph with a special constant denominating the root. That is, we are
considering the structure

T = (T ; 〈〉, R),

where R = {〈σ, σ−〉 : σ ∈ T r {〈〉}} is the parent relation in the tree.
It is T that we claim has Scott rank ωCK1 . When we view T as a
structure, we erase the information about the sequence of pairs which
constitutes each element of T . We will be able to more or less recover
some of that information — but at a cost.
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It is not hard to show by transfinite induction using (3) that, for
every σ ∈ T , if h(σ) ∈ ωCK1 , then rk(Tσ) = h(σ).‖ For σ with h(σ) ∈
H r ωCK1 , Tσ is ill-founded. Furthermore, it is not hard to see that,
given σ, τ ∈ T ,

• if h(σ), h(τ) < ωCK1 , then Tσ ∼= Tτ if and only if and h(σ) =
h(τ), and
• if h(σ), h(τ) ∈ H r ωCK1 , using a back-and-forth proof, one

can show that Tσ ∼= Tτ , independently of the value of h(σ)
and h(τ).

Thus, we can tell if two nodes are automorphic as follows:

(T , σ) ∼= (T , τ) ⇐⇒ |σ| = |τ | & ∀i ≤ |σ| (rk(Tσ�i) = rk(Tτ�i)),

including the possibility of rk(Tσ�i) =∞. What we need to be able to
tell is when two tuples of nodes are automorphic, not just single nodes.
Given tuples of nodes σ̄ = 〈σ1, ..., σ`〉, we let σ̄↓ be downward closure
of σ̄. That is, let σ̄↓ be the tuple which contains all the initial segments
of the nodes in σ̄, i.e., all the nodes of the form σj � i for j ≤ ` and
i ≤ |σj|. We then have that, for two tuples of nodes σ̄ and τ̄ of length
`,

(T , σ̄) ∼= (T , τ̄) ⇐⇒
(T , σ̄↓) ≡0 (T , τ̄↓) & ∀j ≤ ` ∀i ≤ |σj| (rk(Tσj�i) = rk(Tτj�i)).

Thus, to define the automorphism orbit of any tuple, we need to
find the ranks of the branches of the trees below the elements of the
tuple: If h(σ) ∈ ωCK1 , then we know from Lemma II.4 that there is
a computable infinitary sentence that is true only for trees of rank
h(σ). If h(σ) ∈ H r ωCK1 , then there is no infinitary formula that
says that a tree has infinite rank (see Corollary II.41). However, if
we know the length of σ, say n, all we need to say is that the rank
of Tσ is not in An ∩ ωCK1 . Let αn be the supremum of An ∩ ωCK1 ,
which, since An has order-type at most ωn+1, has to be an ordinal
in ωCK1 . (This is because if an is the least element of An r ωCK1 , then
An∩ωCK1 = An∩(H�an) is computable, and hence it must be bounded
below ωCK1 .) Then rk(Tσ) =∞ if and only if rk(Tσ) > αn, and we know
from Lemma II.4 that there is a computable infinitary sentence that is
true only for trees of rank greater than αn. We conclude that T has
Scott rank at most ωCK1 .

To prove that it does not have Scott rank below ωCK1 , we need
to show that there is no bound below ωCK1 on the complexity of the

‖Recall that we use ωCK1 to denote the well-ordered initial segment of H. Recall
also that Tσ = {γ : σaγ ∈ T}.
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formulas defining the automorphism orbits. That is, we need to show
that for every α < ωCK1 , there exists σ, τ ∈ T which satisfy the same
Πin
α -formulas, (i.e., such that σ and τ are α-back-and-forth equivalent

in T ) but not automorphic. This will follow from the following claim:

Claim VI.20.1. If |σ| = |τ | = n and ω · α < h(σ), h(τ), then
Tσ ≡α Tτ .

To work out the back-and-forth relations on T , we need a few ba-
sic observations. The first is that it is enough to consider tuples and
extensions of tuples which are closed downward in the tree (in other
words, that are finite subtrees, all of the form σ̄↓). The second key ob-
servation is that given finite tuples σ̄, τ̄ which are closed downwards,
σ̄ ≤α τ̄ if and only if, for every i < |σ̄|, Tσirσ̄ ≤α Tτirτ̄ , where Tσirσ̄ is
the tree of all γ ⊇ σi such that for no j different from i, σi ( σj ⊆ γ.
This is because the sets Tσirσ̄ for i = 0, ..., |σ̄|−1 partition T into com-
pletely independent pieces with no interaction between them. Thus,
when you consider a tuple extending σ̄, you can consider the parts of
the tuple inside each Tσirσ̄ independently. The third observation is that
Tσirσ̄

∼= Tσi , because each branch repeats infinity often and removing
a few branches does not affect the isomorphism type.

The proof of the claim is by transfinite induction of α. We rec-
ommend the reader try it with pencil and paper before reading these
details. The case α = 0 is trivial. Let us move to the general case. By
symmetry, it is enough to show that Tσ ≤α Tτ . Let b̄ be a tuple in Tτ
that is closed downwards, and let β < α. We need to find a tuple ā
such that for each i < |ā|, |ai| = |bi| and either h(ai) = h(bi) < ω · β or
ω · β < h(ai), h(bi). This would imply that Tai ≥β Tbi for all i < |b̄|, as
needed. Let k be the length of the longest tuple in b̄, and let γ0, ..., γk be
such that ω · β < γk < γk−1 < · · · < γ0 < ω · α ≤ h(σ) and γi ∈ A|σ|+i,
which we can do by (3), making sure at each step that γi > ω ·β+k− i.
Define ā starting from the shortest nodes in the sub-tree to the longest
according to the following rule: If h(bi) < ω · β, let h(ai) = h(bi); and
if h(bi) ≥ ω · β, let h(ai) = γ|ai|. Of course, you must also preserve
lengths: |ai| = |bi|.

This finishes the proof of the claim. It follows that for no α < ωCK1

we have that all orbits are Σin
α -definable and hence that T must have

high Scott rank. �

Observation VI.21. The Scott-sentence complexity of the tree
above is Πin

ωCK1
. The Scott sentence for T says the following: For every

n and every σ in T of length n, Tσ has rank either in An∩ωCK1 or greater
than αn. If rk(Tσ) = γ ∈ An ∩ ωCK1 , then σ has children of all ranks
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in An ∩ γ, each rank appearing infinitely often. If rk(Tσ) > αn, then
σ has children of all ranks in An ∩ αn, each rank appearing infinitely
often, and also has infinitely many children of rank greater than αn+1.

New structures of high Scott rank have been built recently. Harrison-
Trainor, Igusa, and Knight [HTIK18] proved that there is a struc-
ture of Scott rank ωCK1 for which the computable infinitary theory is
not ℵ0-categorical. Alvir, Greenberg, Harrison-Trainor, and Turetsky
[AGHTT21] have since then built new examples and done a deep
analysis of the possible Scott sentence complexities of the computable
structures of high Scott rank.

VI.2.2. Barwise-Kreisel compactness. Recall that a set S of
Lω1,ω sentences is said to be satisfiable if it has a model. For countable
S, from the Löwenheim-Skolem Theorem II.61 we get that if S has a
model, it must have a countable one.

The most important tool in model theory of finitary first-order logic
is compactness: If every finite subset of a set of sentences is satisfiable,
then the whole set is satisfiable. This is not true of infinitary logic.
Here is an example. In the vocabulary with constants a, b and a unary
function S, the set

{“
n︷ ︸︸ ︷

S(S(· · · S( a) · · · )) 6= b” : n ∈ N} ∪ {“
∨∨
n∈N

n︷ ︸︸ ︷
S(S(· · · S( a) · · · )) = b”}

is not satisfiable, but every finite subset of it is.
However, in the computable infinitary language, there is a version

of compactness that turns out to be extremely useful.

Theorem VI.22 (Barwise [Bar67, Bar69]). Let {ϕξ : ξ ∈ ωCK1 }
be a computable sequence of computable infinitary formulas. If for each
α < ωCK1 , the set {ϕξ : ξ < α} is satisfiable, then the whole set {ϕξ :
ξ ∈ ωCK1 } is satisfiable.

When we say that {ϕξ : ξ ∈ ωCK1 } is a computable sequence of
computable infinitary formulas, we mean that there is a partial com-
putable function f such that, for all α in ωCK1 , which we view as the
well-founded part of a given ω-presentation of H, f(α) is defined and
gives the index for a computable infinitary formula, and we do not care
what f does on HrωCK1 . Recall from Section III.2 that an index for a
computable infinitary formula consists of a quadruple 〈Γ, β, i, j〉 where
Γ ∈ {Σ,Π}, β < ωCK1 , and i, j ∈ N, a formula which we denote by

ϕ
Γβ
i,j (x1, ..., xj).
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Proof. There is a Σ1
1 N-formula χ that, given an ω-presentation

of a structure A and an index e for a computable infinitary sentence
ϕe, χ(A, e) holds if and only if A |= ϕe. Consider the set of ζ ∈ H for
which {ϕξ : ξ < α} is satisfiable. That is, let

Z = {ζ ∈ H : ∃A ∀ξ < ζ (f(ξ) ↓ ∧ χ(A, f(ξ))).

Z is Σ1
1 and contains ωCK1 — it must overspill. There is some ζ∗ ∈

Z r ωCK1 .∗∗ We then have that for some structure A, for every
ξ < ωCK1 < ζ∗, f(ξ) ↓ ∧ χ(A, f(ξ)). Thus, A is a model of {ϕξ : ξ ∈
ωCK1 }. �

Barwise’s version of the theorem above was in terms of admissible
sets. If one considers the right setting, the theorem above can be seen
as a particular case of Barwise compactness. The corollary below is
attributed to Kreisel [Kre61] in [AK00, Page 123].

Corollary VI.23. (Barwise-Kreisel Compactness Theorem) Let
S be a Π1

1 set of indices of computable infinitary formulas. If every
hyperarithmetic subset of S is satisfiable, then so is S.

Proof. The first step is to notice that every Π1
1 set can be decom-

posed as the union
⋃
ξ∈ωCK1

Sξ of an increasing sequence of sets, where

Sξ is Σ0
2ξ for each ξ ∈ ωCK1 : Given an m-reduction from S to Owo , let

Sξ = {e ∈ N : Lf(e) ≺ ωξ}.

The sets Sξ are Σ0
2ξ (by Lemma II.5).

We showed in Lemma V.10 that a Σ0
2ξ conjunction of computable

infinitary sentences is equivalent to a computable infinitary sentence,
and we can find this equivalent formula uniformly, given an index for
the Σ0

2ξ set. Let ψξ be a computable infinitary sentence equivalent to
the conjunction of the formulas with indices in Sξ. That is,

ψξ ≡
∧∧
e∈Sξ

ϕe.

For each α, since Sα is ∆1
1, the set {ϕξ : ξ < α} is satisfiable. By the

previous theorem, the whole set {ϕξ : ξ ∈ ωCK1 }, which is equivalent to∧∧
e∈S ϕe, is satisfiable. �

∗∗For ζ∗ ∈ H r ωCK1 , f(ζ∗) might be undefined, or if it is defined, it might
output a quadruple that is an index of a computable infinitary sentence or not.
Independently of whether k ∈ N is an index for a computable infinitary formula,
χ(A, k) is either true or false. The truth value of χ(A, k) is meaningless if k is not
an index for a computable infinitary sentence.
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Exercise VI.24. Prove that the theorem above still holds if the
function f : ξ 7→ ϕξ is Σ1

1, that is, there is a Σ1
1 formula θ(x, y) such

that, for every e ∈ ωCK1 , f(e) = d if and only if θ(e, d).

The following is a version of Barwise-Kreisel compactness where we
consider satisfaction only by computable models.

Corollary VI.25. Let {ϕξ : ξ ∈ ωCK1 } be a computable sequence
of computable infinitary formulas. If for each α < ωCK1 , the set {ϕξ :
ξ < α} is satisfiable in a computable structure, then the whole set
{ϕξ : ξ ∈ ωCK1 } is satisfiable in a computable structure.

Proof. The proof is almost exactly the same as that of Theo-
rem VI.22, with the difference being that we consider only computable
structures A. The set Z is still Σ1

1 and must overspill. �

Corollary VI.26. If a computable infinitary sentence T has com-
putable models of arbitrarily high Scott rank below ωCK1 , it has a com-
putable model of high Scott rank.

Proof. Consider the sequence {ϕξ : ξ ∈ ωCK1 } defined as follows:
ϕ0 is just T . For ξ > 0, ϕξ is the sentence ρξ that says that the model
has Scott rank greater than or equal to ξ and in Lemma II.67. The
corollary then follows directly from the theorem. �

The following result is due to Morley and Barwise independently.
See Keisler’s book [Kei71, Chapters 15 and 16]. The version for infini-
tary sentences is due to Morley [Mor] and Barwise [Bar69]. The bold-
face versions are due to Morley [Mor65] and López-Escobar [LE66].
(They showed that the Hanf number of Lω1,ω is iω1 and that that of
Lc,ω is iωCK1

. They used the Erdös-Rado theorem to build an order-

indiscernible sequence over a language with added Skolem functions.)
The following result was one of the key ingredients in the proof that

there is a structure Muchnik equivalent to its own jump that we gave
in [Part 1, Chapter IX].

Theorem VI.27. If a computable infinitary τ -sentence T has a
model of size iωCK1

, it has a countable model with a non-trivial auto-
morphism.

Recall that iα is the cardinal obtained by iterating the power set
operation α times.

Proof. We consider structures with two sorts, one of which we
callM and is a model of T and the other is a linear ordering L with a
first element 0 and a last element `, which we should think of as a well-
order (though it does not need to be). These two-sorted structures also
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have a relation E ⊆ L×M<N×M<N which encodes the back-and-forth
relations inM indexed by elements of L, which are treated as ordinals.
That is, if L were actually well-ordered, then E(α, ā, b̄) would hold if
and only if (M, ā) ≤α (M, b̄). We also need two different elements
c and d from M which are E`-equivalent, that is, such that E(`, c, d)
holds. The idea is to prove that there exists such a model where L is
ill-founded and prove that, in that case, c and d are automorphic.

Concretely, let τ ′ be a vocabulary that consists of τ ∪ {M,L,≤L
, E, 0, `, c, d}.†† Let S be the computable infinitary τ ′-sentence saying
the following:

(1) M and L partition the domain.
(2) M |= T , and c and d are two different elements from M .
(3) (L;≤L) is a linear ordering with first element 0 and last ele-

ment `.
(4) For ā, b̄ ∈ M<N of the same length, E(0, ā, b̄) holds if ā and b̄

satisfy the same atomic τ|ā|-formulas in M.
(5) For α ∈ L and ā, b̄ ∈M<N of the same length, E(α, ā, b̄) holds

if and only if, for every β <L α and every f̄ ∈ M<N, there
exists ē ∈M |d̄| such that E(β, b̄f̄ , āē) holds.

(6) E(`, c, d).

We claim that, if L is a computable well-ordering andM is a model of
T of size iωCK1

, then M and L can be put together to build a model
of S. The first step is to define E, but since L is well-ordered, E is
uniquely defined by the rules above and we must have E(α, ā, b̄) ⇐⇒
(M, ā) ≤α (M, b̄). The crux is to show that one can name two elements
of M , c and d, so that c ≤` d. To show this, we claim that for each
α ∈ L, there are at most iα+1 many ≡α-equivalence classes. This is
true of α = 0, as there are countably many possible values for DA(ā).
The ≡α+1-equivalence class of a tuple ā is determined by the set of
possible ≡α-equivalence classes of tuples of the form āē. If there are at
most iα+1 ≡α-equivalence classes, then there are at most 2iα+1 = iα+2

sets of≡α-equivalence classes and hence at most iα+2 ≡α+1-equivalence
classes. For limit ordinals λ, a ≡λ-equivalence class is determined by
the α-equivalence classes for α < λ. Each ≡λ-equivalence class can
thus be represented by a function with domain λ which assigns an α-
equivalence to each α ∈ λ. The number of such functions is bounded
by |λ|supα<λ iα+1 = ωiλ = iλ+1.

Now, if M has size larger than iL, there must be at least one
≡`-equivalence class with at least two elements — call them c and d.

††E is a actually a sequence of relations {En : n ∈ N}, where En has arity
2n+ 1 and applies to triples α, ā, b̄, with α ∈ L and ā, b̄ ∈Mn.
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For each computable ordinal ξ, consider the sentence ψξ that says
that L does not embed in ξ (see Lemma II.5). By the previous claim,
for every α < ωCK1 , the theory S ∪ {ψξ : ξ < α} is satisfiable by a
model where L is computable. From the Barwise-Kreisel compactness
theorem (Theorem VI.22), S∪{ψξ : ξ < ωCK1 } is satisfiable by a model
where L is computable. Since L 64 ξ for any computable ordinal ξ, L
cannot be well-ordered. Split L into L0 + L1 where L0 is well-ordered
and L1 has no least element. It follows from (5) that the set

{〈ā, b̄〉 : E(α∗, ā, b̄) for some α∗ ∈ L1}
has the back-and-forth property (Definition II.6), and hence any pair
in it is a pair of automorphic elements. It follows from [Part 1, Lemma
??] that there is an automorphism mapping c to d. �



CHAPTER VII

Forcing

Forcing was introduced by Paul Cohen to prove that the continuum
hypothesis does not follow from the ZFC axioms of set theory. Soon
after, it became one of the main tools in set theory to prove indepen-
dence results of all kinds. The objects produced by this technique are
called generics.

There are also many applications of forcing in computability theory.
In computable structure theory, forcing is used as a tool to translate
computational properties of ω-presentations to structural properties
of structures. In this book, we will look at generic enumerations of
structures and generic presentations of structures. The special feature
of these generic presentations is that there is nothing special about
them — they are generic. Thus, if a generic ω-presentation has some
particular computational property, that property is not special to this
ω-presentation and there must be some structural reason for it.

We introduced the first ideas of forcing in computable structure
theory in [Part 1, Chapter ??]. There, we only considered 1-generics,
which decide only Σc

1 relations. Now, we will consider Lc,ω-generics,
which decide all Lc,ω-definable relations. An understanding of [Part 1,
Chapter ??], while recommended, is not required to read this chapter.

The first ones to use forcing in computable structure theory were
Ash, Knight, Manasse, and Slaman [AKMS89], and independently
Chisholm [Chi90]. The notion of forcing we introduce here is aesthet-
ically different from theirs, but the ideas are the same.

VII.1. Generic enumerations and generic presentations

Let A? be the set of all finite tuples from A whose entries are all
different. We will use the partial ordering (A?;⊇) as what set theorists
call the forcing notion. We say that a subset R ⊆ A? is dense if, for
every r̄ ∈ A?, there is a p̄ ⊇ r̄, p̄ ∈ R. Given an injective enumeration∗

g of A, we say that g meets R if g has some initial segment p̄ ⊂ g in R.
Consider the topological space of all injective enumerations of a

structureA, viewed as a subspace ofAN, which in turn is homeomorphic

∗Recall that an enumeration of A is an onto map from N to A.

107
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to Baire space NN. The set of injective enumerations that meet a set
R ⊆ A?, denoted [R]

⊂
, is an open set (see Section V.4). Actually,

all open sets are of this form. If R is dense as defined above, then
[R]

⊂
is dense in the topological sense too (i.e., it intersects every open

set). Topologically speaking, dense open sets are considered large sets,
and belonging to the complement of a dense open set is thus a special
property. These are the kind of special properties generic enumerations
do not have. When forcing in set theory, one considers all dense open
sets. Here, we only consider the ones definable by computable infinitary
formulas.

We say that a relation R ⊆ A<N is computably infinitary definable,
or Lc,ω-definable, if each set R ∩ An is Lc,ω-definable uniformly in n,
in other words, if there is a computable list of computable infinitary
formulas {ϕn(x1, ..., xn) : n ∈ N} such that R ∩ An = {ā ∈ An : A |=
ϕn(ā)} for all n ∈ N.

Definition VII.1. An injective enumeration g : ω → A of a struc-
ture A is Lc,ω-generic if it meets every dense Lc,ω-definable subset of
A?.

Lemma VII.2. For every structure A, every p̄ ∈ A? can be extended
to an Lc,ω-generic enumeration g : ω → A.

Recall that, unless stated otherwise, all structures we consider are
countable.

Proof. This is essentially a corollary of the Baire category theo-
rem, which says that the intersection of a countable collection of dense
open sets is never empty. We give a direct proof.

There are countably many Lc,ω-definable relations, so one can build
g meeting one Lc,ω-definable relation at the time as follows. We build
g as the limit of a nested sequence p̄0 ⊆ p̄1 ⊆ · · · . Let p̄0 = p̄. To make
sure g is generic, define p2n so that it extends p2n−1 and meets the n-th
dense Lc,ω-definable relation. To make sure g is onto, define p2n+1 so
that it extends p2n and contains the n-th element of A. �

Definition VII.3. An ω-presentation G is an Lc,ω-generic presen-
tation of a structure A if G can be obtained as the pull-back g−1(A)
through an Lc,ω-generic enumeration g.†

†Recall that the pull-back of a structure A through an enumeration g : N→ A
is the unique ω-presentation G that makes g an isomorphism from G to A. (See
page xxiv.)
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The notion of Lc,ω-generic enumeration depends only on the struc-
tural properties of A, as it only depends on which relations are Lc,ω-
definable in A. It follows that the notion of Lc,ω-generic presentation
of a structure A is independent of the given ω-presentation of A. More
concretely, if h : A → B is an isomorphism, then g : N → A is Lc,ω-
generic if and only if h ◦ g : N→ B is Lc,ω-generic.

Let us consider the particular situation where B = G, just for a
minute. If G is the pull-back g−1(A) of A through some Lc,ω-generic
enumeration g : N → A, and we let B = G and h be g−1 : A → G,
then id = g−1 ◦ g : G → G is also Lc,ω-generic. It follows that an ω-
presentation G is an Lc,ω-generic presentation if and only if the identity
function on N is an Lc,ω-generic enumeration of G itself.

Exercise VII.4. Prove that if g is Lc,ω-generic, it also meets all
dense subsets of A? that are Lc,ω-definable over parameters.

Exercise VII.5. Show that if A is computable, Kleene’s O can
compute an Lc,ω-generic enumeration of A.

VII.2. The forcing relation

An ω-presentation G is characterized by its atomic diagram D(G) ∈
2N (see page xxi). Thus, to talk about properties of presentations, we
use the vocabulary {0, 1,+,×,≤, X(·)} of 1st order arithmetic with an
extra unary relation X to represent the diagram of the structure. We
will think of X as a 2nd-order variable and write ϕ(X) to emphasize
this. We call these formulas N-formulas. Recall from Section V.4 that
the N-Lω1,ω-definable subsets of 2N are exactly the Borel subsets of
2N. Given an ω-presentation G, we will write ϕ(G) to mean ϕ(D(G)).
Instead ofX, we will use the set theoretic dot notation Ġ, as a 2nd-order
variable symbol to emphasize that we are talking about the diagram
of an ω-presentation. The dot on top of Ġ means that we are not
talking about a particular presentation, but about a name for a generic
presentation that we will obtain after forcing.

Recall from Section V.4 that every N-Lω1,ω-formula is equivalent,
when evaluated in the structure of the natural numbers, to an infinitary
quantifier-free one, where the quantifiers ∀n and ∃n are replaced by the
infinitary connectives

∧∧
n∈N and

∨∨
n∈N. Recall that we can also replace

the atomic formulas that do not mention Ġ by their truth values > or
⊥. Furthermore, this transformation can be done without changing
the complexity of the formula. We will thus assume that our N-Lω1,ω-

formulas ϕ(Ġ) are always infinitary quantifier free and that the literal‡

‡ Recall that a literal is a formula that is either atomic or negation of atomic.
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sub-formulas are of the form >, ⊥, Ġ(n) or ¬Ġ(n). By deMorgan’s
laws, we may also assume that all negations appear only next to atomic
formulas.

Definition VII.6. We say that a tuple p̄ ∈ A? semantically forces
a computable infinitary N-formula ϕ(Ġ) if ϕ(g−1(A)) holds for every
Lc,ω-generic enumeration g of A extending p̄.

The forcing-equals-truth theorem (Theorem VII.13 below) will for-
malize the idea that generics have no special properties by showing
that an Lc,ω-generic presentation g−1(A) satisfies an N-formula ϕ(Ġ)
if and only if g has an initial segment p̄ that forces it. Thus, if g−1(A)
satisfies ϕ(Ġ), then all other generic enumerations extending p̄ do too.
So, all the information needed to guarantee ϕ(Ġ) must be encoded in
p̄ and A, and is independent of what the generic enumeration g does
beyond p̄. To formalize this last statement, we will define a relation 
in a purely syntactical way, and we will show that it mostly coincides
with semantical forcing.

Let us assume the vocabulary τ is relational (see page xxii).§

Definition VII.7 (The strong forcing relation). Given a structure
A, a tuple p̄ from A?, and an infinitary N-formula ϕ(Ġ), we define a
predicate p̄ A ϕ by recursion on ϕ as follows:

• p̄ A > holds and p̄ A ⊥ does not.

• p̄ A Ġ(n) ⇐⇒ DA(p̄)(n)↓ = 1.¶

• p̄ A ¬Ġ(n) ⇐⇒ DA(p̄)(n)↓ = 0.
• p̄ A

∨∨
i∈I ψi if there exists i ∈ I such that p̄ A ψi.

• p̄ A
∧∧

i∈I ψi if, for all i ∈ I and q̄ ∈ A? with q̄ ⊇ p̄, there
exists r̄ ⊇ q̄ such that r̄ A ψi.

We will often omit the sub-index A and write p̄  ϕ if it is clear which
structure we are talking about.

By writing down this definition formally, we can see that for every
N-formula ϕ(Ġ), there is a τ -formula Forceϕ such that

A |= Forceϕ(p̄) ⇐⇒ p̄ A ϕ.

Definition VII.8. Here is the definition in detail:‖

§This is not really necessary, but it simplifies our definitions.
¶Recall that DA(p̄) is the atomic diagram of the tuple p̄ in the structure A

(see page xxiii). It is a finite binary string. By DA(p̄)(n)↓ we just mean that
n < |DA(p̄)|.

‖Forceϕ is not exactly a single formula, but a computable sequence of formulas,
one of each arity.
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• Force> is > and Force⊥ is ⊥.
• ForceĠ(n)(p̄) is ϕat

n (p̄).∗∗

• Force¬Ġ(n)(p̄) is ¬ϕat

n (p̄).

• Force∨∨
i∈I ψi

(p̄) is
∨∨

i∈I Forceψi(p̄).
• Force∧∧

i∈I ψi
(p̄) is

∧∧
i∈I ∀q̄ ⊇ p̄ ∃r̄ ⊇ q̄ Forceψi(r̄).

It is not hard to prove by induction that if the formula ϕ is N-Πc
α,

then Forceϕ is τ -Πc
α, and that if ϕ is N-Σc

α, then Forceϕ is τ -Σc
α. There

is one case, namely the Πc
1 case, that requires a little observation: For

an atomic formula of the form Ġ(n), we have that if |q̄| ≥ n, then either
q̄  Ġ(n) or q̄  ¬Ġ(n). This is because of our old convention that
ϕat

n (p̄) has no free variables beyond x0, ..., xn−1 (see page xxiii). Thus,
when we have an N-Πc

1-formula
∧∧

i∈I ψi where each ψi is a literal, we
get that p̄ 

∧∧
i∈I ψi if and only if

• there are no ⊥’s among the ψi for i ∈ I,
• for all ψi of the form Ġ(n) and all q̄ ⊇ p̄ of length greater than
n, ϕat

n (q̄), and
• for all ψi of the form ¬Ġ(n) and all q̄ ⊇ p̄ of length greater

than n, ¬ϕat

n (q̄).

So, Force∧∧
i∈I ψi

is τ -Πc
1.

We will call Σ-formulas the formulas that start with
∨∨

, and call
Π-formulas the ones that start with

∧∧
. The definition of  for Π-

formulas can be restated as follows: p̄ 
∧∧

i∈I ψi if and only if, for all

i ∈ I, the relation {r̄ ∈ A? : r̄  ψi} is dense above p̄.†† It follows
that for a Π-formula ϕ, if the set {r̄ ∈ A? : r̄  ϕ} is dense above p̄,
then p̄  ϕ. This is not necessarily true for Σ-formulas, as one could
have that the set {r̄ ∈ A? : r̄  ϕ} is dense, but each such r̄ forces ϕ
via a different witness i. This causes a minor annoyance: The truth
of the forcing relation depends on how the formula ϕ is written. For
instance, if ϕ is a Σ-formula and

∧∧
ϕ is built by adding a dummy

conjunction in front, then we may have some p̄ that forces
∧∧

ϕ but
not ϕ. Fortunately, this can only happen for Σ-formulas and atomic
formulas, as we will see in Corollary VII.15.

Lemma VII.9. Let ϕ be an N-Lω1,ω-formula and p̄, q̄ injective tuples
from a structure A.

• If p̄ ⊆ q̄ and p̄  ϕ, then q̄  ϕ.
• For no p̄ and ϕ we have p̄  ϕ and p̄  ¬ϕ.

∗∗Recall that ϕ
at

n is the nth atomic τ -formula. By ϕ
at

n (p̄), we mean ϕ
at

n [xi 7→ pi].
If ϕ

at

n has some free variable xj with j ≥ |p̄|, we let both ϕ
at

n (p̄) and ¬ϕat

n (p̄) be
false.

†† We say that a relation R ⊆ A? is dense above p̄ if ∀q ⊇ p̄ ∃r̄ ⊇ q̄ (r̄ ∈ R).
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Proof. The first part is a straightforward induction on ϕ.
The second part is also by induction on ϕ. It is trivial for literals.

Suppose ϕ is of the form
∨∨

i∈I ψi and that p̄ forces ϕ and ¬ϕ. Let
i0 be such that p̄  ψi0 . Since p̄ 

∧∧
i∈I ¬ψi, there is a q̄ ⊇ p̄ that

forces ¬ψi0 . By the previous part of the lemma, q̄ also forces ψi0 . This
contradicts the induction hypothesis applied to ψi0 . �

Lemma VII.10. For every N-Lc,ω-sentence ϕ, the set

Dϕ = {p̄ ∈ A? : p̄  ϕ ∨ p̄  ¬ϕ}

is dense in A?.

Proof. If ϕ is atomic, then every p̄ whose length is large enough
forces either ϕ or ¬ϕ.

Suppose now that ϕ is of the form
∧∧

i∈I ψi. Pick a tuple p̄ ∈ A?. If
p̄ 1 ϕ, there is some q̄ ⊇ p̄ and i0 ∈ I such that for every r̄ ⊇ q̄, r̄ 1 ψi0 .
By the induction hypothesis, we get that the set of r̄’s extending q̄ and
forcing either ψi0 or ¬ψi0 is dense above q̄. Since no r̄ ⊇ q̄ forces ψi0 ,
there exist plenty of r̄’s extending q̄ such that r̄  ¬ψi0 . For any such
r̄, we have r̄  ¬ϕ. Summing up, either p̄  ϕ or there is some r̄
extending p̄ such that r̄  ¬ϕ. �

We say that p̄ decides ϕ if either p̄  ϕ or p̄  ¬ϕ.

Corollary VII.11. If g is Lc,ω-generic, for every N-Lc,ω-formula
ϕ, there is a p̄ ⊂ g that decides ϕ.

Proof. The relation Dϕ ⊆ A? from the lemma above is Lc,ω-
definable and dense, so it has to be met by g. �

Lemma VII.12. (Forcing-implies-truth) If p̄  ϕ, then p̄ semanti-
cally forces ϕ.

Proof. The proof is again by induction on ϕ. The result is imme-
diate when ϕ is atomic. When ϕ is a Σ-formula, the induction step is
also quite easy. When ϕ is a Π-formula of the form

∧∧
i∈I ψi, we have

that for each i ∈ I, the set of q̄ ⊇ p̄ forcing ψi is dense above p̄, and
hence g must meet it. That is, for each i ∈ I, g has an initial segment
that forces ψi, and then, by the induction hypothesis, ψi must be true
of g−1(A). Then so is

∧∧
i∈I ψi. �

Theorem VII.13. (Forcing-equals-truth) If g is an Lc,ω–generic

enumeration of A, G = g−1(A), and ϕ(Ġ) is an N-Lc,ω-formula , then

ϕ(G) ⇐⇒ (∃p̄ ⊂ g) p̄  ϕ
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Proof. The (⇐) direction follows from Lemma VII.12. For the
(⇒) direction, we get from Corollary VII.11 that some initial segment
of g must force either ϕ or ¬ϕ. But, because of Lemma VII.12, it
cannot force ¬ϕ. �

Corollary VII.14. For all p̄ ∈ A? and Lc,ω-formula ϕ(Ġ), p̄ se-
mantically forces ϕ if and only if {q̄ ∈ A? : q̄  ϕ} is dense above
p̄.

Proof. For the (⇐) direction, if {q̄ ∈ A? : q̄  ϕ} is dense above
p̄ and g is a Lc,ω-generic enumeration extending p̄, then g must meet
{q̄ ∈ A? : q̄  ϕ} and hence, by the theorem, g−1(A) must satisfy ϕ.

For the (⇒) direction, suppose that p̄ semantically forces ϕ and con-
sider r̄ ⊇ p̄. It has an Lc,ω-generic extension. That generic extension
satisfies ϕ, and hence it has an initial segment q̄ that forces ϕ, which
we may take to be longer than r̄. This shows that {q̄ ∈ A? : q̄  ϕ} is
dense above p̄. �

Corollary VII.15. For Π-formulas, p̄  ϕ if and only if p̄ se-
mantically forces ϕ.

Proof. This follows from our observation that for Π-formulas, p̄ 
ϕ if and only if {r̄ ∈ A? : r̄  ϕ} is dense above p̄. �

The “semantically forces” relation is thus slightly weaker than the 
relation. It is sometimes called weak forcing and denoted w. Similarly,
the  relation as defined here is sometimes called strong forcing. In set
theory, as for instance in [Kun80], the standard notion is that of weak
forcing. For computability theorists, though, w has a problem: It does
not preserve complexity. For Π-formulas it does, but weakly forcing a
Σc
α formula is Πc

α+1, and that messes up our complexity considerations.
The semantical forcing can also be defined syntactically. One needs

the following modification in the definition of the forcing relation:

• p̄ w
∨∨

i∈I ψi if ∀q̄ ⊇ p̄
∨∨

i∈I ∃r̄ ⊇ q̄ (r̄ w ψi).
• p̄ w

∧∧
i∈I ψi if

∧∧
i∈I
(
p̄ w ψi

)
.

VII.3. The Ash-Knight-Manasse-Slaman–Chisholm theorem

This is one of the most classic theorems of computable structure
theory. It shows why the computable infinitary language is so impor-
tant in computable structure theory.

Definition VII.16. A relation R ⊆ An is said to be relatively
intrinsically Σ0

α if, on every copy (B, RB) of (A, R), RB, viewed as a
subset of Nn, is Σ0

α relative to the oracle D(B) ∈ 2N.‡‡

‡‡Recall that a copy of a structure is an ω-presentation isomorphic to it.
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Let us remark that this is a purely computability theoretic no-
tion defined in terms of the ω-presentations of the structure A and the
arithmetic and hyperarithmetic hierarchies. The Ash-Knight-Manasse-
Slaman–Chisholm theorem shows that it can be characterized in a
purely structural way.

Theorem VII.17. (Ash-Knight-Manasse-Slaman [AKMS89] —
Chisholm [Chi90]) A relation R ⊆ An is relatively intrinsically Σ0

α if
and only if it is τ -Σc

α-definable in A over a finite tuple of parameters.

Proof. The (⇐) direction is straightforward from Lemma V.6.
For the other direction, we need to find a τ -Σc

α-definition of R.
Let g be an Lc,ω-generic enumeration of (A, R) and (G, RG) be the

corresponding Lc,ω-generic presentation. Since RG ⊆ Nn is Σ
0,D(G)
α ,

there is an N-Σc
α-formula ϕ(k̄, Ġ) such that, for all k̄ ∈ Nn,

k̄ ∈ RG ⇐⇒ ϕ(k̄,G).

Whether “k̄ ∈ RG” is true can be read off from the atomic diagram of
(G, RG), so the formula∧∧

k̄∈Nn
(k̄ ∈ RĠ ⇐⇒ ϕ(k̄, Ġ))

is an N-Lc,ω formula that, by the forcing-equals-truth theorem, must
be forced by some p̄ ⊂ g.

Consider a tuple ā ∈ An. Each line below can be easily seen to be
equivalent to the previous one:

• ā belongs to R.
• for some Lc,ω-generic enumeration g of (A, R) extending p̄,
g−1(ā) ∈ RG.
• for some Lc,ω-generic enumeration g of (A, R) extending p̄ and

for k̄ such that g(k̄) = ā, we have ϕ(k̄,G).
• for some tuple q̄ ⊇ p̄ which contains ā in its image and for k̄

such that q̄(k̄) = ā, we have q̄  ϕ(k̄, Ġ).

Rewriting once more, we get:

ā ∈ R ⇐⇒ ∃q̄ ⊇ p̄
∨
k̄∈|q̄|n

(ā = q̄(k̄) & Forceϕ(k̄,Ġ)(q̄)).
∗

Notice that ϕ(k̄, Ġ) is a formula only about D(G), and it does not
use RG. So any atomic sub-formula of ϕ(k̄, Ġ) must be of the form
Ġ(n) or ¬Ġ(n), and n is such that the symbol R does not appear in

∗By |q̄|n we mean the set of n tuples of numbers below the length of q̄. If q̄ =
〈q0, ..., q|q̄|−1〉 and k̄ = 〈k0, ..., kn−1〉 ∈ |q̄|n, then q̄(k̄) is the n-tuple 〈qk0

, ..., qkn−1
〉.
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ϕat

n . It follows that Forceϕ(k̄,Ġ) is a τ -Σc
α-formula that does not use

R (see discussion after Definition VII.8). Also, let us recall that ā =
q̄(k̄) is shorthand for

∧
i<|k̄| q̄(ki) = ai. We have thus obtained a τ -Σc

α

definition of R using p̄ as parameters. �

As in [Part 1], we extend the notion of relation to mean any subset
of A<N, instead of just a subset of An. Furthermore, we will sometimes
be interested in uniformly definable sequences of relations 〈R0, R1, ....〉,
which can be seen as a single subset of N × A<N. Since most of our
complexity-related results apply to subsets of An as well as subsets of
N×A<N, we will consider the latter as our notion of relation, which is
general enough to encapsulate all other notions of relation. We say that
R ⊆ N × A<N is Σc

α-definable in A if there is a computable sequence
〈ϕm,n : m,n ∈ N〉 of Σc

α formulas such that each relation Rm,n given by
{ā ∈ An : 〈m, ā〉 ∈ R} is definable by ϕm,n. A relation R ⊆ N × A<N

is relatively intrinsically Σ0
α if, on every copy (B, RB) of (A, R), RB,

viewed as a subset of N×N<N, is Σ0
α relative to the oracle D(B) ∈ 2N.

Theorem VII.18. A relation R ⊆ N × A<N is relatively intrinsi-
cally Σ0

α if and only if it is τ -Σc
α-definable in A over a finite tuple of

parameters.

Proof. All we have to do is observe that the previous proof works
uniformly. The (⇐) direction is again straightforward from Lemma
V.6. For the other direction, we need to define a τ -Σc

α-definition of
R, that is, a τ -Σc

α-definition of Rm,n for each m and n, computably
uniformly in m and n.

Let g be an Lc,ω-generic enumeration of (A, R) and G the corre-

sponding Lc,ω-generic presentation. Since R is Σ
0,D(G)
α , there is a com-

putable sequence of N-Σc
α-formulas ϕm,n(k̄, Ġ) such that∧∧

m,n∈N

∧∧
k̄∈Nn

((m, k̄) ∈ RĠ ⇐⇒ ϕm,n(k̄, Ġ)). (4)

This N-Lc,ω formula must be forced by some p̄ ⊂ g.
The rest of the proof is the same as the one above. We end up

obtaining

ā ∈ Rm,n ⇐⇒ ∃q̄ ⊇ p̄
∨
k̄∈|q̄|n

(ā = q̄(k̄) & Forceϕm,n(k̄,Ġ)(q̄)).

The right-hand side is the desired τ -Σc
α definition of Rm,n, which can

be computed uniformly from m and n. �

We say that R is uniformly relatively intrinsically Σ0
α if there is a Σ0

α

operator Γ such that on every copy (B, RB) of (A, R), RB = ΓD(B). For
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these relations, we can get rid of the parameters in the theorem above.
That is, a relation R ⊆ N × A<N is uniformly relatively intrinsically
Σ0
α if and only if it is τ -Σc

α-definable in A without parameters. To see
this, notice that all generic presentations G would use the same N-Σ0

α-
formulas ϕm,n for RGm,n. The formula (4) is thus true for all generics
and hence forced by the empty tuple 〈〉. The rest of the proof continues
with p̄ = 〈〉.

If we consider relations that are subsets of N× A0, we can look at
the binary information that is coded in a structure. We say that a set
X ⊆ N is Σ0

α-coded in a structure A if it is Σ0
α relative to the diagram

of any copy of A.

Corollary VII.19 (Knight [Kni86, Theorem 1.4’], see also [AK00,
Theorem 10.17]). A set X is Σ0

α-coded in a structure if and only if it
is many-one reducible to the Σc

α-type of some tuple in A.

Proof. Suppose X is many-one reducible to a Σc
α-type of some

tuple p̄ ∈ A<N. The Σc
α-type of p̄ is Σ0

α relative to the diagram of any
copy of A. Since a set that is many-one reducible to a Σ0

α set is also
Σ0
α, we have that X is Σ0

α relative to the diagram of any copy of A too.
Conversely, if X ⊆ N is Σ0

α-coded in a structure A, then the relation
X×〈〉 ⊆ N×A0 ⊆ N×A<N is relatively intrinsically Σc

α in A, and hence
Σc
α-definable inA over some parameters p̄. Recall that, as we defined on

page 115, a relation R ⊆ N×A<N is Σc
α-definable inA over parameters p̄

if and only if there exists a computable list {ϕn,k(x̄, ȳ) : n, k ∈ N} of Σc
α

formulas such that 〈n, ā〉 ∈ R ⇐⇒ A |= ϕn,|ā|(p̄, ā). In the case where
we have a relation X ×〈〉 ⊆ N×A0, what we have is a computable list
{ϕn,0(x̄) : n ∈ N} of Σc

α formulas such that n ∈ X ⇐⇒ A |= ϕn,0(p̄).
X is then m-reducible to the Σc

α-type of p̄ as follows:

n ∈ X ⇐⇒ ϕn,0 ∈ Σc
α-tp(p̄). �

VII.4. Relative ∆0
α-categoricity

Computably categorical structures are the ones for which all com-
putable ω-presentations have the same computational properties. We
studied them in detail in [Part 1, Chapter ??]. Most structures are
not computably categorical, but instead, one needs a certain number
of Turing jumps to compute isomorphisms between different presenta-
tions.

Definition VII.20 ([AKMS89, Section 4][Chi90, Definition V.9]).
A computable structure A is relatively ∆0

α categorical if, for every copy
B of A, there is an isomorphism between A and B that is ∆0

α relative
to D(B).
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For example, (Z;≤) is ∆0
2-categorical, as with the help of a Turing

jump we can decide which pairs of elements are adjacent and build
isomorphisms between different copies.

The theorem below gives us a syntactical characterization for the
notion of relative ∆0

α-categoricity. As a corollary we will get that the
Scott rank of a structure is the least α such that the structure is relative
∆0
α-categorical on a cone (see Remark VII.23). This provides even more

evidence for the robustness of the notion of Scott rank.
A Scott family for a structure A is a set S of formulas that contains

definitions for all the automorphism orbits in A. More precisely, a set S
of formulas is a Scott family for a structure A if each tuple in A satisfies
a formula in S and that formula defines its automorphism orbit. The
definition of Scott rank (Definition II.16) can be rephrased as saying
that a structure has Scott rank α if and only if it has a Scott family of
Σin
α formulas over some tuple of parameters.

Theorem VII.21. [AKMS89] [Chi90] Let A be a computable
structure. Then A is relatively ∆0

α-categorical if and only if it has
a c.e. Scott family of Σc

α-formulas over a finite tuple of parameters.

Proof. The (⇐) direction is the easier one. Suppose A has a c.e.
Scott family S of Σc

α-formulas over a tuple c̄ ∈ A<N. Given a copy
(B, d̄) of (A, c̄), consider the set

IA,B = {〈ā, b̄〉 ∈ A<N ×B<N :

(for some ϕ ∈ S) A |= ϕ(c̄ā) & B |= ϕ(d̄b̄)}
= {〈ā, b̄〉 ∈ A<N ×B<N : (A, c̄ā) ∼= (B, d̄b̄)},

as in [Part 1, Observation ??]. This set is Σ0
α in D(B) and has the

back-and-forth property (Definition II.6). In [Part 1, Lemma ??] we
showed that there is then an isomorphism between A and B that is
computable from an enumeration of IA,B. Since IA,B is Σ0

α in D(B),
there is an enumeration of IA,B that is ∆0

α in D(B).
Let us now prove the (⇒) direction. Let K be a computable injec-

tive ω-presentation of A with domain N. We may chose A and K to
be the same ω-presentation, but during the proof, it will be easier to
think of A as the abstract structure for which we want to find a Scott
family, and K as a fixed computable ω-presentation whose elements are
named by natural numbers.

Let G be an Lc,ω-generic presentation of A, and g : N→ A its cor-
responding generic enumeration. Let Fg be an isomorphism from G to
K that is ∆0

α relative to G. Both G and K are injective ω-presentations
with domain N, so Fg is a bijection N→ N.
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Notice that each generic g induces an isomorphism Fg ◦ g−1 from
A to K. Here is the general idea: To define the automorphism orbits,
consider, for each tuple k̄ ∈ K, the set of all the tuples ā for which
there is a generic enumeration g such that Fg ◦ g−1(ā) = k̄, and give
a τ -definition of this set using the forcing relation. Let us look at the
details.

Let ψ(x, y, Ġ) be an N-Σ0
α-formula such that

∀n, k ∈ N (Fg(n) = k ⇐⇒ ψ(n, k,G)).

There is an N-Lc,ω formula that says that ψ(x, y,G) is a bijection N→
N and that it is an isomorphism between the ω-presentations of G and
K. This latter part usesD(G) andD(K), but sinceD(K) is computable,
the formula only uses D(G). Let p̄ force that ψ defines an isomorphism
from G to K. Then, for every Lc,ω-generic enumeration ǧ extending p̄,
we have that for the associated generic presentation Ǧ, the set {〈n, k〉 ∈
N2 : ψ(n, k, Ǧ)} is the graph of an isomorphism from Ǧ to K. From
now on, we use Fǧ to denote this isomorphism defined by ψ(·, ·, Ǧ).

We want to define a c.e. Scott family of Σc
α-formulas over p̄. That

is, we want to find Σc
α definitions for all automorphism orbits of (A, p̄).

Fix a tuple ā ∈ A<N. We want to write down a τ -Σc
α-formula that

defines the automorphism orbit of ā over p̄.
Let k̄ = Fg(g

−1(p̄, ā)) ∈ K |p̄ā| so that (A, p̄ā) ∼= (K, k̄).† Let Ok̄ be
the set of all b̄ ∈ A|ā| for which there exists some Lc,ω-generic enumer-
ation ǧ extending p̄ such that Fǧ(ǧ

−1(p̄, b̄)) = k̄. We claim that the
following three statements are equivalent for every tuple b̄ ∈ A<N:

(1) b̄ ∈ Ok̄.
(2) b̄ is automorphic to ā over p̄.
(3) b̄ satisfies the formula ϕk̄(p̄, x̄) given by

∃q̄ ⊇ p̄
∨

n̄∈|q̄||p̄ā|

(
p̄x̄ = q̄(n̄) ∧ q̄ 

∧
i<|p̄ā|

ψ(ni, ki, Ġ)
)
.

Let us recall that p̄x̄ = q̄(n̄) is shorthand for
∧
i<|n̄| q̄(ni) = p̄x̄(i).

Notice that the sub-formula q̄ 
∧
i<|k̄| ψ(ni, ki, Ġ) implies that n̄ =

F−1
ǧ (k̄) for every Lc,ω-generic enumeration ǧ extending q̄.

For the (1)⇒ (2) implication, if b̄ ∈ Ok̄, it can be shown that b̄ must
be automorphic to ā over p̄ by composing isomorphisms as follows:(

A, p̄ā
) g←−∼=

(
G, g−1(p̄ā)

) Fg−→∼=
(
K, k̄

) Fǧ←−∼=
(
Ǧ, ǧ−1(p̄b̄)

) ǧ−→∼=
(
A, p̄b̄

)
.

†Recall that we use p̄ā to denote the tuple obtained by concatenating p̄ and ā.
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The (2) ⇒ (3) implication follows from the fact that formulas are
preserved under automorphisms, and that A |= ϕk̄(p̄, ā). That A |=
ϕk̄(p̄, ā) is witnessed by a long enough initial segment q̄ of g and by
n̄ = g−1(p̄ā) = F−1

g (k̄).

For the (3) ⇒ (1) implication, suppose that b̄ satisfies ϕk̄(p̄, x̄) as
witnessed by q̄ and n̄. Let ǧ be any Lc,ω-generic extension of q̄. Then
ǧ(n̄) = p̄b̄ and, by the forcing-equals-truth theorem, we must have
n̄ = F−1

ǧ (k̄).
It follows that Ok̄ is indeed the automorphism orbit of ā over p̄ and

that it is definable by the Σc
α-formula ϕk̄(p̄, x̄). We then have that

{ϕk̄(p̄, x̄) : k̄ ∈ K<N, k̄ ⊇ Fg(g
−1(p̄))}

is a c.e. Scott family of A of Σc
α-formulas over the parameters p̄. �

Remark VII.22. In the theorem above, if we had that A was uni-
fomrly ∆0

α-categorical, meaning that there is a single ∆0
α operator Γ

such that, for all copies G of A, ΓD(G) is an isomorphism between G
and A, then we would obtain a Scott family without parameters. The
reason is that the same formula ψ(x, y, Ġ) would define an isomorphism
from G to K for all generic presentations G, and hence this would be
forced by the empty condition. So, we could take p̄ = 〈〉.

Remark VII.23. We say that a structureA is relatively (uniformly)
∆0
α-categorical on a cone if there is an oracle X such that A is relatively

(uniformly) ∆0
α-categorical relative to X. It follows from the theorem

above that a structure A is relatively ∆0
α-categorical on a cone if and

only if it has a Scott family of Σin
α formulas over some tuple p̄ of pa-

rameters. We thus get the following corollary.

Corollary VII.24. The parametrized Scott rank of a structure is
the least ordinal α such that the structure is relatively ∆0

α-categorical
on a cone.

The parameterless Scott rank of a structure is the least ordinal α
such that the structure is uniformly ∆0

α-categorical on a cone.

VII.5. The Lopez-Escobar theorem

Recall from Section V.4.1 that Modτ is the set of all ω-presentations
of τ -structures, and it inherits its topology from 2N by representing ω-
presentations by their atomic diagrams. Recall also that Mod(ϕ) is the
set of ω-presentations of models of ϕ, and that if ϕ is a Πc

α sentence,
then Mod(ϕ) is a Π0

α class.
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We say that K ⊆ Modτ is closed under isomorphisms if whenever
A ∼= B and A ∈ K, we have B ∈ K. It is clear that, for any sentence
ϕ, Mod(ϕ) is closed under isomorphisms.

Theorem VII.25. If a set of ω-presentations K ⊆ Modτ is Π0
α and

closed under isomorphisms, then it is the set of models of some Πc
α

sentence ψ.

Lopez-Escobar [LE65] proved that every Borel class that is closed
under isomorphisms is Lω1,ω-axiomatizable. Vaught [Vau75] then im-
proved this result to show that if the class is Π0

α, then it is Πin
α -

axiomatizable using the method of Vaught’s transforms. Vanden Boom
[VB07] proved the lightface version we present here.

Proof. Let ϕ(Ġ) be an N-Π0
α-sentence that defines K when viewed

as a subset of 2N. That is, ϕ(K) holds if and only if K ∈ K. Consider
the τ -Πc

α-sentence Forceϕ(〈〉), which says that the empty tuple forces

that Ġ satisfies ϕ (see Definition VII.8). Recall that the sentence Forceϕ
is obtained uniformly from ϕ and is independent of the structure we
are forcing with. That is, for all τ -structures A,

A |= Forceϕ ⇐⇒ 〈〉 A ϕ.
We claim that K = Mod(Forceϕ): If A ∈ K, then all generic copies
of A are in K, and hence 〈〉 A ϕ and A ∈ Mod(Forceϕ). Similarly, if
A 6∈ K, then all generic copies of A are outside K, and hence 〈〉 6A ϕ
and A 6∈ Mod(Forceϕ). �

The theorem is also true for Σ0
α classes and Σc

α formulas by taking
complements.

Exercise VII.26. Prove that if K is closed under isomorphisms
and is Σ0

α ∧ Π0
α (i.e., definable by an N-formula of the form ϕ1 ∧ ϕ2,

where ϕ1 is Σ0
α and ϕ2 is Π0

α), then K = Mod(ψ) for some τ -(Σ0
α ∧Π0

α)
formula.

Be aware that the sets defined by formulas ϕ1 and ϕ2 individually
may not be closed under isomorphisms.

VII.6. Lopez-Escobar’s interpolation theorem

Lopez-Escobar proved a version for infinitary logic of the well-
known Craig’s interpolation theorem.

Theorem VII.27. Consider two vocabularies, τ1 and τ2, and let
τ = τ1 ∩ τ2. Let ψ1 and ψ2 be τ1-Lc,ω- and τ2-Lc,ω-sentences such that
ψ1 ⇒ ψ2 (i.e., all models of ψ1 satisfy ψ2). Then, there is a τ -Lc,ω-
sentence ψ such that ψ1 ⇒ ψ and ψ ⇒ ψ2.
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Proof. Let K be the set of ω-presentations of τ -structures which
can be expanded to some τ1-structure that is a model of ψ1.‡ Let S
be the set of ω-presentations of τ -structures all of whose expansions to
τ2-structures are models of ψ2. We claim that, since ψ1 ⇒ ψ2, we get
that K ⊆ S. To see this, take A ∈ K, and to prove that A ∈ S, consider
a τ2-expansion C of A. Since A is in K, there is some τ1-expansion of B
of A that satisfies ψ1. Let D be the τ1∪τ2-expansion of B and C. Since
ψ1 ⇒ ψ2 and D |= ψ1, we must have D |= ψ2, and hence C |= ψ2. This
proves that A ∈ S and our claim that K ⊆ S. Notice also that K is
Σ1

1 and S is Π1
1. By the Σ1

1-separation theorem (Theorem IV.17), there
is a ∆1

1 set S ⊆ Modτ separating K and S, that is, with K ⊆ S ⊆ S.
We showed in Remark V.28 that all ∆1

1 sets are N-Lc,ω-definable. Let

ϕ(Ġ) be an N-Lc,ω-formula defining S. Assume that ϕ is a Π-formula
— if not, add a dummy

∧∧
up front.

Let ψ be the Lc,ω-τ -sentence Forceϕ(〈〉), which says that the empty

tuple forces Ġ to be in S. We claim that ψ1 ⇒ ψ and ¬ψ2 ⇒ ¬ψ. If a
τ1-structure satisfies ψ1, its τ -reduct K must be in K. Then all copies
G of K satisfy ϕ(G), and hence 〈〉 K ϕ(Ġ). It follows that ψ1 ⇒ ψ.
If a τ2-structure satisfies ¬ψ2, its τ -reduct K must be outside S. Then
all copies G of K satisfy ¬ϕ(G), and hence 〈〉 6K ϕ(Ġ). It follows that
ψ ⇒ ψ2. �

VII.7. The boldface pairs-of-structures theorem

In this section, we give a new characterization of the back-and-
forth relations in terms of how difficult it is to distinguish copies of
structures.

Definition VII.28. Let R and S be disjoint subsets of 2N. We
say that distinguishing elements of R from ones of S is Σ0

α-hard if, for
every Σ0

α subset K ⊆ 2N, there is a continuous function Γ: 2N → 2N

such that, for all X ∈ 2N,

Γ(X) ∈

{
R if X ∈ K

S if X 6∈ K.

We call such a Γ a Wadge reduction from K to R,S (see Definition
I.22). In the lightface case, i.e., to define Σ0

α-hardness, we require Γ to
be computable.

‡A τ1-structure B is an expansion of a τ -structure A if A and B have the same
domain and coincide on the interpretations of all the τ -symbols. In this case, we
also say that A is a reduct of B.
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If we are given τ -structures A and B, we say that distinguishing
A from B is Σ0

ξ-hard if distinguishing copies of A from copies of B is

Σ0
ξ-hard. Recall that the copies of A and B live in the space Modτ ,

which is essentially the same as 2N (Section V.4.1).

Observation VII.29. If distinguishing A from B is Σ0
ξ-hard, then

A ≤ξ B. To see this, suppose that A 6≤ξ B, as witnessed by some Πin
ξ

sentence ϕ that is true of A, false of B. To show that distinguishing
A from B is not Σ0

ξ-hard, consider a Wadge reduction Γ from a set

K ⊆ 2N to copies of A and B. Then, we would have a Π0
ξ way of

deciding membership in K, namely X ∈ K ⇐⇒ Γ(X) |= ϕ. So, K
could not be Σ0

ξ-hard.§

Theorem VII.30. Let A and B be τ -structures. Then A ≤ξ B if
and only if distinguishing A from B is (boldface) Σ0

ξ-hard.

Proof. The (⇐) direction was proved in the observation above.
Let us concentrate on the (⇒) direction. We will show that either
A 6≤ξ B or distinguishing A from B is Σ0

ξ-hard.
The proof uses Borel determinacy (Martin [Mar75]). For the reader

not familiar with it, we will explain how it works along the way, but
we will not prove it.

Let K be a Σ0
ξ-complete subset of 2N. Consider a game played by

two players, I and II, who take turns to play a binary bit for infinitely
many turns as in the diagram below.

Player I x0 x1 x2 · · · X ∈ 2N

Player II y0 y1 · · · Y ∈ 2N

Player I plays xi ∈ {0, 1} on her ith move, and II plays yi ∈ {0, 1}. At
the end of the game, we end up with two reals X, Y ∈ 2N. Player I
wins the game if one of the following holds

• X is the atomic diagram of a copy of A and Y ∈ K,
• X is the atomic diagram of a copy of B and Y 6∈ K.

§That a set R that is Π0
ξ cannot be Σ0

ξ-hard can be proved by a standard

diagonalization argument: Let S be a lightface Π0
ξ set and X0 a real such that

R = {X : 〈X,X0〉 ∈ S}. The set K = {〈e,X〉 : 〈Γe(e,X), X〉 6∈ S} (where Γe
is the eth Turing functional) is Σ0

ξ and, if R were Σ0
ξ-hard, there would be some

effective Wadge reduction Γe0 so that 〈e,X〉 ∈ K ⇐⇒ Γe0(e,X) ∈ R. We obtain
a contradiction as follows:

〈e0, X0〉 ∈ K
Def. Γe0⇐⇒ Γe0(e0, X0) ∈ R

Def. S

⇐⇒ 〈Γe0(e0, X0), X0〉 ∈ S
Def. K

⇐⇒ 〈e0, X0〉 6∈ K.
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Player II wins otherwise. In particular, if X is not the diagram of a
copy of either A or B, then II wins.

Notice that deciding if X is a copy of A or B is a Borel property,
as all one has to do is check whether it satisfies the Scott sentence of
either A or B. Thus, deciding who wins the game is a Borel property
of X and Y . A strategy for a player is a function σ : 2<N → 2 that
tells the player what to play next given the moves made so far by the
opponent. For instance, if σ is a strategy for player II, then X, Y are
obtained following σ if and only if yi = σ(x0, ..., xi) for all i. Thus,
a strategy induces a continuous function σ : 2N → 2N which maps X
to Y , i.e, Y = σ(X). Analogously, if π is a strategy for player I, we
obtain a continuous function π : 2N → 2N so that X = π(Y ). A winning
strategy is one that always results in a win for the player that follows
it. Martin’s theorem of Borel determinacy tells us that one of the two
players must have a winning strategy.

Suppose first that player I has a winning strategy. We then have
a continuous function π : 2N → 2N such that if Y ∈ K, then π(Y ) is a
copy of A, and if Y ∈ 2N r K, then π(Y ) is a copy of B. We thus have
a Wadge reduction from K (which is Σ0

ξ-complete) to copies of A and

B, showing that distinguishing of A from B is Σ0
ξ-hard.

Suppose now that player II has a winning strategy. We then have
a continuous function σ : 2N → 2N such that if X is the diagram of a
copy of A, then σ(X) 6∈ K, and if X is the diagram of a copy of B, then
σ(X) ∈ K. Let R ⊆ 2N be the pre-image of K under σ. Then R is Σ0

ξ .

Actually, R is Σ0
ξ relative to σ. Note that all copies of B are in R and

no copy of A is. Let ϕ(D) be an N-Π
cσ
ξ formula that defines 2N r R.

Consider forcing relative to σ.¶ Since all generic copies of A satisfy
ϕ and no generic copy of B does, we have that Forceϕ(〈〉) is a τ -Π

cσ
ξ

sentence that is true of A and false of B. It follows that A 6≤ξ B. �

VII.8. Computable functors and interpretability

The following application of forcing has to do with reducibilities
between structures. One of the most commonly used reductions be-
tween structures is the Medvedev reduction. A Medvedev reduction
from a structure A to a structure B is a computable operator Ψ which
maps (diagrams of) copies of A into (diagrams of) copies of B. This is
a purely computability theoretic notion that, unfortunately, does not

¶By forcing relative to σ we mean that generic enumerations now need to decide
all infinitary formulas that are computable relative to σ. All the theorems we proved
about Lc,ω-generics work the same way, but now relativized to σ.
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have a structural counterpart. In [Part 1, Section VI.3], we consid-
ered a strengthening of this notion that we called a computable functor,
where we require the Medvedev reduction to preserve isomorphisms in
a computable and functorial way — see Definition VII.31 below. We
then claimed that this notion is equivalent to that of effective inter-
pretability, which is a purely syntactical notion of reduction, similar to
the model theoretic notion of interpretability — see Definition VII.33
below. It was not hard to prove that effective interpretations induce
computable functors. But we left the proof of the converse pending
until now, as it needs the technique of product forcing.

In this chapter, we will consider the notions of ∆0
α-functors and ∆c

α-
interpretations. Our work in [Part 1, Section VI.3] will follow from
the case α = 1, which is already quite interesting. Knowledge of [Part
1, Section VI.3] is not necessary to read this section.

Definition VII.31 ([MPSS18] [HTMM]). Given structures A
and B, a functor from B toA consists of a pair of operators, Ψ: 2N → 2N

and Ψ: 2N × 2N × NN → NN,‖ such that:

(1) For every copy B̂ of B, Ψ(B̂) = Â for some copy Â of A.∗∗

(2) For every isomorphism f : B̂ → B̃ between two copies of B,

ΨB̂,B̃(f) is an isomorphism from Ψ(B̂) to Ψ(B̃).††

We also require that the operator Ψ preserve the identity and compo-
sition of isomorphisms:

(3) ΨB̂,B̂(id) = id for every copy B̂ of B.
(4) ΨB0,B2(g ◦ f) = ΨB1,B2(g) ◦ΨB0,B1(f) for copies B0, B1, and B2

of B and isomorphisms f : B0 → B1 and g : B1 → B2.

Ψ is a functor in the sense of category theory. It is a functor from
the category of ω-presentations of B, where morphisms are the isomor-
phisms between the copies of B, to the category of ω-presentations of
A.

Example VII.32. Let B be a linear ordering, and let A be ob-
tained by collapsing the elements of B which are finitely apart.‡‡ One
can build Ψ(B) by choosing the <N-least element of each finitely-
apart equivalence class in the given ω-presentation B. That is, let

‖Both operators have the same name, but since they have different domains, it
will be clear which one we are applying when.

∗∗Here and throughout this section, we write Ψ(B̂) = Â as shorthand for

Ψ(D(B̂)) = D(Â).
††Here ΨB̂,B̃(f) is shorthand for Ψ(D(B̂), D(B̃), f).
‡‡Two elements in a linear order are finitely apart if there are only finitely many

elements between them.
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Ψ(B;≤B) = (A;≤B), where

A = {b ∈ B : (∀n <N b) n 6∼B b}.

Here, n ∼B b if they are finitely apart in B, and <N represents the
ordering of the natural numbers.

Then, if we have an isomorphism f : B̂ → B̃, and a ∈ Ψ(B̂), we let

ΨB̂,B̃(f)(a) be the unique element of Ã that is finitely apart from f(a)

in B̃.
Determining if two elements are finitely apart requires two Turing

jumps, making this a ∆0
3 functor.

We will prove that having a ∆0
α functor is equivalent to having a

∆c
α-interpretation. Informally, a structure A is ∆c

α-interpretable in a
structure B if there is an interpretation of A in B as in model theory,
but where the domain of the interpretation is allowed to be a subset of
N×B<N instead of just Bn, and where all sets in the interpretation are
required to be ∆c

α-definable instead of elementary first-order definable.

Definition VII.33. Let A be a τ -structure and B be any structure.
Let us assume that τ is a relational vocabulary, τ = {Pi : i ∈ I}, where
Pi has arity a(i). So A = (A;PA0 , P

A
1 , ...) and PAi ⊆ Aa(i).

We say that A is ∆c
α-interpretable in B if, in B, there are ∆c

α-
definable relations AB, ∼B, and {RBi : i ∈ I} such that

• AB ⊆ N×B<N (the domain of the interpretation of A in B),
• ∼B⊆ AB × AB is an equivalence relation on AB (interpreting

equality), and
• each RBi ⊆ (AB)a(i) is closed under the equivalence ∼B (inter-

preting the relations Pi);

and there is a function F : AB → A which induces an isomorphism:

(AB/ ∼B;RB0 , R
B
1 , ...)

∼= (A;PA0 , P
A
1 , ...).

Let us clarify this last line. The function F : AB → A must be an onto
map such that F(a) = F(b) ⇐⇒ a ∼B b and F(ā) ∈ PAi ⇐⇒ ā ∈ RBi .
Notice that there is no restriction on the complexity or definability of
F. We use AB to denote the structure (AB/ ∼B;RB0 , R

B
1 , ...).

Example VII.34. Let us consider Example VII.32, where a linear
ordering A is obtained from a linear ordering B by collapsing elements
that are finitely apart. This can be easily seen as a ∆c

3-interpretation:
Let AB = B, let ∼B be the equivalence relation of being finitely apart
in B, and let ≤AB be the ordering induced on the equivalence classes.
Notice that both ∼ and ≤AB are Σc

2, and in particular ∆c
3 .
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Lemma VII.35. A ∆c
α-interpretation of A in B induces a ∆0

α-functor
from B to A.

Proof. Since AB, ∼B, and {RBi : i ∈ I} are ∆c
α-definable in B, we

have a ∆0
α operator that produces those subsets of N × N<N within

any copy B̂ of B, using D(B̂) as an oracle. Thus, we have a ∆0
α

operator Φ that, given B̂ ∼= B, outputs D(AB̂), the atomic diagram

of the congruence (⊆ N × N<N)-presentation AB̂ of A with domain

AB̂ ⊆ N× B̂<N = N× N<N. Φ acts on isomorphisms in a natural way:
Every permutation g of N induces a permutation ǧ of N × N<N given
by ǧ(〈n, 〈k0, ..., k`〉〉) = 〈n, 〈g(k0), ..., g(k`)〉〉. Then, if f is an isomor-

phism between B̂ and B̃, we let ΦB̂,B̃(f) = f̌ �AB̂. This operator Φ is
a ∆0

α functor, though the reader may complain that it does not output
injective ω-presentations. Fixing a bijection between N and N × N<N

and using Lemma [Part 1, 1 ??], we get a computable operator Υ
transforming congruence (⊆ N × N<N)-presentations into injective ω-
presentations. It is not hard to see that Υ can be easily made into a
∆0
α-functor. Composing these ∆0

α functors we get the ∆0
α functor Υ◦Φ

we wanted. �

The following theorem shows the converse.

Theorem VII.36 (Harrison-Trainor, Miller, Montalbán [HTMM]).
Let A and B be countable structures. The following are equivalent:

(1) A is ∆c
α-interpretable in B.

(2) There is a ∆0
α-functor from B to A.

Furthermore, given a ∆0
α-functor, the ∆c

α-interpretation we get in
the proof of the theorem induces the original functor up to ∆0

α-isomorphism
of functors. See [HTMM] for more details on isomorphisms of func-
tors.

We have already proved that (1) implies (2). The rest of this section
is dedicated to proving the converse.

In [HTMM], they also consider the notions of invertible functors
and bi-interpretability and prove an equivalence between these notions.
A very interesting new example was found by Marker and R. Miller
[MM17], who use ∆0

2 functors to build effective bi-interpretations be-
tween graphs and the jumps of differentially closed fields of character-
istic zero.

VII.8.1. Product forcing. The objective of product forcing is
to build multiple generic enumerations of a structure so that they are
generic relative to each other. Fix a structure B. Given ` ∈ ω, we let
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our forcing conditions be tuples 〈p̄1, . . . , p̄`〉 where each p̄i is in B?. We
say that 〈q̄1, . . . , q̄`〉 extends 〈p̄1, . . . , p̄`〉 if p̄i ⊆ q̄i for all i ≤ `, and we
say that R ⊆ B?` is dense if every tuple in B?` has an extension in R.

Definition VII.37. We say that ` injective enumerations g1, ..., g`
of B are mutually Lc,ω-generic if they meet every dense Lc,ω-definable
subset of B?`, that is, if for every dense Lc,ω-definable R ⊆ B?`, there
are initial segments p̄1, . . . , p̄` of g1, ..., g` with 〈p̄1, . . . , p̄`〉 ∈ R.

For our forcing language, we consider formulas of arithmetic which
contain second-order variables for unary relations Ġi, for i ≤ `, that
represent the atomic diagrams of the generic presentations Gi = g−1

i (B).

We also add second-order variables for unary functions ḣi,j, for i, j ≤ `,
that represent the induced isomorphisms between the generic presen-
tations, namely

hi,j = g−1
j ◦ gi : Gi → Gj.

We will call these formulas N`-formulas.∗

The definition of the forcing relation is as expected. Let ~p =
〈p̄1, . . . , p̄`〉 ∈ B?`. The cases for >, ⊥,

∨∨
and

∧∧
are exactly as

in Definition VII.7. For the other cases:

• ~p 
B`
Ġi(n) ⇐⇒ DB(p̄i)(n)↓ = 1.

• ~p 
B`
¬Ġi(n) ⇐⇒ DB(p̄i)(n)↓ = 0.

• ~p 
B`
ḣi,j(n) = m ⇐⇒ p̄i(n)↓ = p̄j(m)↓.

• ~p 
B`
ḣi,j(n) 6= m ⇐⇒ p̄i(n)↓ 6= p̄j(m)↓.

The rest of the development follows all the steps of section VII.2.
There are two ways to continue. One is to go through all the definitions,
lemmas, and theorems of section VII.2 and adapt them to this setting.
The other is to observe that the product forcing B?` is equivalent to
forcing with the structure (` × B, {Ri : i ≤ `}, {hi,j : i, j ≤ `}), where
` × B represents the structure that consists of ` disjoint copies of the
structure B, Ri is a unary relation identifying the ith copy, and hi,j
is the identity function between the ith and jth copies. Both ways
are straightforward, so we leave the details to the reader. The first
approach is spelled out in [HTMM].

Lemma VII.38. For every Lc,ω-generic enumeration g1, there exists
an enumeration g2 that is mutually Lc,ω-generic with g1.

∗Let us clarify that Ġi and ḣi,j are just symbols (usually called names) that,

only after we have our mutual generic enumerations, will be interpreted as g−1
i (B)

and g−1
j ◦ gi. Let us also emphasize that these are infinitary first-order formulas

with relation and function symbols for Ġi and ḣi,j — there is no second-order
quantification.
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Proof. Given R ⊆ B?2, let

π1
r̄(R) = {p̄ ∈ B? : (∃q̄ ⊇ r̄) 〈p̄, q̄〉 ∈ R}

and
π2
g(R) = {q̄ ∈ B? : (∃p̄ ⊂ g) 〈p̄, q̄〉 ∈ R}.

Suppose that R ⊆ B?2 is dense and Lc,ω-definable. We claim that
π2
g1

(R) is also dense: Fix r̄ ∈ B?. Observe that π1
r̄(R) is dense for

all tuples r̄.† Since π1
r̄(R) is Lc,ω definable over r̄, we have that g1

meets π1
r̄(R) at some p̄ ⊂ g1. It follows that there is q̄ ⊇ r̄, such that

〈p̄, q̄〉 ∈ R. We then have q̄ ∈ π2
g1

(R), proving that π2
g1

(R) is dense.
As in the proof of the existence of Lc,ω-generics (Lemma VII.2),

build g2 so that it meets the sets π2
g1(R) for all R ⊆ B?2 that are dense

and Lc,ω-definable.
Notice that g2 meets π2

g1
(R) if and only if 〈g1, g2〉 meets R. So, we

have that g1 and g2 are mutually generic. �

Exercise VII.39. For every mutually Lc,ω-generic enumerations
g1, ..., g`−1 and every p̄ ∈ A?, there exists an enumeration g` ⊃ p̄ that
is mutually Lc,ω-generic with g1, ..., g`−1.

Corollary VII.40. Let ϕ be an N`−1-Π-formula and consider 〈p̄1, ..., p̄`〉 ∈
B?`. Then

〈p̄1, ..., p̄`〉 B` ϕ ⇐⇒ 〈p̄1, ..., p̄`−1〉 B`−1
ϕ.

Proof. Recall that the forcing relation on Π-formulas is equivalent
to semantical forcing. For the (⇐) direction, just notice that if g1, ..., g`
extending p̄1, ..., p̄` are mutually generic, then so are g1, ..., g`−1, and
hence they satisfy ϕ. For the (⇒) direction, note that if 〈p̄1, ..., p̄`−1〉 1

B`−1

ϕ, then there are mutually generic enumerations g1, ..., g`−1 which do
not satisfy ϕ. Use the previous exercise to get g` ⊃ p̄` so that g1, ..., g`
are mutually generic. Since g1, ..., g` do not satisfy ϕ either, 〈p̄1, ..., p̄`〉 1

B`

ϕ. �

VII.8.2. Building the interpretation. Consider a ∆0
α-functor

Ψ from B to A. We will use it to define a ∆c
α-interpretation of A

within B, as needed for the proof of Theorem VII.36.
The functor Ψ acts on ω-presentations of B, and we want to build

an interpretation that is independent of presentations. The first idea is
the following: For each generic presentation G of B, we obtain a differ-
ent ω-presentation Ψ(G) of A. If we have an isomorphism f between

generic presentations G and Ǧ of B, we obtain a isomorphism ΨG,Ǧ(f)

†π1
r̄(R) is dense because for every s̄, since R is dense, there exists a pair 〈p̄, q̄〉

in R extending 〈s̄, r̄〉. We must then have that p̄ is an extension of s̄ in π1
r̄(R).
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between the ω-presentations Ψ(G) and Ψ(Ǧ). Thus, we can represent
the elements of A as pairs 〈g, i〉, where g is a generic enumeration of
B and i ∈ N indicates that we are looking at the ith element of Ψ(G).

We can then let 〈g, i〉 be equivalent to 〈ǧ, j〉 if the isomorphism ΨG,Ǧ(f)
maps i to j. The problem is, of course, that the objects 〈g, i〉 are not
finitary. Instead, we can consider initial segments b̄ of the generics
and consider pairs 〈b̄, i〉, where b̄ forces i to be the same element in all
ω-presentations Ψ(G) among all generic enumerations g extending b̄.
That is, if we want to use 〈b̄, i〉 as a name for an element of A, we want
to know that if we have two generic enumerations g1 and g2 extending
b̄, the number i represents the same element in the ω-presentations
Ψ(G1) and Ψ(G2). The way to ensure that is to have b̄ force that the

isomorphism ΨĠ1,Ġ2(ḣ1,2) : Ψ(G1)→ Ψ(G2) leaves i fixed. For example,
in the case where α = 1 and Ψ is computable, we want to know that
b̄ is long enough so that DB(b̄) provides enough of an initial segment

of D(Ġ1) and D(Ġ2) so that ΨDB(b̄),DB(b̄)(id � |b̄|) converges, and that

ΨDB(b̄),DB(b̄)(id � |b̄|)(i) = i.

Definition VII.41. We define the domain of interpretation, AB,
as a subset of B? × N as follows: For 〈b̄, i〉 ∈ B? × N, let

〈b̄, i〉 ∈ AB ⇐⇒ 〈b̄, b̄〉 
B2 ΨĠ1,Ġ2(ḣ1,2)(i) = i.

Next, we define a relation ∼ on AB, which we will later prove is an
equivalence relation. For 〈b̄, i〉, 〈c̄, j〉 ∈ AB, let

〈b̄, i〉 ∼ 〈c̄, j〉 ⇐⇒ 〈b̄, c̄〉 
B2 ΨĠ1,Ġ2(ḣ1,2)(i) = j.

Lastly, we need to interpret the relation symbols. For each relation
symbol Pi of arity a(i) in the vocabulary of A, we define a relation Ri

on AB as follows: For 〈b̄1, k1〉, . . . , 〈b̄a(i), ka(i)〉 ∈ AB, let

〈〈b̄1, k1〉, . . . , 〈b̄a(i), ka(i)〉〉 ∈ Ri ⇐⇒ (∃c̄ ∈ B?)
∨

j1,...,ja(i)<|c̄|a(i)∧
s=1

〈b̄s, ks〉 ∼ 〈c̄, js〉

 &
(
c̄ B 〈j1, . . . , ja(i)〉 ∈ PΨ(Ġ)

i

)
.

Using the definability of forcing, and observing that the formulas
being forced are all N`-∆

0
α, we get that AB and ∼ can both be defined

within B by Σc
α formulas and by Πc

α formulas. For Ri, we get a Σc
α

formula. To get it to be ∆α, add a relation for the complement of Pi.
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VII.8.3. Verification. We now want to show that this is indeed
an interpretation of A in B. The first thing to observe before starting
the verification is that since Ψ is a functor that acts on all copies of
B, all of Ψ’s Π-properties are forced by the empty conditions. For
instance,

〈∅, ∅, ∅〉 
B3 ΨĠ2,Ġ3(ḣ2,3) ◦ΨĠ1,Ġ2(ḣ1,2) = ΨĠ1,Ġ3(ḣ1,3).

Lemma VII.42. ∼ is an equivalence relation on AB.

Proof. Reflexivity follows from the definition of AB. Symme-

try holds because 〈∅, ∅〉 
B2 ΨĠ2,Ġ1(ḣ2,1) = ΨĠ1,Ġ2(ḣ1,2)−1. Transitiv-

ity follows from the fact that 〈∅, ∅, ∅〉 
B3 ΨĠ2,Ġ3(ḣ2,3) ◦ ΨĠ1,Ġ2(ḣ1,2) =

ΨĠ1,Ġ3(ḣ1,3). �

It is also easy to see from the definition of Ri that ∼ is a congruence
relation.

The next objective is to define a map F : AB → A which gives an
isomorphism between AB and A. Let us fix an ω-presentation of B, and
let us assume we are working with the copy of A given by A = Ψ(B).
Given 〈b̄, i〉 ∈ AB, we let

F(〈b̄, i〉) = ΨG,B(g)(i),

where g is an Lc,ω-generic enumeration of B extending b̄. Notice that
G is the pull-back of B through g, and that ΨG,B(g) is an isomorphism
from Ψ(G) to A. We need to verify that this definition is indepen-
dent of g. Observe that, from the definition of AB, we get that if
〈b̄, i〉 ∈ AB, then for all Lc,ω-generic enumerations g1 and g2 extending
b̄, ΨG1,G2(h1,2)(i) = i. It then follows that

ΨG1,B(g1)(i) = ΨG2,B(g2) ◦ΨG1,G2(h1,2)(i) = ΨG2,B(g2)(i).

Second, we need to show that F is ∼-invariant. Consider 〈b̄, i〉 ∼
〈c̄, j〉. Then ΨG1,G2(h1,2)(i) = j for all generic enumerations g1, g2 ex-
tending b̄, c̄. Therefore

F(〈b̄, i〉) = ΨG1,B(g1)(i)

= ΨG2,B(g2) ◦ΨG1,G2(h1,2)(i)

= ΨG2,B(g2)(j)

= F(〈c̄, j〉).

Conversely, to show that F is one-to-one on ∼-equivalence classes,
suppose that F(〈b̄, i〉) = F(〈c̄, j〉). Then we must have ΨG1,G2(h1,2)(i) =
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j for all generic g1, g2 extending b̄, c̄. To see this, apply the inverse of
ΨG2,B(g2) to the third equality above. It follows that

〈b̄, c̄〉 
B2 ΨĠ1,Ġ2(ḣ1,2)(i) = j,

and hence 〈b̄, i〉 ∼ 〈c̄, j〉.
That F : AB → A is onto follows from the lemma below.

Lemma VII.43. For all a ∈ A and all Lc,ω-generic enumerations g
of B, there exists c̄ ⊂ g and i ∈ N such that F(〈c̄, i〉) = a.

Proof. Let i be such that ΨG,B(g)(i) = a. Let g1 = g and let g2

be mutually generic with g1 (as built in Lemma VII.38). Let G1 and
G2 be the corresponding generic presentations. Let j = ΨG1,G2(h1,2)(i).
There exist initial segments c̄ ⊂ g1 and b̄ ⊂ g2 such that

〈c̄, b̄〉 
B2 ΨĠ1,Ġ2(ḣ1,2)(i) = j.

Since c̄ ⊂ g, we get that F(〈c̄, i〉) = ΨG,B(g)(i) = a. We still need to
show that 〈c̄, i〉 ∈ AB.

Notice that by flipping the direction, we have 〈c̄, b̄〉 
B2 ΨĠ2,Ġ1(ḣ2,1)(j) =

i too. It then follows that

〈c̄, b̄, c̄〉 
B3 ΨĠ1,Ġ2(ḣ1,2)(i) = j & ΨĠ2,Ġ3(ḣ2,3)(j) = i,

and hence
〈c̄, b̄, c̄〉 

B3 ΨĠ1,Ġ3(ḣ1,3)(i) = i.

Since g2 does not appear in the formula above, by Corollary VII.40 we
get

〈c̄, c̄〉 
B2 ΨĠ1,Ġ2(ḣ1,2)(i) = i,

and hence that 〈c̄, i〉 ∈ AB. �

Finally, we need to show that F preserves relations. Consider a
relation symbol Pi of arity n in the vocabulary of A. Let 〈a1, ..., an〉
be a tuple from A. Let g be an Lc,ω-generic enumeration of B. Let
ji be such that ΨG,B(g)(ji) = ai for each i ≤ n. From the previous
lemma, we can obtain an initial segment c̄ ⊂ g long enough such that
F(〈c̄, ji〉) = ai for all i ≤ n. Furthermore, we can chose c̄ even longer

so that it decides the N-formula 〈j1, . . . , jn〉 ∈ PΨ(Ġ)
i .

By the definition of Ri, we have that 〈〈c̄, j1〉, . . . , 〈c̄, jn〉〉 ∈ Ri if and

only if 〈j1, . . . , jn〉 ∈ PΨ(G)
i , which, going through ΨG,B(g), holds if and

only if 〈a1, ..., an〉 ∈ PAi . So F maps Ri to PAi .





CHAPTER VIII

The game metatheorem

More often than not in computability theory, one is posed with the
task of building a certain computable object using non-computable in-
formation. Computability theorists have come up with all sorts of tech-
niques to do such constructions, as for instance the priority arguments.
Among these techniques, one that has been particularly useful for com-
putable structure theory is the Ash and Knights’s metatheorem, which
was developed in the late 80’s and 90’s and is best explained in Ash and
Knight’s book [AK00]. In the next chapter, we will develop another
such technique, the iterated true-stage method, which grew out of Ash
and Knights’s metatheorem. One of the main applications that we will
see of the iterated true-stage method is the game metatheorem, which
was recently introduced by the author [Mon25]. The game metathe-
orem provides a ready-to-apply method that is much simpler than the
iterated true stages method and than Ash and Knights’s metatheorem.
The catch is that it is a little less flexible. However, it is still flexible
enough that most of the applications of Ash and Knights’s metatheorem
we know of can be carried out using the game metatheorem instead.
So we do not lose that much in terms of flexibility, while we gain a lot
in terms of simplicity. We will see the statement of the game metatheo-
rem in Theorem VIII.2, but we will leave its proof to the next chapter,
once we develop the iterated true-stage method.

VIII.1. Game constructions

In this section, we introduce a metatheorem∗ stated in terms of a
game. It exhibits the interplay between the η-back-and-forth relations
and ∆0

η-information in the clearest possible way.
Let η be a computable ω-presentation of an ordinal. The case η = 2

is already quite interesting and useful. Suppose we have a computable
list of computable structures

A = {A0,A1,A2, ....},

∗Ash and Knights used the word metatheorem to emphasize that their theorem
provides a general framework which can be used to prove many theorems.

133
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where the back-and-forth relations are computable up to η, as in Defi-
nition VIII.3 below.

We will now describe a type of construction that we will call an η-A-
game. This game involves three characters, the engineer, the extender,
and the oracle. Together, when the game ends, they will have built
an ω-presentation L which we call the limit structure. The goal of the
engineer is for the limit structure L to satisfy a certain property. The
extender is in charge of making L computable — he will not, in any
way, coordinate his work with the engineer. The job of the oracle is to
answer ∆0

η(D(L)) questions posed by the engineer. The game is played
through infinitely many stages. A run of the game is played as follows:
At each stage j ∈ N, first, the engineer plays a triple 〈ij, āj, ej〉 where
ij, ej ∈ N and āj ∈ A<N

ij
, second, the extender plays a tuple b̄j ∈ A<N

ij

extending āj, and third the oracle plays a pair 〈nj, βj〉, where nj is a
number that must be the answer to the ejth ∆0

η(D(L)) question and
βj is an ordinal below η.

engineer i0, ā0, e0 i1, ā1, e1 i2, ā2, e2 · · ·
extender b̄0 b̄1 b̄2 · · ·
oracle n0, β0 n1, β1 n2, β2 · · ·
At each stage j > 0, the tuple āj played by the engineer must

satisfy:
(Aij−1

, b̄j−1) ≤βj−1
(Aij , āj). †

The tuple b̄j played by the extender must be in the same structure just
played by the engineer and must satisfy:

āj ⊆ b̄j.

After ω many moves, we get

DAi0 (ā0) ⊆ DAi0 (b̄0) ⊆ DAi1 (ā1) ⊆ DAi1 (b̄1) ⊆ DAi2 (ā2) ⊆ · · · ,
and hence we get a limit ω-presentation L whose atomic diagram is the
union of the diagrams of the tuples played:

D(L) =
⋃
j∈N

DAij (āj).

The numbers ej represent ∆0
η(L) questions, as defined below.‡ The

engineer is responsible for asking questions that converge. The numbers
nj played by the oracle must be the answers to these questions as
in Definition VIII.1 below. Notice that we allow the engineer to ask

†Recall that b̄j−1 ≤βj−1 āj means that b̄j−1 ≤βj−1 āj � |b̄j−1| and allows āj be

longer than b̄j−1.
‡From now on, we will write ∆0

η(L) instead of ∆0
η(D(L)).
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questions to be about the limit structure L even before L is built —
the reader may be smelling the Recursion Theorem somewhere around
here. The ordinals βj must be below η. When η is a successor ordinal,
we may assume βj = η − 1 for all j without losing any generality,
making the analysis a bit simpler. When η is a limit ordinal, we may
assume βj is a non-decreasing sequence converging up to η.

Definition VIII.1. Given X ∈ 2N, n, e ∈ N, and a computable
ordinal η, we say that n is the answer to the eth ∆0

η(X) question if

n = Φ
S
η
X
e (0),

where S
η
X is some previously fixed ∆0

η(X)-Turing-complete set and Φe

is the eth Turing functional.§

A strategy for the engineer is a function that tells the engineer what
to play next, given the previous moves by the extender and the oracle.
We say that a strategy is valid if, on all possible plays by the extender
and oracle, all of the ∆0

η(L) questions ej converge.

Theorem VIII.2. Let A and η be as described above. For every
computable valid strategy for the engineer in the η-A-game, there is
a run of the game where the engineer follows her strategy, the oracle
answers correctly, and the limit ω-presentation L is computable.

Furthermore, we will prove that there is a uniform effective proce-
dure that, given the strategy for the engineer, produces the ω-presentation
L given by the theorem. The proof is fully relativizable, so the result
is also uniform in the oracle’s answers: If the oracle responds to ∆0

η(X)
questions, then the resulting limit structure will be X-computable, also
uniformly in X.

To be able to apply this theorem, one needs to describe a com-
putable valid strategy for the engineer that, with the help of the oracle
who is answering her ∆0

η questions, will build an ω-presentation with
the desired property independently of what the extender does. One
can then cite the theorem to conclude that, even if the construction
relies on the ∆0

η information provided by the oracle, the resulting ω-
presentation is computable.

§ Let us remark that any finite number of questions of the form

Φ
S
η
X
e0 (k0),Φ

S
η
X
e1 (k1), ...,Φ

S
η
X
e` (k`) can be encoded into a single question us-

ing an index e such that Φ
S
η
X
e (0) outputs a number encoding the tuple

〈ΦS
η
X
e0 (k0),Φ

S
η
X
e1 (k1), ...,Φ

S
η
X
e` (k`)〉.
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VIII.2. Computable back-and-forth relations

The game metatheorem requires us to be able to compute the back-
and-forth relations on the structures involved.

Definition VIII.3. Given a list of ω-presentations {Ai : i ∈ I},
we say that the back-and-forth relations are computable up to η if the
set of quintuples

{〈ξ, i, ā, j, b̄〉 : ξ < η, i, j ∈ I, ā ∈ A<N
i , b̄ ∈ A<N

j , (Ai, ā) ≤ξ (Aj, b̄)}
is computable.

This is pretty much the same notion as that of η-friendliness used
by Ash and Knight [AK00, Section 15.2].

Example VIII.4. Given a computable ordinal α, consider the col-
lection of ordinals {ωξ : ξ ≤ α}, where the ω-presentations are chosen
as in Observation I.9. It follows from Exercise II.44 that the back-and-
forth relations are computable up to 2α (see also [Ash86a, Lemma 7]
or [AK00, Lemma 15.10]).

Example VIII.5. Given a computable ordinal α, consider the col-
lection of linear orderings {Zξ : ξ ≤ α}. Goncharov, Harizanov, Knight,
McCoy, and R. Miller [GHK+05] gave a complete analysis of the back-
and-forth tuples within these structures. It follows from their work that
the back-and-forth relations are computable up to 2α.

If the back-and-forth relations up to η are not computable, the
game metatheorem can be applied relative to whichever oracle com-
putes them. For instance, the (2η)-th jump of the list of structures is
always enough, as in the exercise below.

Exercise VIII.6. Let A be a list of structures. Prove that the
(2η)-th jump of the sequence of diagrams of the structures in A can
compute the back-and-forth relations in A up to η.

VIII.3. Pairs of structures

The pair of structures theorem of Ash and Knight [AK90] is one
of the most useful applications of Ash and Knight’s metatheorem. It
provides a lightface version of Theorem VII.30, which syntactically
characterized when distinguishing between two structures A and B is
(boldface) Σ0

ξ-hard: when A ≤ξ B. The proof of Theorem VII.30 used
determinacy to build ω-presentations that are far from computable. We
now show that under some effectiveness conditions, we can get light-
face Σ0

α-hardness. Among the many applications of this theorem, two
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important ones are the construction of the αth jump inversion (Theo-
rem X.5) and the construction of a structure whose degree spectrum is
exactly the non-hyperarithmetic degrees [GMS13].

Theorem VIII.7. Let η be a computable ordinal and A0 and A1 be
ω-presentations whose back-and-forth relations are computable up to η.
If A0 ≥η A1, distinguishing copies of A1 from copies of A0 is Σ0

η-hard.

Recall from Definition VII.28 that distinguishing A1 from A0 is
(lightface) Σ0

η-hard if, for every Σ0
η subset K ⊆ 2N, there is a computable

operator Γ: 2N → 2N such that, for all X ∈ 2N, ΓX is the diagram of a
copy of A1 if X ∈ K, and ΓX is the diagram of a copy of A0 if X 6∈ K.

We already proved the cases η = 1 and η = 2 in Section II.6.2.
Those proofs may give the reader some intuition for why the back-and-
forth relations are necessary.

Proof. Let K be a Σ0
η subset of 2N. Fix X ∈ 2N. We will define

a computable strategy for the engineer to build a structure that is iso-
morphic to A1 if X ∈ K, and to A0 if X 6∈ K. Through relativization,
we will let the oracle respond ∆0

η(X) questions instead of ∆0
η ques-

tions. Theorem VIII.2 will then guarantee that there exists a sequence
of moves by the extender so that the limit structure L is uniformly
computably in X. This will be the computable operator Γ needed to
prove Σ0

η-hardness.

Whether X is in K or not is a Σ0
η question, and not a ∆0

η(X) ques-
tion, so we cannot ask the oracle directly about it. Instead, we use a
computable list of indices e0, e1,... for ∆0

η(X) questions whose answers,
n0, n1, ..., are either all zeros if X 6∈ K or start with zeros and then
change to all ones if X ∈ K. To see how to get these indices, let W
be a c.e. operator such that X ∈ K ⇐⇒ 0 ∈ W S

η
X , where S

η
X is a

∆0
η-Turing-complete set. Then, let ej be an index so that Φ

S
η
X
ej (0) = 1 if

0 is enumerated in W S
η
X in less than j steps and Φ

S
η
X
ej (0) = 0 otherwise.

The idea behind the strategy for the engineer for the η-{A0,A1}-
game is as follows: At stage j, ask the ∆0

η(X) question ej as in the
previous paragraph. Play tuples in A0 while the oracle’s answers are
nj = 0, and switch to playing tuples in A1 if the oracle ever switches
to answering nj = 1. The hypothesis that A0 ≥η A1 is used to find
āj+1 ∈ A<N

1 so that (A0, b̄j) ≤βj (A1, āj+1) when we do the switch. Let
us describe this in more detail.

On the strategy’s first move, play the empty tuple in A0, and ask
about e0 — i.e., play the triple 〈0, 〈〉, e0〉. On the (j + 1)st move, play
the triple 〈ij, āj+1, ej+1〉, which we define as follows: Let ij+1 = nj,
where nj is the oracle’s answer to the previous ∆0

η(X)-question, and
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let ej+1 be as defined a couple of paragraphs above. If nj = ij, stay
in the same structure and play any tuple āj+1 in Anj extending b̄j. To
ensure surjectivity, choose āj+1 so that it contains at least the first j
elements of the ω-presentation of Anj . If nj 6= ij, it must be because

ij = 0 and nj = 1. In this case, play a tuple āj+1 ∈ A<N
1 such that

(A1, āj+1) ≥βj (A0, b̄j). The existence of such an āj+1 follows from the
hypothesis that A1 ≤η A0. We can find āj+1 computably because we
are assuming that the back-and-forth relations are computable up to
η.

If X 6∈ K, at the end of the game we get that {āj : j ∈ N} is an
increasing sequence of tuples in A0, and hence the limit structure is
isomorphic to A0. If X ∈ K and s0 is the first stage with ns0 = 1,
then {āj : j ∈ N, j > s0} is an increasing sequence of tuples in A1, and
hence the limit structure is isomorphic to A1. �

As we mentioned before, if the back-and-forth relations up to η
are not computable, the game metatheorem can be applied relative to
whichever oracle computes them. For instance, the (2η)-th jump of
the given ω-presentations of A0 and A1 is always enough (see Exercise
VIII.6). If we care about the complexity of the oracle relative to which
the structures are Σ0

η-hard, this new proof is much better than Theorem
VII.30 because the (2η)-th jump is much lower than the oracle we get
from Σ0

η-determinacy, whose proof needs around η iterations of the
power-set axiom of ZFC.

We can modify the proof of the theorem above in the situation when
A0 ≡η A1 and get ∆0

η+1-hardness:

Theorem VIII.8. Let η be a computable ordinal and A0 and A1

be ω-presentations whose back-and-forth relations are computable up
to η. If A0 ≡η A1, distinguishing copies of A1 from copies of A0 is
∆0
η+1-hard.

Proof. The proof is almost identical to the proof above. The only
difference is that the answers n0, n1, .... to our ∆0

η questions may flip
finitely often between zeros and ones before they stabilize at either 0
or 1. The effect of this on the proof is that, when we have nj 6= ij,
we could be going from 0 to 1 or from 1 to 0. If we are going from
0 to 1 (i.e., ij = 0 and nj = 1), we define āj+1 ∈ A<N

1 exactly as in
the previous proof using A1 ≤η A0. If we are going from 1 to 0 (i.e.,
ij = 1 and nj = 0), we just switch the roles of A0 and A1 and we define
āj+1 ∈ A<N

0 using A1 ≥η A0. �

Remark VIII.9. In the theorem above, the isomorphism between
the limit structure L and whichever of A0 and A1 is supposed to be
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isomorphic to L is ∆0
η+1 (relative to X, of course). The isomorphism

is actually ∆0
η, but we need ∆0

η+1 if we want uniformity in X. This is

because ∆0
η+1 can tell at which point the answers n0, n1, .... stabilize

to either 0 or 1. After that point, we are just copying the elements of
either A0 or A1, so we can easily produce the isomorphism from the
run of the η-{A0,A1}-game. The complexity of the run of the game is
given by the oracle’s answers, which are ∆0

η, and the answers by the

extender, which can be taken to be ∆0
η too. This follows from Remarks

IX.27 and IX.31 after the proofs of the game metatheorem.

VIII.4. Linear ordering presentations

Here is another classical result that needs 0(η) information.

Theorem VIII.10. Let η be a computable ordinal and let A be a
linear ordering with a first element. Then A has a ∆0

2η+1 copy if and
only if ωη · A has a computable copy.

This theorem was proved by Watnick [Wat84] for the case η = 1
and then extended to all η by Ash, Jockusch, and Knight [AJK90]
using workers and by Ash [Ash91] using 2η-systems.

Proof. The easier direction is the (⇐) direction. Suppose that B
is a computable copy of ωη · A. Consider the equivalence relation on B
given by a ∼ b if the interval [a, b]B has order type less than ωη. Recall
from Lemma II.5 that this can be decided by a Σc

2η formula. Taking

the quotient of B under ∼, we get a ∆0
2η+1 congruence ω-presentation

of A.
For the (⇒) direction, assume thatA is itself a ∆0

2η+1 ω-presentation.
Assume that the least element of A is the 0 of its ω-presentation.

The pool A of structures that we use for our game consists of all
the linear orderings of the form ωη · F , where F is a finite linear or-
dering whose domain is an initial segment of N. The back-and-forth
relations between these structures are computable up to 2η+1. Precise
calculations of the back-and-forth relations among ordinals are done in
Exercise II.44.

Another observation we need is that if F0 ⊆ F1 are linear order-
ings with the same first element 0, then ωη · F0 is a Σin

2η+1-elementary

substructure of ωη · F1. In other words, for every tuple b̄ ∈ ωη · F0, we
have that (ωη ·F0, b̄) ≥2η+1 (ωη ·F1, b̄). The reason is that if an interval
(bi, bj) of ωη · F0 changes when you view it in ωη · F1, it is because we
added a few intervals of the form ωη in between bi and bj. That is,
the interval changed from being isomorphic to ωη · k0 + β in ωη · F0 to
being isomorphic to ωη ·k1 +β in ωη · F1 for some 0 < k0 < k1 ∈ N and
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β < ωη. Recall from Lemma II.38 that ωη ·k0 ≥2η+1 ω
η ·k1, getting the

desired result from Lemma II.37.
We describe a computable strategy for the engineer in the (2η+ 1)-

A-game. At stage j−1, the engineer asks the oracle for a full description
of A � j, i.e., for the ordering ≤A on the first j natural numbers of
the ω-presentation A. At the following stage, stage j, she chooses the
structure ωη ·Fj in A, where Fj = A�j. Note that Fj naturally extends
Fj−1. From our observation above, ωη · Fj−1 is a Σin

2η+1-elementary

substructure of ωη · Fj. So, we know that (ωη · Fj−1, b̄j−1) ≡2η (ωη ·
Fj, b̄j−1), and hence that the engineer can play any tuple āj extending
b̄j−1. All she needs to do is make sure that she ends up including
all members of ωη · A eventually. The limit structure will then be
isomorphic to the limit of the structures ωη · Fj, namely ωη · A, as
all the engineer ends up doing is enumerating longer and longer tuples
from ωη · A. �

The theorem is still true if A has no least element (see [Mon25]).
The theorem is also true for Zη · A instead of ωη · A by essentially the
same proof.

VIII.5. ∆0
η-categoricity

A computable structure A is ∆0
η-categorical if, for every computable

copy B of A, there is a ∆0
η isomorphism between A and B. Downey,

Kach, Lempp, Lewis, Montalbán, and Turetsky [DKL+15] proved that
this property cannot be characterized structurally. However, a variant
of it, namely the relative version, can be characterized in terms of
structural properties, as we have shown in Section VII.4. The on-a-
cone version has an even nicer characterization: A structure is ∆0

η-
categorical on a cone if and only if it has Scott rank less than or equal
to η (Corollary VII.24).

Unfortunately, the three notions of plain, relative, and on-a-cone
∆0
η-categoricity are not equivalent. Examples of this non-equivalence

were built by Goncharov, Harizanov, Knight, McCoy, R. Miller, and
Solomon [GHK+05]. Other examples for the case η = 1 can be found
in [Part 1, Section ??]. However, they are equivalent for most natural
structures one encounters. Ash proved that these notions are equivalent
if we have enough structural information about A. To understand his
result, we need to use the notion of η-freeness.

Recall from Definition II.64 that a tuple c̄ is η-free if and only if,
for every b̄ ⊇ c̄ and β < η, there exist tuples c̄′ ⊆ b̄′ such that b̄ ≤β b̄′
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but c̄ 6≤η c̄′.
c̄ 6≤η c̄′⊆ ⊆

b̄ ≤β b̄′

We then proved in Lemma II.65 that c̄ is η-free if and only if its Πin
η -

type is not Σin
η supported. It follows from Theorem II.23 and Corollary

VII.24 that, for a structure A, the following are equivalent:

(1) A has Scott rank less than or equal to η.
(2) A is ∆0

η-categorical on a cone.

(3) There is a tuple p̄ ∈ A<N such that no tuple c̄ ∈ A<N is η-free
over p̄.¶

In practice, when we have a good understanding of the back-and-
forth relations on a given structure, we can effectively decide which
tuples are η-free and we can effectively find witnesses for the tuples
that are not η-free. When that is the case, we say that η-freeness
is computable in A. It was under this assumption, together with the
computability of the back-and-forth relations, that Ash [Ash87] proved
that ∆0

η categoricity implies that all tuples are η-free over some tuples
of parameters.

Theorem VIII.11. Let A be a computable ω-presentation where
both the back-and-forth relations up to η and η-freeness are computable.
If A is ∆0

η-categorical, it has Scott rank less than or equal to η.

The proof we provide is essentially the η-A-game version of Nur-
tazin’s proof that computable categoricity for decidable copies is equiv-
alent to effective atomicity over a finite set of parameters [Part 1, The-
orem ??] and of the proof that computable categoricity implies relative
computable categoricity for 2-decidable structures [Part 1, Theorem
??]. We recommend the reader study those proofs first, as many of
those ideas are incorporated here.

Proof. Suppose that A has Scott rank greater than η and, thus,
that over every tuple p̄, there is a tuple that is η-free. We will show
that A is not ∆0

η-categorical.
We build a copy of A by defining a computable strategy for the

engineer in an η-A-game construction (with A = {A}). In the previous
examples, the engineer always extended tuples played by the extender
when she did not need to change structures. In this construction,
the tuples played by the engineer will keep on jumping around the
structure A, of course always being βj-greater than the ones played by

¶ By η-free over p̄, we mean η-free within the structure (A, p̄).
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the extender. We want to end up building a copy of A, so we will make
sure that the tuples āj stabilize in the limit; i.e., that for each n ∈ N,
limj→∞ āj(n) exists — call this limit g(n). We will then end up with a
function

g : ω → A,
and the limit ω-presentation L will be the pull-back of A through g.
The objective is to build L so that it is not ∆0

η-isomorphic to A. So

that it witnesses that A is not ∆0
η-categorical.

While the engineer is playing the game, she will be performing a
finite-injury priority construction with infinitely many requirements Re

for e ∈ N. That is, the run of the game itself will be a finite-injury pri-
ority construction where the engineer’s moves may injure lower priority
requirements she herself had sought to satisfy earlier. The only differ-
ence from a standard finite-injury priority construction is that after
each stage, the extender will extend the tuple āj to b̄j, and at the next
stage, the engineer must play a tuple āj+1 ≥βj b̄j. Our requirements
take the following form:

Requirement Re: Ensure that ΦSη

e is not an isomor-
phism from L to A as follows: Find a tuple n̄ ∈ N<N

such that ΦSη

e (n̄) and g(n̄) are not automorphic in A.‖

We order these requirements by order of priority: The smaller the e,
the higher the priority. Note that Re will ensure that ΦSη

e ◦ g−1 is not
an automorphism of A, and hence that ΦSη

e is not an isomorphism from
L to A. To ensure its goal, Re will choose a tuple n̄ and wait for ΦSη

e

to converge on n̄ to some tuple c̃e. Then, if necessary, Re will change
the value of g(n̄) so that it is not η-back-and-forth equivalent to c̃e,
and in particular, not automorphic to c̃e. Since we do not know when
or where ΦSη

e converges, we cannot ask the ∆0
η oracle directly about its

values. All we can ask is, given a tuple n̄ and a number s, whether ΦSη

e

converges on the numbers in the tuple n̄ within s steps.
At each step j, we are given b̄j−1 and we, as the engineer, are sup-

posed to define āj. The the beginning of step j, there is an initial
segment R0,...,Rkj−1

of the list of requirements that are active. The
value of kj will increase and decrease throughout the construction but
will eventually grow to infinity. Before her move, the engineer goes
through the active requirements one at the time, checking any of them
requires attention (defined below). Each requirement Re will be given
a tuple p̄e ∈ A<N when initialized, and it will output a tuple p̄e+1 ex-
tending it. Lower priority requirements are not allowed to modify p̄e+1.

‖ Recall that Sη is some fixed ∆0
η-Turing-complete real.
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The output tuple p̄e+1 may change when the requirement Re acts, which
would injure the work of lower priority requirements. If the input tuple
p̄e changes, the requirement Re must be deactivated and re-initialized
again. One should thus think of p̄e as a tuple p̄e[j] that depends on the
stage j. All the inputs of the currently active requirements are initial
segments of b̄j−1, i.e., (∀e ≤ kj−1) p̄[j − 1] ⊆ b̄j−1. All the outputs of
the currently active requirements are going to be initial segments of āj,
i.e., (∀e ≤ kj) p̄[j] ⊆ āj. When a higher priority requirement acts, the
weaker requirements are deactivated, and their p̄e’s become undefined,
to be re-defined later. We will see, however, that for each e, p̄e[j] will
stabilize as j → ∞, and hence we will end up with a limit function
g : ω → A, where g(n) = limj→∞ p̄kj [j](n).

If none of the requirements Re for e ≤ kj−1 requires attention, the
engineer initializes the first inactive requirement, namely, Rkj−1+1. Here
is how the initialization works: Let kj = kj−1 + 1. For e = kj, using
the computability of η-freeness, the engineer looks for a tuple c̄e that
is η-free over p̄e and adds it to the tuple played by the extender, say on
position n̄e ∈ N<N. (Recall that we will always have p̄e[j − 1] ⊆ b̄j−1.)
That is, she plays the tuple

āj = b̄j−1
ac̄e

ad,

where d is the least element in A not yet played, and n̄e is the position
of c̄e within āj, namely 〈|b̄j−1|, |b̄j−1|+1, ..., |b̄j−1

ac̄e|−1〉. She then asks
the oracle whether ΦSη

e (n̄e) converges within j steps. She will keep on
asking about this convergence at every later stage j′ > j, using larger
and larger time bounds, until she gets an answer. Actually, it is for all
e ≤ kj simultaneously that she asks whether ΦSη

e (n̄e) converges within j
steps, encapsulating all the questions into one question.∗∗ She defines
p̄e+1 = āj and finishes this stage.

What do we mean by requiring attention, and what does the engi-
neer do then? If we obtain an answer from the oracle that says that,
for some e ≤ kj−1, ΦSη

e (n̄e) converges within j−1 steps, we say that Re

requires attention. The engineer then picks the least such e and acts
on it. Suppose that ΦSη

e (n̄e) = c̃e. So, we have that p̄e+1 maps n̄e to c̄e,
while ΦSη

e maps n̄e to c̃e, as pictured below.
Then, she checks if c̄e ≤η c̃e. If not, she does not need to do any-

thing, as we would then know that c̄e and c̃e are not non-automorphic.
She plays āj = b̄j−1

ad, where d is the least element in A not yet played,
declares Re satisfied, leaves p̄e+1 unchanged (for now, and so long as it
is not re-initialized later), and lets kj = kj−1. Notice that if Re is never

∗∗To encapsulate many questions into one, do as in the footnote on page 135.
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re-initialized again, we will end up with g ⊇ p̄e+1[j] and with

g(n̄) = c̄e 6≤η c̃e = ΦSη

e (n̄e).

If yes, that is, if c̄e ≤η c̃e, she will replace c̄e by a tuple c̄′e 6≥η c̄e, getting
that c̄′e and c̃e are not ≡η-equivalent, and hence not automorphic. To
find such a c̄′e, recall that she had chosen c̄e so that it was η-free over
p̄e. We can then apply η-freeness to the tuple b̄j−1 ⊇ p̄ec̄e and the
ordinal βj−1 played by the oracle, and, using the computability of the
back-and-forth relations, we get tuples c̄′e and b̄′j ⊇ p̄ec̄

′
e such that

b̄j−1 ≤βj−1
b̄′j, but p̄ec̄e 6≤η p̄ec̄′e.

The engineer now plays āj+1 = b̄′j
ad, where d is the least element in

A not yet played, declares Re satisfied with p̄e+1 = āj, deactivates
lower priority requirements, and lets kj = e. Notice that if Re is never
re-initialized again, we will end up with g ⊇ p̄e+1[j] and with

g(n̄) = c̄′e 6≡η c̃e = ΦSη

e (n̄e).

Each requirement Re acts at most once after being initialized. One
can then prove by induction on e that each requirement stops being
deactivated by higher priority requirements from some point on. After
the last time Re is initialized, if it requires attention, it will eventually
get it. We will end up with p̄e+1[j] ⊆ āj′ for all j′ ≥ j, and hence with
p̄e+1[j] ⊆ g. We would have then satisfied Re because: Either ΦSη

e (n̄e)
does not converge and Re never requires attention after the last time
it was initialized, or ΦSη

e (n̄e) converges and, once Re is given attention,
the engineer ensures that g maps n̄e to a tuple not η-back-and-forth
equivalent to c̃e. �



CHAPTER IX

Iterated True-Stage Arguments

In many constructions in computability theory, one builds a com-
putable object using non-computable information. The main tool for
such constructions is the priority method, which has become increas-
ingly more involved and sophisticated since it was invented in the 1950s.
On such a computable construction, one has to guess at whatever non-
computable information is needed. Such guesses will be right some-
times and wrong some other times, and when they are wrong they
will guide us in the wrong direction, maybe messing up other parts of
the construction. By carefully organizing these guesses, one can find
techniques to recover from the mistakes made when assuming wrong
guesses. The method of iterated true stages provides a way to organize
such guesses in a clean, combinatorial way. It is then up to the user to
build the desired computable object using these guesses.

Priority arguments are classified in terms of how much non-computable
information is needed throughout the construction. The most common
priority constructions are the finite-injury ones [Fri57, Muc56] (see
[Part 1, Chapter ??]). They are used when the information needed is
0′-computable. Infinite-injury priority constructions [Sho61, Sac63]
are used when 0′′-computable guesses are needed. There are various 0′′′-
priority constructions in the literature [Lac76], but they are very com-
plicated and far less common. Beyond that point, it becomes humanly
impossible to keep track of the combinatorics. Well, that is unless the
level-by-level combinatorics of the proof is uniform and one can describe
the work done at all the levels simultaneously with a single procedure.
There have been various proposals for general 0(n)-injury constructions:
Harrington’s workers method [Har76], Lempp and Lerman’s trees of
strategies [LL95, Ler10], Ash’s [Ash86b] and Ash–Knight’s [AK00]
η-systems, Montalbán’s iterated true stages [Mon14], and Montalbán’s
game metatheorem. Harrington’s workers method refers to a particular
way of visualizing a construction where we have a worker working at
each level 0(m), and each worker is monitoring the actions of the other
workers, limit-guessing what the 0(m+1) worker is doing, and knowing
the jump of what the 0(m−1) worker is doing. It was recently used in
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computable structure theory by Andrews and Knight [AK18] in work
related to strongly minimal theories. Lempp and Lerman’s method
[LL90] provides a way to organize the requirements in a priority con-
struction using trees of strategies, where we have a different tree at
each level, all interacting with each other. It is great for constructions
in degree theory and has been used, for instance, to prove that every
finite jump upper semi-lattice with 0 can be embedded in the Turing
degrees [Ler10]. Ash and Knight’s η-systems are very different from
anything done before. Their metatheorem says that if a certain combi-
natorial machinery can be put in place, one can then build the desired
computable object using ∆0

η-information.∗ It has many applications,
all of them in computable structure theory, where the combinatorial
features needed occur naturally.

The method we describe in this chapter is the iterated true-stage
method, which was inspired by Ash and Knight’s η-systems and Lach-
lan’s true stages. It is more hands-on and more flexible than Ash and
Knight’s metatheorem. We will give two applications: One is the proof
of the game metatheorem. The other is the tree-of-structures theo-
rem that generalizes the pair-of-structures theorem (Theorem IX.25).
The tree-of-structures theorem cannot be proved using either the game
metatheorem or the Ash and Knight’s metatheorem, because one needs
to pay attention to all the levels of the construction at every step, not
just to the η-th level. Other applications can be found in Csima and
Harrison-Trainor [CHT17], Greenberg and Turetsky [GT22], and Day
and Marks (in preparation).

We already developed the case η = 1 in [Part 1, Chapter ??].
Knowledge of [Part 1, Chapter ??] is not required to read this chapter,
although it may help with some intuition and motivation.

IX.1. A global true-stage system

In [Part 1, Chapter ??], we developed the notion of true stages
(which we now call 1-true stages) as a way to organize priority con-
structions that require guessing at ∆0

2 information, and we saw how
this combinatorial device is applied. The idea was that at each stage
s, we have a finite string Ts which we think of as an approximation to
some ∆0

2-Turing-complete real T ∈ NN. These approximations are just
guesses, and they are often wrong. The stages at which Ts is correct,

∗ It was first introduced by Ash in 1986 [Ash86a, Ash86b], and several
slightly different versions were proposed later in the 90’s by Ash and Knight
[Ash90, AK94b, AK94a, Kni95]. The best and final formulation is due to
Ash and Knight [AK00].
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meaning that it is an initial segment of T ∈ NN, are said to be true
stages. Of course, we want the sequence of strings Ts to be computable
in s. Then, if we knew which stages were true, we could compute T.
So, the sequence of true stages will have the same Turing degree as
T. Here is a somewhat circular idea: We can use the sequence of true
stages as our ∆0

2-Turing-complete real T, and let Ts be the string listing
the stages t ≤ s that appear to be true at stage s. This notion of t
appearing to be true at s, denoted t ≤1 s, is the key notion of [Part 1,
Chapter ??] and the launch pad for this chapter.

One of the main advantages of this technique is that it can be easily
iterated through the arithmetic hierarchy and, with a bit more work,
through the hyperarithmetic hierarchy. To be able to iterate the notion
of t appearing to be true at s, we need to consider strings instead of
numbers. We will define an ordering 444 on strings that will be the
basic primitive notion of this whole chapter. All other orderings and
all approximations to ∆0

η-Turing-complete sequences will be built from
it.

Definition IX.1. A global 1-true-stage ordering is a computable
partial ordering 444 on N<N that satisfies the following properties:

(TS0) 〈〉444 τ for all τ .
(TS1) If σ 444 τ , then σ ⊆ τ .
(TS2) For each X ∈ NN, there is an infinite sequence of initial seg-

ments of X such that

τ0 444 τ1 444 τ2 444 · · · ⊂ X.

(♣) For every τ ⊂ σ ⊂ ρ, if τ 444 ρ, then τ 444 σ.

τ ⊆
444

444

σ ⊆ ρ

We say that τ ⊂ X is an X-true substring if there is an infinite
sequence τ 444 τ1 444 τ2 444 · · · ⊂ X, as in (TS2), starting with τ . If so, we
write τ 444X.

Notice that for τ444X, we have that σ444τ implies σ444X, as witnessed
by the same 444-increasing sequence. Thus, when σ 444 τ , we say that σ
is τ -true or that σ looks true to τ . Property (♣) can be read as follows:
if τ looks true to ρ, then it looks true to any σ between τ and ρ. It is
the key combinatorial property that encapsulates how a “looking true”
ordering should behave.

Lemma IX.2. A string τ is an X-true substring if and only if τ444σ
for all σ with τ ⊆ σ ⊂ X.
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Proof. For the (⇒) direction, consider a sequence τ 444 τ1 444 τ2 444
· · · ⊂ X witnessing that τ is an X-true substring. Now, given σ with
τ ⊆ σ ⊂ X, let k be such that σ ⊆ τk. Apply (♣) on τ ⊆ σ ⊆ τk to
obtain that τ 444 σ.

For the (⇐) direction, consider a sequence τ0444 τ1444 τ2444 · · · ⊂ X as
in (TS2). Let k be such that τ ⊆ τk. By the assumption, we must have
τ 444 τk, and therefore τ must be an X-true substring too, as witnessed
by τ 444 τk 444 τk+1 444 · · · ⊂ X. �

Let TX ∈ NN be the sequence of all X-true substrings listed in
increasing order. That is,

TX = 〈τ ∈ N<N : τ 444X〉.
It follows from the lemma that if σ ⊆ τ are both in TX , then σ 444 τ .
So, TX is itself a 444-increasing sequence — a maximal one.

For ρ ∈ N<N, we define

Tρ = 〈τ ∈ N<N : τ 444 ρ〉
as our approximation to TX at ρ. We let the reader verify that ρ is an
X-true substring if and only if Tρ is an initial segment of TX , and that

ρ444 τ ⇐⇒ Tρ ⊆ Tτ .

The sequence TX is Π0
1 in X, as one can see from the lemma above.

However, the definition of global 1-true-stage ordering we gave above
does not guarantee that it must have Turing degree X ′.

Definition IX.3. We say that 444 is complete if, for every X ∈ NN,

TX ≡T X ′

uniformly in X (i.e., there is a computable operator Γ such that ΓTX =
X ′ for all X ∈ NN).

Recapitulating, given a complete global 1-true stage system, we
can use TX as our ∆0

2(X)-Turing-complete oracle. In an X-computable
construction, we can use the strings Tρ for ρ ⊆ X as our guesses for
initial segments of TX . It is only at the X-true substrings that our
guesses are going to be correct. Property (♣) will allow us to organize
these guesses.

One can find examples of applications of 0′-priority methods in
[Part 1, Chapter ??]. In this chapter, we will use 444 as the building
block for the systems of n- and η-true stages. Before that, we need to
show that a complete global true-stage system exists.

Theorem IX.4. There is a complete, global 1-true-stage system.
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Proof. To show that there is a complete, global 1-true-stage sys-
tem 444, we use Lachlan’s notion of true stage [Lac73]. Let K be a c.e.
operator such that KX is the Turing jump of X for all X ∈ NN, i.e.,
KX = {e : ΦX

e (e) ↓}. Assume that the operator K enumerates at most
one element at each stage. For τ ∈ N<N, let Kτ be the finite set of
elements enumerated by K using oracle τ in at most |τ | steps. So, if
τ ⊂ X, Kτ is an approximation to KX . Not a good one, though. If
we are trying to approximate a computation with oracle X ′, say ΦKX

,
then using ΦKτ

may give us wrong answers for every τ . This is where
Lachlan’s true stages come in.

Let kτ be the last number to get enumerated into Kτ . We then have
that Kτ = {kσ : σ ⊆ τ}. The numbers kσ do not come in order though.
Notice that the functions τ 7→ kτ and τ 7→ Kτ are computable.

Lachlan’s idea was to use Kτ �� kτ , viewed as a binary string of
length kτ + 1, as an approximation to X ′.† The point is that this
approximation must be correct infinitely often, as we will see below.
Then, define

τ 444 ρ ⇐⇒ τ ⊆ ρ & Kτ �� kτ ⊆ Kρ �� kρ,

where the inclusion is as strings. If Kτ is empty, let kτ = −∞ and let
Kτ �� kτ be the empty string. Notice that

τ 444 ρ ⇐⇒ ∀π(τ ⊆ π ⊆ ρ⇒ kτ ≤ kπ). (5)

From Lemma IX.2, we have that τ is X-true if τ ⊂ X and τ 444 ρ for
all ρ with τ ⊆ ρ ⊂ X. So, we have that τ ⊂ X is X-true if no element
below kτ is ever enumerated into KX after stage |τ |, or equivalently, if
Kτ �� kτ is an initial segment of KX (again, viewed as strings).

Let us now prove that 444 induces a complete, global true-stage sys-
tem. Properties (TS0) and (TS1) are immediate from the definition.
Let us show that 444 satisfies condition (TS2). We need to show that
there are infinitely many X-true substrings. Fix m ∈ N. We will find a
substring τ of X of length larger than m such that τ 444 ρ for all ρ with
τ ⊆ ρ ⊂ X — this string τ will then be X-true. Let τ0 = X �m, and
let k be the least element that is ever enumerated into KX after stage
m, that is, k is the least element of X ′ \Kτ0 , viewed as sets. Let τ be
the smallest substring of X with k ∈ Kτ and |τ | > m. We must then
have kτ = k. Since no element below kτ is ever enumerated into KX

after stage m, Kτ �� kτ is an initial segment of KX , and τ is X-true.
To prove (♣), consider τ ⊆ σ ⊆ ρ such that τ 444 ρ. From (5),

∀π(τ ⊆ π ⊆ ρ ⇒ kτ ≤ kπ). The same must then be true for any π
between τ and σ. So, τ 444 σ.

†Recall that σ �� k refers to the restriction of σ to {0, ..., k}.
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Finally, to show that 444 is complete, just observe that

KX =
⋃
{Kτ �� kτ : τ ∈ TX},

where the union is the union of an increasing sequence of strings. It
follows that X ′ is computable in TX . �

IX.2. m-true-stage systems

The next step is to consider finite iterations of the previous con-
struction. To simplify matters, let us go back to considering orderings
on N, as we did in [Part 1], instead of orderings in N<N. The same
ideas would work to produce orderings on N<N, but the notation would
get a bit more complicated.

An m-true-stage system is a computable family of partial orderings
≤n on N, one for each n ≤ m, that satisfies the following properties:

(TS0) ≤0 is just the standard ordering on N.
(TS1) The sequence of relations is nested (i.e., if s ≤n+1 t, then

s ≤n t).
(TS2) For every n ≤ m, there exists an infinite ≤n-increasing se-

quence
t0 <n t1 <n t2 <n · · · .

(♣) For every n < m and every t < s < r, if t ≤n+1 r and s ≤n r,
then t ≤n+1 s.

t
<n+1

<n+1

s
<n

r

Again, this last property (♣) is the key combinatorial property
capturing how the approximations to the jumps behave. Notice that
the case n = 0 of the (♣) property corresponds to the (♣) property
from the previous section.

The idea behind the iteration is that once we have defined the
ordering ≤n, we can define the n-true stages, and then we define the
ordering ≤n+1 by considering the global ordering 444 along the n-true
stages.

The following is a consequence of (♣) that will often be useful:

(�) For every k ≤ m, and every t < s < r, if t ≤k r and s ≤k r,
then t ≤k s.

t
<k

<k

s
<k

r

This follows from (♣) using k = n+ 1 and noticing that s ≤k r implies
s ≤k−1 r.
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Definition IX.5. A number t is said to be an n-true stage if it
belongs to an infinite increasing ≤n-chain. We use Tn to denote the
sequence of n-true stages listed in increasing order.

Let us analyze the behavior of the n-true stages. First, observe that
by nestedness, if n ≤ k, then the k-true stages are a sub-sequence of
the n-true stages.

Lemma IX.6. A number t is an n-true stage if and only if t ≤n s
for all (n− 1)-true stages s > t.

For n = 0, all stages are 0-true stages. For n = 1, this follows from
Lemma IX.2.

Proof. We prove the (⇒) direction by induction on n. Consider
an n-true stage t and an (n− 1)-true stage s > t. Let t <n t1 <n t2 <n

· · · be a sequence witnessing that t is an n-true stage, and let k be
such that s < tk. By the induction hypothesis, since s is (n − 1)-true
and tk is (n− 2)-true, we get that s ≤n−1 tk.

‡ Apply (♣) on t < s < tk
to obtain that t ≤n s.

For the (⇐) direction, consider a sequence t0 <n t1 <n t2 <n · · ·
as in (TS2). Notice that the tk’s are n-true stages, and in particular
(n − 1)-true stages. Let k be such that t < tk. By the assumption,
we must have t ≤n tk, and therefore t <n tk <n tk+1 <n · · · , which
witnesses that t is an n-true stage. �

Observation IX.7. If s < t and t is an n-true stage, then s is
an n-true stage if and only if s ≤n t. To see this, suppose first that
s ≤n t. Since t is n-true, there is an increasing ≤n-chain starting with
t. We can then append s to the beginning of that chain to see that s
is an n-true stage too. Conversely, suppose s is an n-true stage. Since
n-true stages are also (n− 1)-true, t is (n− 1)-true, and hence, by the
previous lemma, s ≤n t.

Because of this observation, when t ≤n r, we say that t looks like
an n-true stage at r or that t is an apparent n-true stage at r. We thus
define

Tnr = 〈t : t ≤n r〉
as our approximation to Tn at r. We view Tnr as a string listing the
elements of the set {t : t ≤n r} in increasing order. When we compare
different Tns ’s by inclusion, we will be referring to inclusion of strings.
For instance, it is easy to see using (�) that

s ≤n t ⇐⇒ Tns ⊆ Tnt ,

‡ In the case when n = 1, we get s ≤n−1 tk for free.
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and that r is an n-true stage if and only if Tnr ⊂ Tn. We let the reader
verify these facts.

It also follows from the lemma above that Tn is Π0
1 in Tn−1. By

induction, we then get that Tn is Π0
n.

Definition IX.8. We say that an m-true-stage system is complete
if, for each n ≤ m, the set of n-true stages is ∆0

n+1-Turing-complete.

Let us now build a complete m-true-stage system. The particular
m-true-stage system one builds is not relevant for the applications of
the system. All one needs to know in applications is that a complete
m-true-stage system exists.

Theorem IX.9. For every m ∈ N, there exists a complete m-true-
stage system.

Proof. The construction is, of course, by recursion on m.
Let ≤0=≤N as in (TS0). Given ≤n, we define

Tnr = 〈t : t ≤n r〉 (Def. Tnr )

and then let
s ≤n+1 t ⇐⇒ Tns 444 Tnt , (Def. ≤n+1)

where 444 is the ordering on strings defined in Theorem IX.4. To see
nestedness, i.e. (TS1), notice that Tns 444 Tnt implies Tns ⊆ Tnt , which
implies s ≤n t.

The proof of (♣) for ≤n follows from (♣) for 444 as follows: Suppose
that we have t < s < r such that s ≤n r and t ≤n+1 r. We then have
that Tns ⊆ Tnr and Tnt 444 Tnr . Since both Tnt and Tns are initial segments
of Tnr and t < s, we must have

Tnt ⊆ Tns ⊆ Tnr .

Apply (♣) for 444 to get Tnt 444 Tns , and hence that t ≤n+1 s as wanted.
Finally, we need to show that Tn is infinite and that Tn ≡T 0(n).

We prove this by induction. Since Tn+1 is Π0
n+1, we know that Tn+1 ≤T

0(n+1). Let X = Tn and suppose we already know Tn ≡T 0(n). Notice
that for t ∈ Tn, X �� t = Tnt .§ Therefore, for t, s ∈ Tn,

t ≤n+1 s if and only if X �� t444X �� s.

We then have that t ∈ Tn is an (n + 1)-true stage if and only if X �� t
is X-true. In other words,

TX = 〈Tnt : t ∈ Tn+1〉.
§ Here, by X �� t we mean X ∩ {0, 1, ..., t}. If t ∈ Tn, Tn �� t is exactly {s : s ≤n

t} = Tnt .
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Recall that, by Theorem IX.4, TX ≡T X ′. We can use Tn+1 to com-
pute X ′, which is (Tn)′, which, by the induction hypothesis, is Turing
equivalent to 0(n+1). �

IX.3. Pairs of structures

As we mentioned in the previous chapter, the pair-of-structures the-
orem of Ash and Knight [AK90] is one of the most useful applications
of Ash and Knight’s metatheorem. We already gave a proof of it us-
ing the game metatheorem (see Theorem VIII.7). In this section we
give a more hands-on proof using the iterated true-stage method. The
reason we give this second proof is that it is a good example to show
the reader how the iterated true-stage method works. We only do the
case for η finite, so that we do not have to introduce all the techniques
at once. For infinite η, one needs techniques that we will develop in
Section IX.5. We have already worked out the cases η = 0 and η = 1
in Section II.6.2. We recommend the reader to go through that section
before reading this proof, and then to compare the proofs.

Theorem IX.10. Consider n ∈ N and let A0 and A1 be ω-presentations
whose back-and-forth relations are computable up to n. If A1 ≤n+1 A0,
then distinguishing the copies of A1 from the copies of A0 is Σ0

n+1-hard.

Proof. Since the sequence of n-true stages Tn is ∆0
n+1-complete,

there is a c.e. operator W such that the set W Tn is Σ0
n+1 complete.

Uniformly computably in each e ∈ N, we need to build a structure B
that is isomorphic to A1 if e ∈ W Tn and isomorphic to A0 if e 6∈ W Tn .¶

We fix such an e and, for each s ∈ N, we use Tns to define X(s) as the
stage-s approximation to that Σ0

n+1 complete question: That is,

X(s) =

{
1 if e ∈ W Tns

0 if e 6∈ W Tns .
‖

We also let X(∞) = 1 if e ∈ W Tn and X(∞) = 0 if e 6∈ W Tn . So, we
want B to be isomorphic to AX(∞).

Notice that, for s ≤ t,

s ≤n t ⇒ Tns ⊆ Tnt ⇒ X(s) ≤ X(t) ⇒ AX(s) ≥n+1 AX(t). (6)

Thus, if we restrict ourselves to the n-true stages, the value of X(t)
is either 0 forever, or 1 from some point on. The problem is that we

¶ If we want a reduction from a Σ0
n+1 subset of 2N instead of a subset of N, we

just relativize this proof.
‖Recall the convention that if we have a finite oracle σ ∈ 2<N, when we consider

Wσ, we only run it for |σ| many stages.
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need to build B computably, so we do not know which stages are n-true:
Whatever part of the diagram of B we build at a stage s we cannot
change later, even if s is not n-true.

The construction consists of carefully choosing, at each stage s,
a tuple ās from AX(s), and at the end defining the diagram of B to
be union of the diagrams of these tuples. We impose the following
condition, which connects the apparent-m-true-stage relations and the
back-and-forth relations. We call this condition (MC), as it is the main
condition characteristic to all n-true stage arguments: For all m ≤ n
and s, t ∈ N,

(MC) s ≤m t ⇒ (AX(s), ās) ≤m (AX(t), āt).

If s ≤n t and X(s) = X(t), we also require that ās ⊆ āt. One more
thing: To make sure our enumeration is onto, we also require that the
range of ās includes the first s elements from AX(s). We claim that
that is all we need.

Verification: Suppose we manage to build such a sequence {ās :
s ∈ N} computably. On one end, condition (MC) for the case m = 0
implies that

DAX(0)
(ā0) ⊆ DAX(1)

(ā1) ⊆ DAX(2)
(ā2) ⊆ · · · .

Hence, we get a computable limit ω-presentation B whose atomic dia-
gram is the union of these diagrams:

D(B) =
⋃
s∈N

DAX(s)
(ās).

On the other end, condition (MC) at m = n implies that, along
the n-true stages, once X(s) stabilizes to X(∞) ∈ {0, 1}, B is built as
the pull-back of an increasing sequence of tuples from AX(∞). Thus, B
ends up being isomorphic to AX(∞). Let us explain this in more detail.
Let t0 be an n-true stage that is large enough so that X(t0) = X(∞).
Let t1 ≤n t2 ≤n · · · be the n-true stages after t0. We then have that

āt0 ⊆ āt1 ⊆ āt2 ⊆ · · · ⊆ AX(∞),

and that D(B) =
⋃
j∈NDAX(∞)

(ātj). Let g : N → AX(∞) be defined

as
⋃
i āti . So, B is the pull-back of AX(∞) through g, and hence it is

isomorphic to AX(∞).
Notice that for the verifications, we only used condition (MC) for

the cases m = 0 and m = n. The intermediate cases will be necessary
to bridge the gap between those two during the construction.
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Construction: We now need to show how to build a sequence of
tuples satisfying (MC). At stage 0 let ā0 be the empty tuple. Suppose
we have already built ā0, ..., ās−1 and we need to define ās. Each stage
is divided in two steps:

(1) Fix the mistakes by previous stages.
(2) Incorporate the new information, namely the value X(s), and

change structures if necessary.

At each stage we act as if our current beliefs are correct (namely,
as if X(s) = X(∞)). Since we might have had different beliefs in the
past, we might have acted under incorrect information and made some
mistakes that we now need to fix. However, since we can never be sure
our current belief is correct, we have to do it respecting at least some
of the work done at previous stages. How much we respect the work
done at a previous stage depends on how much we believe it — that is
essentially what condition (MC) says. Just to provide some intuition,
we can re-state (MC) as follows:

Tmr ⊆ Tms implies Πc
m-tpAX(r)

(ār) ⊆ Πc
m-tpAX(s)

(ās),

which we can interpret as follows:

If at a stage s we believe that our actions at a previ-
ous stage r used correct Π0

m information (namely Tmr ),
then at stage s, we should preserve all Πc

m commit-
ments made at stage r (namely Πc

m-tpAX(r)
(ār)).

Let us continue with the construction. For each s, we will also
define a tuple b̄s that belongs to AX(t) where t is the largest stage with
t <n s. The tuple b̄s is used to fix the mistakes by previous stages. The
tuple b̄s will satisfy that, for every m ≤ n and every r < s,

r <m s implies (AX(r), ār) ≤m (AX(t), b̄s). (7)

Thus, if we then define ās satisfying

(AX(t), b̄s) ≤n (AX(s), ās),

we will get property (MC).
For each i ≤ n, let si be the greatest stage such that si <i s. Notice

that if r <i s, then r ≤i si by (�). So, to satisfy (7), we just need to
ensure that

(AX(sm), āsm) ≤m (AX(t), b̄s) for all m ≤ n. (8)

It will be useful to note that the numbers sj satisfy that sj ≤j sj−1

for all j ≤ n as in the diagram below. To see that, just apply (♣) to



156 IX. ITERATED TRUE-STAGE ARGUMENTS

sj < sj−1 < s.

sn ≤n sn−1 ≤n−1 · · · ≤2 s1 ≤1 s0

s

≤n ≤n1
≤

1

≤
0

To find b̄s such that (AX(si), āsi) ≤i (AX(t), b̄s) for all i ≤ k, we
need the lemma below, which is often useful in constructions involving
iterated true-stages systems. It was originally used by Ash and Knight,
and it was key in all applications of their metatheorem.

Remark IX.11. Recall that the defining property of the back-and-
forth relations is that, if (A, ā) ≤β+1 (B, b̄), where b̄ may be longer than
ā, then there is a c̄ ∈ A<N extending ā with (A, c̄) ≥β (B, b̄).

(A, ā)

(A, c̄)

⊆

≥β (B, b̄)

≤
β+1

The following lemma is an iteration of this property.

Lemma IX.12. Suppose we have a finite sequence of τ -structures
A0, ...,An, and tuples āi ∈ A<N

i for i ≤ n, such that

(An, ān) ≤n (An−1, ān−1) ≤n−1 · · · ≤2 (A1, ā1) ≤1 (A0, ā0).

Then, there exists a tuple c̄ ∈ A<N
n extending ān such that (Aj, āj) ≤j

(An, c̄) for all j < n.

(An, ān) (An−1, ān−1) · · · (A1, ā1) (A0, ā0)

(An, c̄).

⊆ ≤
n−1 ≥ 1 ≥0

Proof. We will define a sequence of tuples c̄j ∈ A<N
j extending

āj by induction on j as in the diagram below. Start with c̄0 = ā0.
Given c̄j, since (Aj+1, āj+1) ≤j+1 (Aj, āj) and āj ⊆ c̄j, we have that
(Aj+1, āj+1) ≤j+1 (Aj, c̄j). Then, by the defining property of the back-
and-forth relations mentioned above, we get that there exists a tuple
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c̄j+1 ⊇ āj+1 ∈ A<N
j+1 such that (Aj+1, c̄j+1) ≥j (Aj, c̄j).

(An, ān) ≤n (Ak−1, ān−1) ≤n−1 · · · ≤2 (A1, ā1) ≤1 (A0, ā0)

⊆ ≤
n

⊆ ≤
n−1

. . . ≤2

⊆ ≤
1

=

(An, c̄n) ≥n−1 (An−1, c̄n−1) ≥n−2 · · · ≥1 (A1, c̄1) ≥0 (A0, c̄0)

Using transitivity and nestedness of the back-and-forth relations, one
can then easily prove that

(Ai, c̄i) ≥j (Aj, āj) for all i > j.

We end up with c̄ = c̄n as needed. �

Let us continue with the construction. Recall that the stages sj
satisfy sn ≤n sn−1 ≤n−1 · · · ≤1 s0. Since we have been respecting
(MC) so far throughout the construction, we know that

(AX(sn), āsn) ≤n (AX(sn−1), āsn−1) ≤n−1 · · ·
· · · ≤2 (AX(s1), ās1) ≤1 (AX(s0), ās0).

These structures satisfy the assumptions needed to apply Lemma IX.12
above. We then obtain b̄s satisfying (8) as the c̄ from the lemma. We
can find the tuple b̄s computably because we are assuming that the
back-and-forth relations are computable up to n. This finished the
first step of the construction, namely fixing the mistakes of previous
stages. The second step is to incorporate new information, namely
X(s).

Here is where the assumption that A1 ≥n+1 A0 comes into play.
Since t = sn ≤n s, we know from (6) that AX(sn) ≥n+1 AX(s). One can
then find a tuple ās in AX(s) so that (AX(sn), b̄s) ≤n (AX(s), ās).

To ensure onto-ness, extend ās to make sure that it contains the
first s elements of the ω-presentation AX(s).

(AX(sn), āsn) ≤n (AX(sn−1), āsn−1) ≤n−1 · · · ≤2 (AX(s1), ās1) ≤1 (AX(s0), ās0)

(AX(sn), b̄s)

⊆ ≤
n−1

≤
1 ≥0

≤n (AX(s), ās)

We have thus defined ās satisfying (MC) as needed. �

IX.4. Transfinite true-stage systems

We now want to iterate 444 through the transfinite. The definition
will not be much more complicated, but the construction of a complete
system will, as the limit case poses new difficulties that were not present
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at the finite case. Let η be a computable ω-presentation of an ordinal.
An η-true-stage system is a computable family {≤ξ: ξ ≤ η} of partial
orderings on N that satisfies the following properties:

(TS0) ≤0 is just the standard ordering on N.
(TS1) The sequence of relations is nested, i.e., if γ ≤ ξ and s ≤ξ t,

then s ≤γ t.
(TS2) For every ξ, there exists an infinite ≤ξ-increasing sequence.
(TS3) The sequence of relations is continuous, i.e., if λ is a limit

ordinal, then s ≤λ t ⇐⇒ (∀ξ < λ) s ≤ξ t.
(♣) For every ξ < η and every t < s < r, if t ≤ξ+1 r and s ≤ξ r,

then t ≤ξ+1 s.

t
<ξ+1

<ξ+1

s
<ξ

r

The following is a consequence of (♣) that will be useful later:

(�) For every ζ ≤ η and every t < s < r, if t ≤ζ r and s ≤ζ r,
then t ≤ζ s.

t
<ζ

<ζ

s
<ζ

r

The successor case follows from (♣) using ζ = ξ + 1, and noticing that
s ≤ζ r implies s ≤ζ−1 r. For the limit case, consider any ξ < ζ and use
(♣) and that ≤ζ implies both ≤ξ and ≤ξ+1, to conclude that t ≤ξ+1 s.
Then, by continuity, t ≤ζ s.

Definition IX.13. For each ξ ≤ η, we say that t is a ξ-true stage
if it belongs to an infinite ≤ξ-increasing sequence. Let Tξ ∈ NN be the
sequence of all ξ-true stages listed in increasing order.

Let us analyze the behavior of the ξ-true stages. First observe that
by nestedness, if ζ ≤ ξ, then the ξ-true stages are a sub-sequence of
the ζ-true stages.

Observation IX.14. If s ≤ξ t and t is a ξ-true stage, then s is a
ξ-true stage too. To see this, just append s at the beginning of the
increasing ≤ξ-chain starting with t.

Lemma IX.15. For all successor ordinals, ξ + 1, we have that

t is a ξ + 1-true stage ⇐⇒ t ≤ξ+1 s for all ξ-true stages s ≥ t.

For limit ordinals λ, t is a λ-true stage if and only if it is a ξ-true stage
for all ξ < λ.

All stages are 0-true stages.
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Proof. We use transfinite induction on ξ. The successor case
works exactly as the proof of Lemma IX.6, so we will not repeat it
here. Consider the limit case.

The (⇒) direction follows directly from the nesting condition. For
the (⇐) direction, consider a stage t that is ξ-true for all ξ < λ. Let
s > t be a λ-true stage, and in particular a ξ-true stage for all ξ < λ.
Then, t ≤ξ s for all ξ < λ by the induction hypothesis. By continuity,
we get that t ≤λ s, and hence t is a λ-true stage too, by the observation
above. �

Observation IX.16. If s < t and t is a ξ-true stage, then s is a
ξ-true stage if and only if s ≤ξ t. We already noted the (⇐) direc-
tion above. For the other direction, suppose s is a ξ-true stage. By
nestedness, t is a ζ-true stage for all ζ < ξ, and hence by the previous
lemma, s ≤ζ+1 t. By either letting ζ = ξ−1 if ξ is a successor, or using
continuity if ξ is a limit, we get s ≤ξ t.

We say that s is an apparent ξ-true stage at t if s ≤ξ t. Given ξ and

t, we define the stage-t approximation to Tξ, denoted T
ξ
t , as the tuple

enumerating the apparent ξ-true stages at t:

T
ξ
t = 〈s : s ≤ξ t〉.

Note that using (�), we get

s ≤ξ t ⇐⇒ Tξs ⊆ T
ξ
t ,

where the inclusion is as strings, and that

t is ξ-true ⇐⇒ T
ξ
t ⊆ Tξ.

Using Lemma IX.15, one can show by transfinite induction that Tξ

is Π0
ξ uniformly in ξ.

Definition IX.17. We say that an η-true-stage system is complete
if Tξ is ∆0

ξ+1-Turing-complete for all ξ ≤ η, uniformly in ξ.

Theorem IX.18. There exists a complete η-true-stage system.

The proof is significantly more difficult than the proof of the finite
iterates that we gave in previous sections. In any case, for applications
of the η-true-stage method, it does not matter how the system is built.
All that matters is that such a system exists. One does not need to
know the proof to be able to apply it, so we leave it to the end of the
chapter (Sections IX.8 and IX.9).
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IX.5. The key lemmas

In this section we prove two lemmas that are key to most applica-
tions of the iterated true stages method.

Let us spend a few paragraphs motivating these lemmas. It may
help the reader have the proof of the Pair of Structures theorem from
Section IX.3 in mind to understand the motivation. The reader should
then try to think of how to extend the proof of Theorem IX.10 to
transfinite values of n.

When working with an η-system of true stages, there is always some
version of the main condition that we are trying to satisfy.

(MC) (∀ξ ≤ η)(∀s, t ∈ N) s ≤ξ t ⇒ (AX(s), ās) ≤ξ (AX(t), āt).

At each stage s, the first step is always to fix the mistakes made by
previous stages. For that, we look for a tuple b̄s ∈ A<N

X(t) that satisfies

that, for every ξ ≤ η and every r < s,

r <ξ s implies (AX(r), ār) ≤ξ (AX(t), b̄s), (9)

where t is the largest stage with t <η s. In the case where η is fi-
nite as in Section IX.3, we did not need to worry about all r’s in
equation (9), but only about a few ones, namely s0, ..., sn satisfying
sn ≤n sn−1 ≤n−1 · · · ≤1 s0 < s. When η is infinite, the situation is a
bit more complicated. The first lemma will allow us to restrict property
(9) to only a few values of r and a few ordinals ξ.

For each γ ≤ η, let s(γ) be the greatest stage such that s(γ) <γ s.
Notice that if r <γ s, then r ≤γ s(γ) by (�). So, to satisfy (9), we
just need to ensure that, for all γ ≤ η, (AX(s(γ)), ās(γ)) ≤γ (AX(t), b̄s).
We need to find these stages s(γ) for all γ ≤ η. Notice that if ξ ≥ γ,
then s(ξ) ≤ s(γ) by the nesting property. So, 〈s(ξ) : ξ ≤ η〉 is a non-
increasing sequence starting from s(0) = s−1 and ending with s(η) = t
as in Figure IX.1. There are only finitely many stages below s, so the
values of s(ξ) must repeat a lot.

Lemma IX.19. For each s ∈ N, there exist stages sk < sk−1 < · · · <
s1 < s0 = s− 1 and ordinals η = ξk > ξk−1 > · · · ξ1 > ξ0 = 0 as in the
diagram below satisfying the following condition: For all i ≤ k and all
γ with ξi−1 < γ ≤ ξi,

∗∗ we have that if r <γ s then r ≤γ si.

sk ≤ξk−1+1 sk−1 ≤ξk−2+1 · · · ≤ξ1+1 s1 ≤ξ0+1 s0

s

≤ξk ≤ξk−1

≤
ξ1

≤
ξ
0

∗∗taking ξ−1 = −1
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Furthermore, all these objects can be found computably.

Proof. The set {s(ξ) : ξ ≤ η} is finite, as all its members are
below s. Let s0, ..., sk be the elements of this set listed in decreasing
order. For each i ≤ k, there is an interval of ξ’s such that si = s(ξ). Let
ξi be the greatest ξ for which si = s(ξ). Notice that ξi is the greatest
such that si ≤ξi s, and such a maximum exists by the continuity of the
relations ≤ξ. So, we have that s(γ) = si+1 for all γ with ξi < γ ≤ ξi+1.

γ

s(γ)

0 ξ0 ξ1 ξ2 · · · ξk−1 ξk
η

s
s-1

s1

s2

...

sk

Figure IX.1. Illustration of the graph of the function
s : {0, ..., η} → {0, ..., s− 1}.

Let us observe that si and ξi can be found computably by recursion:
First, notice that s0 is just s− 1. Then, given si, we can find ξi as the
unique ξ ≤ η that satisfies si ≤ξ s and si 6≤ξ+1 s. Then, we can find
si+1 as the greatest such that si+1 ≤ξi+1 s, because si+1 is the greatest
number in {s(ξ) : ξi + 1 ≤ ξ ≤ η}.

The top line of the diagram in the statement of the lemma holds
because, by (♣) applied to sj+1 < sj < s, we get that sj+1 ≤ξj+1 sj for
all j < k.

If r <γ s, then we know r ≤γ s(γ) and s(γ) = si for the least i with
γ ≤ ξi. �

This lemma is usually used together with the following transfinite
version of Lemma IX.12.

Lemma IX.20. Suppose we have a finite sequence of τ -structures
A0, ...,A`, ordinals ξ`−1 > · · · > ξ1 > ξ0, and tuples āi ∈ A<N

i for i ≤ `,
such that

(A`, ā`) ≤ξ`−1+1 (A`−1, ā`−1) ≤ξ`−2+1 · · ·
· · · ≤ξ1+1 (A1, ā1) ≤ξ0+1 (A0, ā0).
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Then, there exists a tuple c̄ ∈ A<N
` extending ā` such that (Aj, āj) ≤ξj

(A`, c̄) for all j < `.

(A`, ā`) (A`−1, ā`−1) · · · (A1, ā1) (A0, ā0)

(A`, c̄).

⊆ ≤
ξ̀ −1 ≥ ξ 1 ≥ξ0

Proof. The proof is essentially the same as that of Lemma IX.12.
We repeat it, as we need to change the indices all over the place.

We will define a sequence of tuples c̄j ∈ A<N
j extending āj by in-

duction on j. Start with c̄0 = ā0. Given c̄j, since (Aj+1, āj+1) ≤ξj+1

(Aj, āj) and āj ⊆ c̄j, we have that (Aj+1, āj+1) ≤ξj+1 (Aj, c̄j). Then,
by the defining property of the back-and-forth relations (namely Re-
mark IX.11), we get that there exists a c̄j+1 ⊇ āj+1 ∈ A<N

j+1 such that
(Aj+1, c̄j+1) ≥ξj (Aj, c̄j).

(A`, ā`)≤ξ`−1+1 (A`−1, ā`−1)≤ξ`−2+1 · · · ≤ξ1+1 (A1, ā1) ≤ξ0+1 (A0, ā0)

⊆ ≤
ξ̀

−
1+1

⊆ ≤
ξ̀

−
2+1

. . .
≤
ξ
1+1

⊆ ≤
ξ
0+1

=

(A`, c̄`) ≥ξ`−1
(A`−1, c̄`−1) ≥ξ`−2

· · · ≥ξ1 (A1, c̄1) ≥ξ0 (A0, c̄0)

One can then easily prove that

(Ai, c̄i) ≥ξj (Aj, āj) for all i > j.

We end up with c̄ = c̄` as needed. �

IX.6. The tree-of-structures theorem

In this section, we prove a version of the Ash–Knight’s pair-of-
structures theorem (Theorem VIII.7) where instead of having two struc-
tures to choose from, we have a whole tree of structures. This new ver-
sion can be proved using the iterated true-stage method — as we will
see below — but cannot be proved using either the game metatheorem
or Ash-Knight’s η-system metatheorem.†† The reason is that, during
the construction, it requires guesses to oracles at all levels and not just
at the highest level.

We include it in this book because it is another good example to
show how iterated true-stage arguments work, and it is slightly more
involved than the previous argument. The tree-of-structures theorem
is the key lemma in [Mon16] to show that certain classes of structures
are on top for effective reducibility (as defined in Section XI.4) and
to give evidence that suggests that the classes of structures that are

††But one may be able to prove it using their mixed systems from [AK94a].
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intermediate for effective reducibility are exactly the counterexamples
to Vaught’s conjecture (see Section XII.3).

Fix a computable ordinal η.

Definition IX.21. Let 2◦η be the set of all binary sequences σ ∈ 2η

with only finitely many 1’s.

Notice that 2◦η is countable and has a computable ω-presentation,
as opposed to 2η, which has size continuum for infinite η.

Definition IX.22. We say that a sequence σ ∈ 2◦η is Σ0
ξ 7→ξ+1 if

deciding whether σ(ξ) = 1 is Σ0
ξ+1 for all ξ < η, uniformly in ξ, or in

other words, if there is a c.e. operator We, such that σ(ξ) = 1 ⇐⇒
0 ∈ W Tξ

e , where Tξ is a ∆0
ξ+1-Turing-complete real.

We call e a Σ0
ξ 7→ξ+1-index for σ.

The reason these sequences were useful in [Mon16] is that, for each
Σ1

1-equivalence relation ∼ on ω, there exists a uniformly Σ0
ξ 7→ξ+1 se-

quence {σn : n ∈ ω} ⊆ 2◦H such that n ∼ m ⇐⇒ σn�ωCK1 = σm�ωCK1 .
We will not delve deeper than this in this book. Such sequences were
also used by Feiner [Fei70] and Thurber [Thu94] to build interesting
Boolean algebras and by Hirschfeldt, Kach, and Montalbán [HKM] to
study the notion of low for ∆-Feiner.

Definition IX.23. An η-tree of structures is a sequence of struc-
tures {Aσ : σ ∈ 2◦η} such that, for every σ, τ ∈ 2◦η and ξ ≤ η, we have
that

σ � ξ = τ � ξ ⇒ Aσ ≡ξ+1 Aτ .

Example IX.24. Here is an example of an η-tree of structures on
which one could apply the theorem below. LetAσ be the linear ordering

ωα1 · ω∗ + ωα2 · ω∗ + · · ·+ ωαk · ω∗

where α1 < · · · < αk are the ordinals α for which we have σ(α) = 1.
Using Corollary II.39, it is not hard to see that if σ � ξ = τ � ξ, then
Aσ ≡ξ+1 Aτ . The results from [Mon16] would then allow one to show
that linear orderings are on top for effective reducibility as in Section
XI.4.

Theorem IX.25 ([Mon14, Theorem 5.3]). Let {Aσ : σ ∈ 2◦η}
be a computable η-tree of structures where the back-and-forth relations
are computable up to η. There is a computable procedure that, given a
Σ0
ξ 7→ξ+1-index for a sequence σ ∈ 2◦η, produces a computable structure
C isomorphic to Aσ.



164 IX. ITERATED TRUE-STAGE ARGUMENTS

Proof. Let W be a c.e. operator such that σ(ξ) = 1 ⇐⇒ 0 ∈
W Tξ . For each s, we will define a sequence τs ∈ 2◦η as the stage-s
approximation to σ. For each γ < η, let nγ be the natural number
that is in position γ in the given ω-presentation of η. We define τs
computably as follows:

τs(ξ) = 1 ⇐⇒ 0 ∈ W T
ξ
s & s > nξ.

Recall that, by our convention, when we consider a finite oracle ρ in
W ρ, we just run it for |ρ| many stages. Since nξ < s for only finitely
many ξ’s, we have that τs(ξ) = 1 for only finitely many ξ’s, so τs ∈ 2◦η.
We note that if T

η
t is correct and t is large enough so that, for all ξ

with σ(ξ) = 1, we have 0 ∈ W T
ξ
t and nξ < t, then since all the T

ξ
t

are correct, we must have τt = σ. In other words, τt = σ for all large
enough η-true stages t.

The construction consists of carefully choosing, at each stage s,
a tuple ās from Aτs . We impose the following condition, which we
call (MC) and contains a small modification from the main condition
of construction in the pair-of-structures theorem: For all ξ ≤ η and
r, s ∈ N,

(MC) r ≤ξ s & τr � ξ = τs � ξ ⇒ (Aτr , ār) ≤ξ (Aτs , ās).

If r ≤η s and τr = τs, we also require that ār ⊆ ās. One more thing:
To make sure our enumeration is onto, we also require that the range
of ās includes the first s elements from Aτs . We claim that this is all
we need.

Verification: Suppose we manage to build such a computable se-
quence of tuples {ās : s ∈ N} satisfying (MC). On one end, condition
(MC) for the case ξ = 0 implies that

DAτ0 (ā0) ⊆ DAτ1 (ā1) ⊆ DAτ2 (ā2) ⊆ . . . .

Hence, we get a computable limit ω-presentation B whose atomic dia-
gram is the union of these diagrams:

D(B) =
⋃
s∈N

DAτs (ās).

On the other end, condition (MC) at ξ = η implies that, along the
η-true stages, once τs stabilizes to σ ∈ 2◦η, B is built as the pull-back
of an increasing sequence of tuples from Aσ. Thus, B ends up being
isomorphic to Aσ. Let us explain this in more detail. Let t0 be an
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η-true stage that is large enough so that τt0 = σ. Let t1 ≤η t2 ≤η · · ·
be the η-true stages after t0. We then have that

āt0 ⊆ āt1 ⊆ āt2 ⊆ · · · ⊆ Aσ

and that D(B) =
⋃
j∈NDAσ(ātj). Let g : N → Aσ be defined as

⋃
i āti .

So, B is the pull-back of Aσ through g, and hence it is isomorphic to
Aσ.

Notice that, so far, we have only used condition (MC) for the cases
ξ = 0 and ξ = η. The intermediate cases will be necessary to bridge
the gap between those two during the construction.

Construction: We now need to show how to build a sequence of
tuples satisfying (MC). At stage 0, let ā0 be the empty tuple. Suppose
we have already built ā0, ..., ās−1 and that we need to define ās.

Fix s. Let ζ be the largest ordinal for which there is a stage t
satisfying

t <ζ s & τt � ζ = τs � ζ. (10)

Let t be the largest stage satisfying (10) for this ζ. Our first objective
is to define a tuple b̄s that belongs to Aτt . The tuple b̄s will satisfy
that, for every ξ ≤ ζ and every r < s,

r <ξ s & τr � ξ = τs � ξ implies (Aτr , ār) ≤ξ (Aτt , b̄s). (11)

Thus, if at stage s we define ās satisfying

(Ait , b̄s) ≤ζ (Ais , ās),
we will get property (MC). To define b̄s, we need to use Lemmas IX.19
and IX.20, as is often the case in constructions involving iterated true-
stage systems. The first lemma is used to restrict property (11) to only
a few values of r and a few ordinals ξ, and the second lemma will give
us b̄s.

Apply Lemma IX.19 to get stages sk < sk−1 < · · · < s1 < s0 = s−1
and ordinals η = ξk > ξk−1 > · · · > ξ1 > ξ0 = 0.

Recall that we defined ζ and t as the maximum pair 〈ζ, t〉 such that
t <ζ s and τt � ζ = τs � ζ. Let ` ≤ k be the least with ζ ≤ ξ`. So, we

have that t ≤ζ s`. This implies that, for all ξ ≤ ζ, Tξt ⊆ Tξs` ⊆ Tξs and

hence that τt(ξ) ≤ τs`(ξ) ≤ τs(ξ).
‡‡ Since τt � ζ = τs � ζ, we also get

that τs` � ζ = τs � ζ. By the maximality of t, we get that t = s`.
For i < `, we have t = s` ≤ξi si ≤ξi s, and hence by the same

argument we get that, for all ξ ≤ ξi,

τt(ξ) ≤ τsi(ξ) ≤ τs(ξ) = τt(ξ).

‡‡ Here we are just using the natural ordering on {0, 1}.
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In particular, for all i < `, τsi+1
� ξi + 1 = τsi � ξi + 1. We will use this

below the claim to get that since we have been satisfying (MC) so far,
we have (Aτsi+1

, āsi+1
) ≤ξi+1 (Aτsi , āsi).

Claim: To satisfy property (11), it is enough to get b̄s so that

(Aτsj , āsj) ≤ξ (Aτt , b̄s) for all j ≤ `. (12)

Here is the proof of the claim: Notice that if r <ξ s and τr � ξ = τs � ξ,
then, first we must have ξ ≤ ζ, and then r ≤ξ si for the least i with
ξ ≤ ξi. Since ξ ≤ ζ, we must have i ≤ `. Since τsi �� ξi = τs �� ξi, we
must have τr � ξ = τsi � ξ. Since we have been satisfying property (MC)
so far, we have (Aτr , ār) ≤ξ (Aτsi , āsi). Since (Aτsi , āsi) ≤ξi (Aτt , b̄s),
we have (Aτr , ār) ≤ξ (Aτt , b̄s) as needed for property (11).

As we have been following (MC) so far up to this stage, we have

(Aτs` , ās`) ≤ξ`−1+1 · · · ≤ξ1+1 (Aτs1 , ās1) ≤ξ0+1 (Aτs0 , ās0).

Apply Lemma IX.20 to this sequence of structures to get b̄s satisfying
(12) as in the diagram below:

(Aτst , āt)≤ξ`−1+1 · · · ≤ξ1+1 (Aτs1 , ās1)≤ξ0+1 (Aτs0 , ās0)

(Aτt , b̄s)

⊆

≤
ξ
1 ≥ ξ 0

≤ζ (Aτs , ās)

We can find the tuple b̄s computably because we are assuming that the
back-and-forth relations are computable up to η. The last step is to
define ās ∈ A<N

τs satisfying (Aτt , b̄s) ≤ζ (Aτs , ās). Since {Aσ : σ ∈ 2◦η}
is a computable η-tree and τt � ζ = τs � ζ, we have Aτt ≥ζ+1 Aτs . We
can then get ās from the definition of the back-and-forth relation (see
Remark IX.11). By extending ās if necessary, make sure it contains the
first s elements of the given ω-presentation of Aτs . This finishes the
construction of the sequence of tuples 〈ās : s ∈ N〉 satisfying (MC). �

IX.7. The proof of the game metatheorem

In this section, we use a complete η-true-stage system to prove
the game metatheorem (Theorem VIII.2), which we already used in
Chapter VIII in a variety of applications. Here is the statement of the
game metatheorem again.

Theorem (Re-statement of Theorem VIII.2). For every computable
valid strategy for the engineer in the η-A-game, there is a run of the
game where the engineer follows her strategy, the oracle answers cor-
rectly, and the limit ω-presentation L is computable.
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We will first handle the successor case, where most of the ideas for
the proof are already present but the setting is a bit simpler. Recall
that in the (η+ 1)-A-game, the ordinals βj played by the oracle can be
taken to be all equal to η. Throughout this section, we assume βj = η
for all j, and we forget about them. We will consider a new version of
the game that we call the simplified version. We will first show how to
obtain Theorem VIII.2 from the simplified version of Theorem VIII.2
and then show the simplified version.

Definition IX.26. In the simplified (η + 1)-A-game, the engineer
does not ask ∆0

η+1 questions. Instead, at stage j, the oracle always
plays Tη(j + 1) at stage j, namely the (j + 1)st η-true stage.

Recall that Tη is ∆0
η+1-Turing complete, so if the engineer had a

∆0
η+1 question in mind, she would eventually be able to figure out the

answer. Let us start by seeing how to transform the general version of
the game into an instance of the simplified version.

Proof of Theorem VIII.2. from the simplified version of
Theorem VIII.2. Let σ be a computable, valid strategy for the en-
gineer in the (η + 1)-A-game from Theorem VIII.2. We will build a
computable ω-presentation for a limit structure obtained from a cer-
tain sequence by the extender where the engineer follows her strategy
σ. The oracle will be answering ∆0

η+1(L) questions along the way, but
we do not build L until the end. The way around this is to use the
Recursion Theorem, which will allow us to assume that, from the be-
ginning, we have in hand an index ` for the computable limit structure.
Here is how the Recursion Theorem is used: The construction will use
a number ` as a parameter. So we are actually building a different
ω-presentation L` for each ` ∈ N. Let g : N → N be the computable
function such that g(`) is the index for the atomic diagram of L`, i.e.,
Φg(`) = D(L`). We then use the Recursion Theorem to find a com-
putable index `0 such that

Φ`0 = Φg(`0) = D(L`0).

We will then only consider the case ` = `0, so we may assume
the parameter ` is an index for the very same computable diagram
we are building. For this to work, we must produce a computable
ω-presentation L`, even if the `th computable function Φ` is not total.

We will build a computable valid strategy σ̂ for the engineer in the
simplified (η + 1)-A-game, and we will do it uniformly in `. We will
do it in a way that, for every run of the simplified game following σ̂,
there is a run of the original game following σ that produces the same
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limit structure. The simplified version of Theorem VIII.2 (which we
will prove below) will give a sequence of moves by the extender such
that, when we follow σ̂, it will produce a computable ω-presentation
L`.

Here is how we define σ̂: Let Γ be a computable operator such that
ΓTη(e) is the answer to the eth ∆0

η+1(Φ`) question. Let σ̂’s first move
be the same as σ’s: That is, let σ̂(〈〉) = σ(〈〉). At each following stage,
σ̂ may either pass or emulate σ, depending on whether or not the oracle
has given her enough information to answer the last ∆0

η+1-question she
posed. At a stage j+ 1, whether she passes or emulates σ gets decided
as follows: Suppose that, in the simplified game, the extender has just
played b̄j, and the oracle so far has played the numbers Tj = 〈r1, ..., rj〉,
which in the real run of the game will be equal to Tη �� j + 1. Let jk be
the last stage at which σ̂ emulated σ — suppose it was the kth time
where σ̂ emulated σ. At that stage, σ asked a ∆0

η+1(Φ`)-question, say

ek. If ΓTj(ek)↑, let σ̂ pass, that is, let it play 〈ij+1, āj+1〉 where ij+1 = ij,
and āj+1 is any proper extension of b̄j in Aij . If ΓTj(ek)↓, let σ̂ emulate
σ and play the string that the strategy σ would play if the extender
had played b̄j and the oracle had played nk = ΓTj(ek) in the original
game. More concretely, let j0,...,jk be the previous stages at which σ̂
emulated σ. Let er be the questions asked by σ at the r-th stage, and
let nr = ΓTj(er). Then we let σ̂ output σ(〈b̄j1−1, n0, b̄j2−1, n1, ..., b̄j, nk〉)
at stage j + 1.

Simplified game
σ̂ i0 i1 i2
engineer ā0 pass ā1 pass ā2 · · ·
extender b̄0 b̄1 b̄2 b̄3 · · ·
oracle r1 r2 r3 r4 · · ·

Original game
σ i0 i1 i2
engineer ā0 ā1 ā2 · · ·

e0 e1 e2

extender b̄1 b̄3 · · ·
oracle n0 n1 · · ·

Figure IX.2. This is an example of how σ̂ is defined
in the simplified game using σ for the original game. In
this example, Γ〈r1〉(e0)↑, Γ〈r1,r2〉(e0)↓ = n0, Γ〈r1,r2,r3〉(e1)↑,
and Γ〈r1,r2,r3,r4〉(e1)↓ = n1, and hence we have that j0 = 0,
j1 = 2, and j2 = 4.

If we apply the simplified version of Theorem VIII.2 to the strategy
σ̂, we end up building a computable ω-presentation L. The diagram
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of L is total regardless of whether Φ` is total and of whether we ever
get answers to the ∆0

η+1(Φ`)-questions ek. This is because if σ̂ ends
up passing from some point jk onwards, then the limit structure will
end up isomorphic to Aijk . Thus, when `0 is given to us by the Re-
cursion Theorem as above, we get that Φ`0 is total and is equal to the
diagram of the limit structure L`0 we just obtained. Since σ is a valid
strategy, all the ∆0

η+1(Φ`0)-questions it asks converge, and hence, for

all k, ΓTη�j+1(ek) converges for some large enough j. This means that
there are infinitely many stages at which σ̂ emulates σ, and we thus
get that for every sequence of moves by the extender in the simplified
game, there is a sequence of moves in the original game which gives us
the same limit structure. �

Proof of Theorem VIII.2. for the simplified (η+1)-game.
Here is where the η-true-stage system comes into play. Suppose we are
given a strategy σ for the engineer. We want to show that there is
a run of the game where the engineer follows σ, the oracle plays the
η-true stages, and the limit structure is computable. To build this com-
putable limit structure, we will build a computable sequence of pairs
〈is, ās〉 with ās ∈ Ais that satisfies that, for all ξ ≤ η and r < s ∈ N,

r <ξ s implies (Air , ār) ≤ξ (Ais , ās). (MC)

In particular, we get that if s ≤ t, then (Ais , ās) ≤0 (Ait , āt), which
means that DAis (ās) ⊆ DAit (āt). Hence, since the sequence 〈〈is, ās〉 :
s ∈ N〉 is computable, so is the structure L with diagram

D(L) =
⋃
s

DAis (ās).

To show that L is the limit structure under some run of the game
following the engineer’s strategy σ, we will show that if we restrict
ourselves to the sequence of η-true stages 0 <η t1 <η t2 <η · · · , then
the sequence 〈i0, ā0〉, 〈it1 , āt1〉, 〈it2 , āt2〉, ... can be seen as the sequence
of moves by the engineer following σ in a run of the simplified (η+1)-A-
game. That is, that there exists some sequence of moves b̄t1 , b̄t2 , b̄t3 , ...
by the extender such that the following is a run of the game

engineer i0, ā0 it1 , āt1 it2 , āt2 · · ·
extender b̄t1 b̄t2 b̄t3 · · ·
oracle t1 t2 t3 · · ·

where, for each j, 〈itj+1
, ātj+1

〉 is played according to the strategy σ.
That is:

〈itj+1
, ātj+1

〉 = σ(b̄t1 , t1, b̄t2 , t2, ..., b̄tj , tj, b̄tj+1
, tj+1).
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It follows that the limit structure of this run is the structure with
diagram ⋃

t∈N
t η-true

DAit (āt) =
⋃
s∈N

DAis (ās)

which is computable as we mentioned above.
When we are at stage s, we believe we are at an η-true stage, so we

will define is, ās using the strategy σ as above. What we need to figure
out is how to define b̄s.

For each s, we will define a tuple b̄s that belongs to Ait for the
largest t with t <η s. (This is the tuple we will use as the move by
the extender.) The tuple b̄s will satisfy that, for every ξ ≤ η and every
r < s,

r <ξ s implies (Air , ār) ≤ξ (Ait , b̄s). (13)

Thus, if at stage s we define is and ās satisfying

(Ait , b̄s) ≤η (Ais , ās),
we will get property (MC). To define b̄s, we need to use Lemmas IX.19
and IX.20, as is often the case in constructions involving iterated true-
stages systems. The first lemma is used to restrict property (13) to
only a few values of r and a few ordinals ξ, and the second lemma will
give us b̄s.

Apply Lemma IX.19 to get stages sk < sk−1 < · · · < s1 < s0 = s−1,
and ordinals η = ξk > ξk−1 > · · · ξ1 > ξ0 = 0 as in the diagram below
and such that, for all r < s and γ ≤ η, if r <γ s, then for the least i
with γ ≤ ξi, we have r ≤γ si.

sk ≤ξk−1+1 sk−1 ≤ξk−2+1 · · · ≤ξ1+1 s1 ≤ξ0+1 s0

s

≤ξk ≤ξk−1

≤
ξ1

≤
ξ
0

Now, to satisfy property (13), it is enough to get b̄s so that

(Aisj , āsj) ≤ξj (Ait , b̄s) for all j ≤ k. (14)

Since we have been respecting (MC) so far throughout the construc-
tion, we know that

(Aisk , āsk) ≤ξk−1+1 (Aisk−1
, āsk−1

) ≤ξk−2+1 · · ·
· · · ≤ξ1+1 (Ais1 , ās1) ≤ξ0+1 (Ais0 , ās0).

These structures satisfy the assumptions needed to apply Lemma IX.20.
We then obtain b̄s satisfying (14) as the c̄ from the lemma. We can
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find the tuple b̄s computably because we are assuming that the back-
and-forth relations are computable up to η. The last step is to define
ās using the strategy σ for the engineer in the simplified game.

(Aisk , āsk )≤ξk−1+1 (Aisk−1
, āsk−1)≤ξk−2+1 · · · ≤ξ1+1 (Ais1 , ās1)≤ξ0+1 (Ais0 , ās0)

(Aisk , b̄s)

⊆ ≤
ξ
k−1

≤
ξ
1 ≥ ξ 0

≤η (Ais , ās)

Let 0 = r0 <η r1 <η · · · <η rj = s be the apparent η-true stages at
s, i.e., 〈r0, ..., rj〉 = Tηs . Notice also that, for each ` ≤ j, b̄r` was defined
so that it belongs to Ait` , where t` is the largest with t` <η r`, namely

t` = r`−1. So, b̄r` belongs to Air`−1
. We then let

〈is, ās〉 = σ(b̄r1 , r1, b̄r2 , r2, ..., b̄rj , rj).

That is, 〈is, ās〉 is what the engineer would play in her (j + 1)st move
if she was following σ and the previous moves by the extender were
b̄r1 , b̄r2 , ..., b̄rj and the previous moves by the oracle were r1, r2, ..., rj.
This finishes the construction of the sequence of pairs 〈is, ās〉, and
finishes the construction of a computable structure L with D(L) =⋃
s∈NDAis (ās).

Finally, to verify that it all works, we need to show L can also be
produced by a run of the game following σ. Consider the sequence
0 < t1 <η t2 <η · · · of η-true stages. These are the stages at which
the oracle is playing the correct values. The following is a run of the
simplified (η + 1)-A-game following strategy σ:

engineer i0, ā0 it1 , āt1 it2 , āt2 · · ·
extender b̄t1 b̄t2 b̄t3 · · ·
oracle t1 t2 t3 · · ·

�

Remark IX.27. Note that in this proof, the sequence of moves
played by the extender is computable in Tη. Thus, Tη can reproduce
the whole run of the game whose limit structure is the computable
structure built in the previous proof.

IX.7.1. The limit case. Let us now consider the game metathe-
orem for the limit-ordinal case. Now, the ordinals βj played by the
oracle become relevant. Consider a limit ordinal λ, and suppose we
have a complete λ-true stage system. Recall that Tλ, the set of λ-true
stages, is ∆0

λ+1-Turing complete, which is overkill for answering the
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∆0
λ-questions posed by the engineer. We need a way to find guesses for

a ∆0
λ-Turing-complete set. We need a few definitions.
Let

〈λ[s] : s ∈ N〉
be a computable, non-decreasing sequence of ordinals below λ, con-
verging up to λ. We define a new partial ordering Eλ on N:∗

s Eλ t ⇐⇒ s ≤λ[s] t. (Def. Eλ)

We say that t is a Eλ-true stage if there is an infinite sequence t Eλ
t0 Eλ t1 Eλ t2 Eλ · · · , and let Sλ be the sequence of all Eλ-true stages,
listed in increasing order. Notice that ≤λ implies Eλ, and hence that
all λ-true stages are Eλ-true stages.

Lemma IX.28. A stage t is Eλ-true if and only if t is λ[t]-true.

Proof. If t is λ[t]-true and r > t is λ-true, then t ≤λ[t] r and
hence t Eλ r. Thus t is Eλ-true, as witnessed by the same sequence as
r. Conversely, suppose that t is Eλ-true and that there is an infinite
sequence t Eλ s0 Eλ s1 Eλ · · · . Since t ≤λ[t] s0 ≤λ[t] s1 ≤λ[t] s2 ≤λ[t]

· · · , we have that t is a λ[t] true stage. �

Corollary IX.29. Sλ ≡T
⊕

ξ<λ T
ξ.

Proof. When ξ < λ, we get Tξ ≤T Sλ, because s ∈ Tξ if and only
if s ≤ξ t for the first t ∈ Sλ with t > s and λ[t] ≥ ξ. Conversely,
Sλ ≤T

⊕
ξ<λ T

ξ, because s ∈ Sλ if and only if s ∈ Tλ[s]. �

It follows that Sλ is ∆0
λ-Turing complete. We can define our finite

guesses to Sλ using the same idea as before:

Sλt = 〈s : s Eλ t〉. (Def. Sλt )

We then have that t is a Eλ-true stage if and only if Sλt is an initial
segment of Sλ. Also, s Eλ t if and only if Sλs ⊆ Sλt .

We are now ready to prove the game metatheorem in the limit case.
Let us start by describing the simplified game. As in the simplified
game of the previous section, the engineer does not ask questions to
the oracle. Instead, at stage j, the oracle plays Sλ(j).

engineer i0, ā0 i1, ā1 i2, ā2 · · ·
extender b̄1 b̄2 · · ·
oracle Sλ(1), λ[Sλ(1)] Sλ(2), λ[Sλ(2)] · · ·

∗To see that it is a partial ordering, notice that if s ≤λ[s] t ≤λ[t] r, since

λ[s] ≤ λ[t], we have s ≤λ[s] r.
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As for the ordinals, the oracle plays βj = λ[Sλ(j)]. So, at each stage
j > 0, the tuple āj played by the engineer must satisfy:

(Aij−1
, b̄j) ≤λ[Sλ(j)] (Aij , āj).

The proof of Theorem VIII.2 from the simplified version of Theorem
VIII.2 goes exactly as the successor case on page 167, so we do not
repeat it.

Proof of Theorem VIII.2 for the simplified λ-game. The
proof follows the same format as the proof of Theorem VIII.2 for the
simplified game on page 169. We will not write all the details again,
and instead we just concentrate on the modifications.

Let σ be a computable strategy for the engineer. We build a com-
putable sequence of pairs 〈is, ās〉 with ās ∈ Ais that satisfies that, for
all r < s ∈ N and ξ ≤ λ[r],

r ≤ξ s implies (Air , ār) ≤ξ (Ais , ās). (MC)

Notice that a difference is that we only consider ξ ≤ λ[r]. We also
require that

r Eλ s & @t(r /λ t /λ s) implies (Air , ār) ≤λ[s] (Ais , ās). (MC+)

That is, if r is the last apparent /λ-true stage at s, then (Air , ār) ≤λ[s]

(Ais , ās).
As in the proof of Theorem VIII.2, we will then get that the limit

sequence with diagram
⋃
sDAis (ās) is computable. To show that this

structure is the limit structure under some run of the game following
the engineer’s strategy σ, we will show that if we restrict ourselves to
the sequence of Eλ-true stages t0 Eλ t1 Eλ t2 Eλ · · · , then the sequence
〈it0 , āt0〉, 〈it1 , āt1〉, 〈it2 , āt2〉, ... can be seen as the sequence of moves by
the engineer following σ for some particular sequence of moves by the
extender.

For each s, we will also define a tuple b̄s that belongs to Ait extend-
ing āt, for the largest t < s with t Eλ s. The tuple b̄s will satisfy that,
for every r < s and every ξ ≤ λ[r],

r <ξ s implies (Air , ār) ≤ξ (Ait , b̄s). (15)

Thus, if we then define is and ās satisfying

(Ait , b̄s) ≤λ[s] (Ais , ās), (16)
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we will satisfy properties (MC) and (MC+).† We will define b̄s using
Lemma IX.20 and the following new version of Lemma IX.19:

Lemma IX.30. For each s ∈ N, there exist stages t < s` < s`−1 <
· · · < s1 < s0 = s − 1 and ordinals λ > ξ` > ξ`−1 > · · · ξ1 > ξ0 = 0 as
in the diagram below satisfying the following condition: For all i ≤ `
and all γ with ξi−1 < γ ≤ ξi, we have that if r <γ s then r ≤γ si. Also,
for γ with ξ` < γ ≤ λ[r], we have that if r <γ s, then r ≤γ t.

t Eλ u ≤ξ`+1 s` ≤ξ`−1+1 · · · ≤ξ1+1 s1 ≤ξ0+1 s0

s

Eλ
≤ξ`

≤
ξ1

≤
ξ
0

Furthermore, there is a stage u with t Eλ u ≤ξ`+1 s` and λ[u] > ξ` such
that there is no v with t < v /λ u.

The existence of such u will be used later in our construction to
deduce the following:

(Ait , āt) ≤ξ`+1 (Ais` , ās`). (17)

Proof. Consider stages sk < · · · < s0 < s and ordinals λ = ξk >
· · · > ξ1 > ξ0 as in Lemma IX.19. Let t be the largest number with
t /λ s. Since sk ≤λ s, we have sk Eλ s, so sk Eλ t. We do not need to
use the whole sequence. Let ` be such that

s`+1 ≤ t < s`.

Suppose now that we have r <γ s and γ ≤ λ[r]. We know from Lemma
IX.19 that r ≤γ si for the least i with γ ≤ ξi. If γ ≤ ξ`, then i ≤ `.
Suppose instead that γ > ξ`. Then we must have that i > ` and
r ≤ si ≤ s`+1 ≤ t. Since r ≤ t, we must have λ[r] ≤ λ[t], and hence
γ ≤ λ[t]. Since t ≤λ[t] s and r ≤γ s, we can use (�) to get r ≤γ t.

Let us now prove that a stage u, as in the last sentence of the
lemma, exists. We consider a couple of cases.

Case 1: If λ[t] > ξ`, then we have t ≤ξ`+1 s. Then, by (♣) applied
to t < s` < s, we have t ≤ξ`+1 s` and we can let u = t.

Case 2: If λ[t] ≤ ξ`, then (�) applied to t < s` < s gives us
t ≤λ[t] s`, and hence t Eλ s`. We split this case in two cases.

Case 2A: If there is no r with t /λ r /λ s`, then we let u = s`.
The reason that λ[s`] > ξ` is that, on the one hand we have s` ≤ξ` s,
and on the other, since s` 6Eλ s, we have s` 6≤λ[s`] s.

† To see why we get (MC+), notice that since t is the largest stage with t /λ s,
we need to have that (Ait , āit) ≤λ[s] (Ais , ās). This follows from (Ait , b̄s) ≤λ[s]

(Ais , ās) because b̄s ⊇ āit .
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Case 2B: Otherwise, let u be the least with t /λ u /λ s`. We
cannot have λ[u] ≤ ξ`, as otherwise u ≤λ[u] s` ≤λ[u] s, and hence
u Eλ s, contradicting that t was the largest with t E s. So λ[u] > ξ`.
Then, since u /λ s`, we have u ≤ξ`+1 s`. �

The reason we get (17) is that, by (MC+) and (MC), we get

(Ait , āt) ≤λ[u] (Aiu , āu) ≤ξ`+1 (Ais` , ās`).

We now apply Lemma IX.20 to the sequence

(Ait , āt) ≤ξ`+1 (Ais` , ās`) ≤ξ`−1+1 · · · ≤ξ1+1 (Ais1 , ās1) ≤ξ0+1 (Ais0 , ās0)

to get b̄s ∈ A<N
t satisfying (15) as in the diagram below.

The last step is to define ās using the strategy σ for the engineer in
the simplified game.

(Ait , āt)≤ξ`+1 (Ais` , ās`)≤ξ`−1+1 · · · ≤ξ1+1 (Ais1 , ās1)≤ξ0+1 (Ais0 , ās0)

(Ait , b̄s)

⊆ ≤
ξ̀

≤
ξ
1 ≥ ξ 0

≤λ[s] (Ais , ās)

Let 0 = r0, ..., rj = s be the apparent Eλ-true stages below s. Note
that Sλri = Sλs �� i. We then let

〈is, ās〉 = σ(b̄r1 , r1, λ[r1], ..., b̄rj , rj, λ[rj]).

That is, 〈is, ās〉 is what the engineer would play in her (j + 1)st move
if she was following σ and the previous moves by the extender were
b̄r1 , b̄r2 , ..., b̄rj and the previous moves by the oracle were r1, ..., rj and
the ordinals βi = λ[ri]. Notice that βj = λ[s], as the last element
of Sλs is Sλs (j) = rj = s. So, the move by the strategy σ satisfies
(Ait , b̄s) ≤λ[s] (Ais , ās) as needed.

This finalized the construction of the computable sequence {ās : s ∈
N}, and we get a computable structure L with D(L) =

⋃
sDAis (ās).

To verify that it all works, we need to see how L can be obtained as
a run of the game following σ. Consider the sequence t1 Eλ t2 Eλ · · ·
of Eλ-true stages. We get that the following is a run of the simplified
game following σ:

engineer i0, ā0 it1 , āt1 it2 , āt2 · · ·
extender b̄t1 b̄t2 · · ·
oracle t1, λ[t1] t2, λ[t2] · · ·

It follows that the limit structure of this run of the game is the com-
putable structure with diagram

⋃
sDAis (ās). �
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Remark IX.31. The sequence of moves played by the extender is
computable in Sλ. Thus, Sλ can reproduce the whole run of the game
whose limit structure is the computable structure built in the previous
proof.

Historical Remark IX.32. The first ones to carry out an iterated
true-stage argument at a limit level were Csima and Harrison-Trainor
in [CHT17]. The way we handled the limit case here is different from
theirs.

IX.8. Complete ω-true-stage systems

We defined systems of n-true-stages for n ∈ N in Section IX.2 by
iterating the global ordering 444 on the sequences of (n − 1)-apparent
true stages. We recommend the reader to review the proof of Theorem
IX.9, as we will build upon those ideas. The limit case poses some
extra difficulties. Let us start with the first limit ordinal, ω, and define
≤ω so that we can see some of the issues that come up and how we
solve them. We will consider larger limit ordinals in the next section.

The continuity condition (TS3) should tell us immediately how to
define ≤ω: It is the intersection of the orderings ≤n for n ∈ N. There
are some problems, though. First, that intersection may turn out to
be empty; second, even if non-empty, it might not be computable; and
third, even if there are infinitely many ω-true stages, they may not be
∆0
ω+1 complete. To solve these problems, we will need to modify the

definitions of the relations ≤n from Section IX.2 a little bit.
At first glance, the intersection of the relations ≤n for n ∈ N is Π0

1

and not necessarily computable. Let us start by defining the diagonal
intersection Eω as follows:

s Eω t ⇐⇒ s ≤s t.

This ordering is computable. Notice that this is a special case of the
ordering Eλ defined in Section IX.7.1 taking λ = ω and ω[s] = s.

We say that a stage t is Eω-true if there is an infinite sequence
t Eω t1 Eω t2 Eω · · · starting with t. We let Sω denote the sequence of
Eω-true stages and define its approximations as

Sωt = 〈s : s Eω t〉.

Notice that Sωs ⊆ Sωt if and only if s Eω t.
We will see in Lemma IX.37 below that after modifying the or-

derings ≤n, the sequence of Eω-true stages, Sω, is non-empty and is
Turing-equivalent to 0(ω). The ω-true stages should have Turing de-
gree 0(ω+1) though.
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Definition IX.33. We define

s ≤ω t ⇐⇒ Sωs 444 Sωt .

Now, using the results from Section IX.1, from the sequence of ω-
true stages, Tω, we will be able to compute TSω , and hence Tω will have
degree 0(ω+1) as needed. We now need to modify the definition of the
relations ≤n for n ∈ N to ensure that there are infinitely many Eω-true
stages and that ≤ω, as defined above, coincides with the intersection
of the relations ≤n for n ∈ N.

Suppose we have defined ≤n and we want to define ≤n+1. To each

s, we associate two strings, T̊ns and Sω��ns , the first with numbers above
n and the second with numbers below n. The former plays the same
role as the string Tns we used in Section IX.2 but with a small modifi-
cation (due to Greenberg and Turetsky [GT22]) needed to ensure the
existence of infinitely many Eω-true stages.

T̊ns = 〈t : n ≤ t <n s〉 = Tns ∩ [n, s).

Notice that we still have that s ≤n t⇒ T̊ns ⊆ T̊nt .
We use Sω��ns to approximate Sωs and get continuity at level ω. The

idea is that Sω��ns is the longest initial segment of Sωs we can calculate
using only the relations ≤m for m ≤ n. We define it as follows:

Sω��ns = 〈t ≤ n : t Eω s〉 = Sωs ∩ [0, n].

Notice that we have that s ≤n t⇒ Sω��ns ⊆ S
ω��n
t .

Definition IX.34. We then define

s ≤n+1 t ⇐⇒ s ≤n t & T̊ns 444 T̊nt & Sω��ns 444 S
ω��n
t .

Let us analyze this definition carefully. Suppose s ≤n t. If s ≥ n,
then

Sω��ns = 〈r : r ≤ n & r ≤r s〉 = 〈r : r ≤ n & r ≤r t〉 = S
ω��n
t ,

so we get Sω��ns 444 S
ω��n
t trivially. If s ≤ n, then T̊ns = 〈〉, so we get

T̊ns 444 T̊nt trivially. Therefore, we can split the definition of s ≤n+1 t into
two cases:

s ≤n+1 t ⇐⇒ s ≤n t &

{
T̊ns 444 T̊nt if s ≥ n

Sω��ns 444 S
ω��n
t if s < n.

(∗)

Now that we are done with the definitions, we are ready to prove
the main theorem of this section:

Theorem IX.35. The orderings {≤ξ: ξ ≤ ω} form a complete ω-
true-stage system.
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Let us start by proving the continuity condition (TS3). It essentially
follows from the fact that for all large enough n, namely n ≥ t, we have
S
ω��n
t = Sωt .

Lemma IX.36. For all s < t, the following are equivalent:

(1) Sωs 444 Sωt .
(2) s ≤n t for all n ∈ N.

Proof. For the (2)-to-(1) implication, suppose s ≤n t for all n ∈ N.

For all n ≥ t, Sω��ns = Sωs and S
ω��n
t = Sωt . Since s ≤n+1 t, we get that

Sω��ns 444 S
ω��n
t , and hence Sωs 444 Sωt .

For the (1)-to-(2) implication, suppose that Sωs 444 Sωt . This implies
that s Eω t, and hence that s ≤s t. We will show by induction that for
all n ≥ s, s ≤n t. By the observation above, when s ≤ n, we have that
s ≤n+1 t ⇐⇒ s ≤n t ∧ Sω��ns 444 S

ω��n
t . Notice that

Sω��ns = Sωs and S
ω��n
t ⊆ Sωt .

So, Sωs 444 Sωt implies Sω��ns 444 S
ω��n
t by (♣). It follows that s ≤n+1 t ⇐⇒

s ≤n t for all n ≥ s. By induction, one can then prove that s ≤n t for
all n. �

Thus, defining s ≤ω t by Sωs 444 Sωt as we did above, we satisfy the
continuity condition (TS3).

Next, we need to show that there are infinitely manyEω-true stages.

Lemma IX.37. Assume that for every n, there are infinitely many
n-true stages.

(1) There are infinitely many stages s which are s-true.
(2) s is an Eω-true stage if and only if it is s-true.
(3) Sω ≡T

⊕
n∈N T

n.

Proof. For the first part, pick a number n, and let s be the least
n-true stage greater than or equal to n. Let r be an s-true stage greater
than s. We will show that s is s-true by showing that s ≤s r. Since r is
also n-true, we know s ≤n r. We use induction to show that s ≤m r for
every m with n ≤ m ≤ s. Recall that for m ≤ s, s ≤m r if and only if
s ≤m−1 r and T̊ms 444 T̊mr . Since there are no n-true stages between n and

s, for no t with n ≤ t < s do we have t ≤n s. It follows that T̊ns = 〈〉.
Actually, T̊ms = 〈〉, and hence T̊ms 444 T̊mr for all m ≥ n. It follows that,
for all m with n ≤ m < s, we have s ≤m+1 r ⇐⇒ s ≤m r. That gives
us the induction step needed to show that s ≤s r.

For the second part, note that the stages s which are s-true form
an infinite Eω-increasing sequence. To see this, observe that if we have
s < t, with s s-true and t t-true, then s ≤s t and hence s Eω t. So, they
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are all Eω-true stages. Conversely, suppose that s is a Eω-true stage.
There is an infinite sequence s Eω t1 Eω t2 Eω · · · . In particular, we
have s ≤s t1 ≤s t2 ≤s · · · , and hence s is an s-true stage.

For the third part, it is clear from (2) that Sω ≤T
⊕

n∈N T
n as

s ∈ Sω if and only if s ∈ Ts. For the other reduction, given n and s,
we can tell if s ∈ Tn as follows: Look for r ∈ Sω greater than n and s.
Then, since r is r-true, and in particular n-true, s is n-true if and only
if s ≤n r. �

We have shown that ≤ω behaves the way it should. We still need
to verify that the new relations ≤n form an ω-true stage system. Con-
ditions (TS0) and (TS1) hold trivially. We already verified (TS3). For
(TS2), we have already verified that there are infinitely many ω-true
stages, assuming that there are infinitely many n-true stages for every
n, which we have not verified yet.

Lemma IX.38. There are infinitely many n-true stages for every
n ∈ N.

Proof. All stages are 0-true. Suppose we already know that there
are infinitely many n-true stages. Let X be the increasing sequence of
all n-true stages that are greater than or equal to n, i.e., X = T̊n. From
Section IX.1, we get an infinite sequence of finite increasing substrings
of X which are X-true substrings:

〈〉444 σ0 444 σ1 444 · · ·444X.
In other words, TX = 〈〈〉, σ0, σ1, · · ·〉. Let si = max(σi). Notice that

si ≤n si+1 for all i just because they belong to T̊n. Furthermore,

T̊nsi+1
= σi.

Recall that for s ≥ n and s ≤n t, s ≤n+1 t ⇐⇒ T̊ns 444 T̊nt . Since

T̊nsi 444 T̊nsi+1
and n ≤ si, it follows that si ≤n+1 si+1 for all i, and hence

these are all (n+ 1)-true stages. �

This finishes the proof of (TS2).

Lemma IX.39. Tω ≡T 0(ω+1).

Proof. Continuing with the ideas from the proof of the previous
lemma, in particular, we get

TX = {T̊ns : s ∈ T̊n+1},

and hence (T̊n)′ ≡T TX ≡T T̊n+1. So, we get by induction that each

T̊n is Turing equivalent to 0(n). Since Tn and T̊n differ only on finitely
many elements, Tn is also Turing equivalent to 0(n). Furthermore, this
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Turing equivalence is uniform in n, as s ∈ Tn if and only if s ≤n t for
the first t ∈ T̊n with s ≤ t. This then implies that Sω ≡T 0(ω), and by
our comment right after Definition IX.33, Tω ≡T 0(ω+1). �

Lemma IX.40. The relations ≤n satisfy (♣).

Proof. We use induction on n. Consider t < s < r, satisfying
t ≤n+1 r and s ≤n r. By the induction hypothesis, since t ≤n r and
s ≤n−1 r, we get that t ≤n s. In the case n = 0, this is immediate.
Since t ≤n+1 r, we have that

T̊nt 444 T̊nr ∧ S
ω��n
t 444 Sω��nr .

Since s ≤n r, we have that

T̊ns ⊆ T̊nr ∧ Sω��ns ⊆ Sω��nr .

Using (♣) for 444, we then get

T̊nt 444 T̊ns ∧ S
ω��n
t 444 Sω��ns ,

as needed to show that t ≤n+1 s. �

This finishes the proof of Theorem IX.35.

IX.9. The full construction

Fix an ω-presentation of a large computable well-ordering L. The
objective of this section is to prove Theorem IX.18, that is, to define
relations ≤ξ for ξ ∈ L that form a complete L-true-stage system. Many
of the ideas of the construction were introduced in the previous section,
except that now, the chosen ω-presentation of the ordinals becomes
relevant, we have lots of limit ordinals to worry about, and the proof
becomes more complicated. The construction of this section is self-
contained, but it is quite technical and working through the previous
sections will help the reader have a better intuition.

This theorem was first proved in [Mon14, Lemma 7.8], using ideas
from Marcone and Montalbán [MM11]. A different construction was
later given by Greenberg and Turetsky in [GT22] which simplified
it greatly. The proof we give here is new. This new construction
incorporates ideas from all those papers [MM11, Mon14, GT22], as
well as a new way of dealing with the limit levels.

The domain of L is the set of natural numbers, so its elements are
numbers. We will sometimes think of the elements of L as ordinals and
sometimes as natural numbers. To emphasize this, we will use Greek
letters ζ, ξ, γ, λ, κ when we think of elements of L as ordinals, and we
will write nγ for the natural number corresponding to the ordinal γ in
this fixed representation of L. Then, for instance, if we write γ < λ, we



IX.9. THE FULL CONSTRUCTION 181

are comparing them as ordinals in the ordering of L, while if we write
nγ < nλ, we are comparing them as natural numbers.

To each non-zero ordinal λ ∈ L, we assign a fundamental sequence:
For s ∈ N, let

λ[s] = max{ξ : ξ < λ & nξ ≤ s}.
It is not hard to see that 〈λ[s] : s ∈ N〉 is a non-decreasing sequence
and that, when λ is a limit ordinal, converges up to λ:

sup
s∈N

λ[s] = λ.

To see this, just notice that, for each ξ < λ, λ[nξ] ≥ ξ. When λ is
a successor ordinal, we get a non-decreasing sequence that eventually
stabilizes at λ[s] = λ− 1, namely from s = nλ−1 onwards.

Lemma IX.41. Let s, t ∈ N and γ, λ ∈ Lr {0}.
(1) If s ≤ t and γ ≤ λ, then γ[s] ≤ λ[t].
(2) If λ[t] ≤ γ ≤ λ, then (∀s ≤ t) γ[s] = λ[s].

Proof. For the first implication, just notice that you are taking
a maximum of a larger set. For the second one, it follows from the
definition of λ[t] that, for every ξ < λ with nξ ≤ t, we have ξ ≤ λ[t],
and hence ξ ≤ γ. So, the sets {ξ : ξ < λ & nξ ≤ s} and {ξ : ξ < γ &
nξ ≤ s} are the same. �

IX.9.1. The main characters. Let us start by informally de-
scribing the main characters in the construction. The full, formal def-
inition will be in the next section, where we will define various objects
by simultaneous recursion.

For each ordinal ξ, we will define two orderings ≤ξ and Eξ on N.
As we will see below, Eξ will be defined using diagonal intersections of
the orderings ≤ζ for ζ < ξ:

s Eξ t ⇐⇒ s ≤ξ[s] t.
We use Tξ to denote the sequence of ≤ξ-true stages and Sξ to denote

the sequence of Eξ-true stages. We will show that

Sλ ≡T
⊕
ξ<λ

Tξ and Tλ ≡T (Sλ)′

uniformly in λ. This will then imply that Sλ is ∆0
λ-Turing complete,

and Tλ is ∆0
λ+1-Turing complete.

To define ≤ξ from Eξ, the first idea would be to let s ≤ξ t if and

only if Sξs 444 S
ξ
t , where Sξs is the stage-s finite approximation to Sξ. As

we already saw in the case for ω, this will not work well. We need two
modifications. First, instead of using Sξs we will consider the strings S̊ξs,
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where we only consider numbers above nξ and we do not include the
top element s. That is

S̊ξs = Sξs ∩ [nξ, s).

Second, when defining ≤ξ, we will also look at segments of S̊κs for κ > ξ.

We will only consider the initial segment of S̊κs that can be computed

from Sξs, a segment that we will call S̊κ�ξs .
Let us now make all these definitions in more detail.

IX.9.2. The formal definition. We will define the family of par-
tial orderings ≤ξ and families of stings S̊

κ�ξ
t by simultaneous effective

transfinite recursion on ξ. We will need to develop the diagonal or-
derings Eξ before we motivate the definition of S̊κ�ξt . So, for now, let
us just say that, to each t ∈ N, ξ, κ ∈ L, we associate a finite string
S̊
κ�ξ
t ∈ N<N and that the definition of S̊κ�ξt uses only the relations ≤ζ

for ζ < ξ. The format of the definition of ≤ξ should be thought of as
follows: given ξ, we associate to each t ∈ N a family of finite strings
{̊Sκ�ζt : κ ∈ L, ζ ≤ ξ}, and we let s ≤ξ t if the strings associated to s
are 444-below the strings associated to t.

For ξ = 0, we have S̊
κ�ξ
t = 〈〉. Also, in the lemma below, we will use

that if S̊κ�ξt is a proper initial segment of S̊κ�ξs , then t < s.

Definition IX.42. Given s ≤ t ∈ N and ξ ∈ L, define

s ≤ξ t ⇐⇒ (∀κ ∈ L)(∀ζ ≤ ξ) S̊κ�ζs 444 S̊
κ�ζ
t . (Def. ≤ξ)

Without trying to make sense yet of what the strings S̊
κ�ξ
t are, just

by knowing that their definition depends only on ≤ζ for ζ < ξ, we
know that the transfinite recursion in the definition of ≤ξ works. We
will see how to make this definition effective later, by noting one only
needs to consider finitely many comparisons of the form S̊κ�ζs 444 S̊

κ�ζ
t in

the definition above.
It is clear from the definition that the relations ≤ξ are nested, that

is, that if ξ ≤ γ and s ≤γ t, then s ≤ξ t. Observe also that s ≤0 t ⇐⇒
s ≤ t, as S̊

κ�0
t = 〈〉 for any κ.

Lemma IX.43. For each ξ ∈ L, ≤ξ is a partial ordering which
satisfies the following property:

∀s, t, r ∈ N
(
s ≤ t ≤ξ r ⇒

(
s ≤ξ t ⇐⇒ s ≤ξ r

))
. (�)

Proof. The reflexivity property of partial orderings is obvious
from the definition. The anti-symmetric property of partial orderings
follows from the fact that s ≤ξ t implies s ≤ t. Transitivity follows from
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the transitivity of 444. For property (�), the (⇒) direction follows from
transitivity. The (⇐) direction is straightforward from (♣) applied to

the strings S̊κ�ζs ⊆ S̊
κ�ζ
t ⊆ S̊κ�ζr for each κ and ζ ≤ ξ. �

IX.9.3. The diagonal orderings. We define another family of
partial orderings, Eξ for ξ ∈ L, which are the diagonal intersections of
the ≤γ’s.

s Eξ t ⇐⇒ s ≤ξ[s] t. (Def. Eξ)

Notice that if ξ is a successor ordinal, then Eξ coincides with ≤ξ−1

from some point on, namely from s = nξ−1 onwards. The orderings
Eξ become handy when ξ is a limit ordinal, and they will help us deal
with the continuity condition (TS3).

Lemma IX.44. (1) Each relation Eξ is a partial ordering on
N.

(2) The relations Eξ are nested, that is, if ξ ≤ γ and s Eγ t, then
s Eξ t.

(3) The relations Eξ satisfy the continuity condition. That is, if
λ is a limit ordinal, then

s Eλ t ⇐⇒ (∀ξ < λ) s Eξ t.

(4) The relations Eξ satisfy the following property:

(∀s < t < r) s Eξ r & t Eξ r ⇒ s Eξ t. (�)

Proof. For (1), the anti-symmetric property of partial orderings
follows from the fact that s Eξ t implies s ≤0 t. The reflexivity property
is obvious. For transitivity, if we have s Eξ t Eξ r, then s ≤ξ[s] t ≤ξ[t] r,
and since ξ[s] ≤ ξ[t], we get s ≤ξ[s] r by Lemma IX.41(1).

For nestedness, recall from Lemma IX.41(1) that ξ ≤ γ implies
ξ[s] ≤ γ[s], and hence s ≤γ[s] t implies s ≤ξ[s] t.

For (3), the (⇒) direction follows from nestedness. For the (⇐)
direction, recall that if ξ is strictly in between λ[s] and λ, then ξ[s] =
λ[s] by Lemma IX.41(2), and hence s Eλ t ⇐⇒ s Eξ t.

Part (4) follows from (�) for ≤ξ[s]. �

Definition IX.45. We say that t is a Eξ-true stage if there is an
infinite sequence t /ξ t1 /ξ t2 /ξ t3 · · · . We let Sξ be the sequence of all
Eξ-true stages listed in increasing order.

The existence of Eξ-true stages is not obvious, and we will prove it
later. We will also show that Sξ is ∆0

ξ-Turing complete. But let us not
get ahead of ourselves and let us now consider the finite approximations
to Sξ.

S
ξ
t = 〈s : s Eξ t〉. (Def. S

ξ
t )
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Observe that t Eξ r if and only if Sξt ⊆ Sξr. The symbol ‘⊆’ here
refers to inclusion of strings.

For limit ordinals λ, one can show that Sλt is the limit of S
ξ
t for

ξ < λ. Furthermore, Sλt and S
ξ
t coincide on longer and longer initial

segments as ξ converges up to λ. They will coincide on all entries s
which satisfy λ[s] = ξ[s], as we would then have s Eλ t ⇐⇒ s Eξ t. It
will be useful to give a name to the first s where that does not happen.

Definition IX.46. For ξ, λ ∈ L, define

m[ξ,λ) = min{nζ : ξ ≤ ζ < λ}.
If ξ ≥ λ, we let m[ξ,λ) = +∞.

Lemma IX.47. For ξ < λ,

m[ξ,λ) = min{r ∈ N : λ[r] ≥ ξ} = min{r ∈ N : λ[r] 6= ξ[r]}.

Proof. Let ζ be such that m[ξ,λ) = nζ . So, ξ ≤ ζ < λ, and the
value of nζ is least among all such ζ’s. On the one hand, for r = nζ ,
we have λ[r] ≥ ζ ≥ ξ > ξ[r]. On the other hand, for r < nζ , the sets
{γ < λ : nγ ≤ r} and {γ < ξ : nγ ≤ r} are equal, because by our
choice of ζ, if nγ < nζ , then either γ < ξ or γ ≥ λ. So, λ[r] = ξ[r] < ξ.
So, r = nζ is the least number satisfying λ[r] ≥ ξ, and also the least
number satisfying λ[r] 6= ξ[r]. �

Lemma IX.48. For ξ < λ and t ∈ N,

Sλt ∩ [0,m[ξ,λ)) = S
ξ
t ∩ [0,m[ξ,λ)).

Proof. For s ∈ [0,m[ξ,λ)), we have ξ[s] = λ[s], and hence s Eξ
t ⇐⇒ s Eλ t. �

This lemma motivates the following definition: Let

S
λ�ξ
t = Sλt ∩ [0,m[ξ,λ)). (Def. S

λ�ξ
t )

By the lemma above, Sλ�ξt = S
ξ
t∩[0,m[ξ,λ)). The idea behind S

λ�ξ
t is that

it is the longest initial segment of Sλt that we can define using only S
ξ
t .

The strings S
λ�ξ
t are similar to the stings we used in Definition IX.42.

We still need to modify them a little bit though to ensure that we
actually get infinitely many Eκ-true stages at limit levels. To do this,
we use the Greenberg–Turetsky trick we used in the previous section
of considering only a segment of Sκt . Define

S̊κt = 〈r : nκ ≤ r /κ t〉, (Def. S̊κt )

or, equivalently

S̊κt = Sκt ∩ [nκ, t).
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As in (Def. S
λ�ξ
t ), we can define S̊

κ�ξ
t to be the longest initial segment

of S̊κt that we can define using only the relations ≤ζ for ζ < ξ. Let

S̊
κ�ξ
t = S̊κt ∩ [0,m[ξ,κ)) = Sκt ∩ [nκ,min(t,m[ξ,κ))).

Recall that, to ensure that the transfinite recursion in the definition of
≤ξ works, we promised right before Definition IX.42 that S̊κ�ξt could be
defined in terms of relations ≤ζ for ζ < ξ. To make this obvious, we
can rewrite its definition as follows:

S̊
κ�ξ
t = 〈r ∈ N : κ[r] < ξ & nκ ≤ r <κ[r] t〉. (Def. S̊

κ�ξ
t )

It follows from Lemma IX.48 that, when ξ < κ,

S̊
κ�ξ
t = S

ξ
t ∩ [nκ,min(t,m[ξ,κ))).

When ξ ≥ κ, S̊κ�ξt = S̊κt .

Lemma IX.49. Consider t ≤ r ∈ N and ξ ∈ L.

(1) If t Eξ r, then S̊
κ�ξ
t ⊆ S̊κ�ξr .

(2) If t Eξ r and m[ξ,κ) ≤ t, then S̊
κ�ξ
t = S̊κ�ξr .

(3) If ζ ≤ ξ and S̊κ�ξs 444 S̊
κ�ξ
t , then S̊κ�ζs 444 S̊

κ�ζ
t .

Proof. For (1), first notice that t Eξ r implies S
ξ
t ⊆ Sξr. If κ > ξ,

then

S̊
κ�ξ
t = S

ξ
t ∩ [nκ,min(t,m[ξ,κ))) ⊆ Sξr ∩ [nκ,min(r,m[ξ,κ))) = S̊κ�ξr .

If κ ≤ ξ, we have t Eκ r, and S̊
κ�ξ
t = S̊κt ⊆ S̊κr = S̊κ�ξr .

For (2), let us first observe that since m[ξ,κ) 6= +∞, ξ < κ. Recall
that

S̊
κ�ξ
t = 〈s ∈ N : s Eξ t, nκ ≤ s < min(t,m[ξ,κ))〉, and

S̊κ�ξr = 〈s ∈ N : s Eξ r, nκ ≤ s < min(r,m[ξ,κ))〉.
Since t Eξ r, we have from (�) in Lemma IX.43 that s Eξ t ⇐⇒ s Eξ
r. Since m[ξ,κ) ≤ t, we have min(t,m[ξ,κ)) = m[ξ,κ) = min(r,m[ξ,κ)). So,

S̊κ�ξs = S̊
κ�ξ
t .

For the third part, first we observe that S̊κ�ξs 444 S̊
κ�ξ
t implies S̊κ�ξs ⊆

S̊
κ�ξ
t , which implies S̊κ�ζs ⊆ S̊

κ�ζ
t .

There are two cases to consider. If κ is such that m[ζ,κ) ≤ s, then

S̊κ�ζs and S̊
κ�ζ
t are both equal to Sκs ∩ [nκ,m[ζ,κ)), and then S̊κ�ζs 444 S̊

κ�ζ
t

holds trivially.
If κ is such that s ≤ m[ζ,κ) ≤ m[ξ,κ), we have S̊κs = S̊κ�ζs = S̊κ�ξs .

Since S̊
κ�ζ
t ⊆ S̊

κ�ξ
t , we can apply (♣) to the triple of strings S̊κ�ξs =

S̊κ�ζs ⊆ S̊
κ�ζ
t ⊆ S̊

κ�ξ
t to get S̊κ�ζs 444 S̊

κ�ζ
t . �
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Using the third part of the lemma, we can improve Definition IX.42
slightly and write:

s ≤ξ t ⇐⇒ s ≤ t & (∀κ ∈ L) S̊κ�ξs 444 S̊
κ�ξ
t . (Def. ≤ξ)

To see that the definition is effective, notice that if nκ ≥ s, then
S̊κs = 〈〉 and S̊κs444S̊

κ
t holds trivially. So, in (Def. ≤ξ), we only care about

the finitely many κ’s with nκ < s, making that definition effective.
The whole definition can then be carried out by effective transfinite
recursion as in Section I.4.1, and thus we get that the S̊

κ�ξ
t and s ≤ξ t

are uniformly computable in κ, ξ, s, and t.
The following lemma provides an equivalent way of defining the ≤ξ

relations that will be useful in the verifications.

Lemma IX.50. If s ≥ nξ, then

s ≤ξ t ⇐⇒ s Eξ t ∧ S̊ξs 444 S̊
ξ
t ,

and if s ≤ nξ, then

s ≤ξ t ⇐⇒ s Eξ t ∧ (∀κ > ξ) S̊κ�ξs 444 S̊
κ�ξ
t .

Proof. By nestedness, s ≤ξ t implies s ≤ξ[s] t, which implies s Eξ
t. The (⇒) direction is then clear in both cases. Let us prove the other
direction. Assume the right-hand side and fix κ ∈ L — we want to
show that S̊κ�ξs 444 S̊

κ�ξ
t .

For κ ≤ ξ[s], we have S̊κ�ξs = S̊κs = S̊
κ�ξ[s]
s and S̊

κ�ξ
t = S̊κt = S̊

κ�ξ[s]
t .

Since s Eξ t, we have s ≤ξ[s] t, and hence S̊
κ�ξ[s]
s 444 S̊

κ�ξ[s]
t , and hence

S̊κ�ξs 444 S̊
κ�ξ
t .

For κ with ξ[s] < κ < ξ, we must have s < nκ (as otherwise we

would have ξ[s] ≥ κ by the definition of nκ), so S̊κ�ξs = 〈〉 (by the

observation after (Def. ≤ξ)) and S̊κ�ξs 444 S̊
κ�ξ
t holds trivially.

For κ = ξ, S̊κ�ξs = S̊ξs. So, the top case gives us S̊κ�ξs 444 S̊
κ�ξ
t for free,

and in the bottom case, since s ≤ nξ = nκ, S̊
κ
s = 〈〉 and S̊κ�ξs 444 S̊

κ�ξ
t

holds trivially.
For κ > ξ, the bottom case gives us S̊κ�ξs 444 S̊

κ�ξ
t for free, so suppose

we are dealing with the top case and s ≥ nξ. Noting that nξ ≥ m[ξ,κ),

part (2) of Lemma IX.49 tells us that S̊κ�ξs = S̊
κ�ξ
t . So, S̊κ�ξs 444 S̊

κ�ξ
t holds

trivially. �

IX.9.4. Verifications. So far, we have shown that {≤ξ: ξ ∈ L} is
a computable nested family of partial orderings. We are still missing
property (♣), continuity (TS3), the existence of true stages (TS2), and
completeness (i.e., that Tξ is ∆0

ξ+1-Turing complete).
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Lemma IX.51. The relations ≤ξ satisfy (♣). That is,

(∀s < t < r)
(

(s ≤ξ+1 r & t ≤ξ r) ⇒ s ≤ξ+1 t
)
.

Proof. This is just a corollary of (♣) for 444. Here are the details.
Suppose we have s, t, and r satisfying s ≤ξ+1 r & t ≤ξ r. Then, for

every κ, we have S̊κ�ξ+1
s 444 S̊κ�ξ+1

r . Also, since t ≤ξ r implies t Eξ+1 r,

we have S̊
κ�ξ+1
t ⊆ S̊κ�ξ+1

r , by Lemma IX.49(1). By (�) of Lemma IX.43,

we also have s ≤ξ t, and by the same argument S̊κ�ξ+1
s ⊆ S̊

κ�ξ+1
t .

S̊κ�ξ+1
s ⊆

444

444

S̊
κ�ξ+1
t ⊆ S̊κ�ξ+1

r

By (♣) for 444, we get S̊κ�ξ+1
s 444 S̊

κ�ξ+1
t . �

Lemma IX.52. The relations ≤ξ satisfy the continuity condition.
That is, for every limit ordinal λ ∈ L,

s ≤λ t ⇐⇒ (∀ξ < λ) s ≤ξ t.
Proof. The (⇒) direction follows from nestedness.
For the (⇐) direction, consider any ξ strictly in between λ[t] and

λ. Then m[ξ,λ) > t, as otherwise we would have λ[t] ≥ λ[m[ξ,λ)] ≥ ξ.
Pick any κ ∈ L. Let us consider two cases. If t < m[ξ,κ), then we also

have t < m[λ,κ), because m[ξ,κ) ≤ m[λ,κ).
‡ If t ≥ m[ξ,κ), then m[ξ,κ) =

m[λ,κ), because m[ξ,κ) = nγ for some γ that cannot be in [ξ, λ), because
ξ > λ[t] ≥ λ[nγ] ≥ γ. In either case, min(t,m[λ,κ)) = min(t,m[ξ,κ)). It

follows that, for all κ, S̊κ�λt = S̊
κ�ξ
t . The same holds for s. So, s ≤ξ t

implies s ≤λ t. �

To show that the relations ≤ξ form an L-system of true stages, we
need to show that there are infinitely many ξ-true stages for all ξ. We
start by showing that there are infinitely many Eξ-true stages for all
ξ ∈ L. The proof is by transfinite induction. For ξ = 0, all stages are
0-true.

Lemma IX.53. Suppose that there are infinitely many ξ-true stages
for all ξ < λ. Then there are infinitely many Eλ-true stages.

Furthermore, Sλ ≡T
⊕

ξ<λ T
ξ uniformly in λ.

Proof. When λ is a successor ordinal, this holds because Eλ co-
incides with ≤λ−1 for all s > nλ−1.

Let λ be a limit ordinal in L. We make the following two claims:

‡ For ξ < λ we have m[ξ,κ) ≤ m[λ,κ) because m[ξ,κ) is a minimum taken over a

larger set than m[λ,κ).
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(1) There are infinitely many stages s which are λ[s]-true.
(2) Those are exactly the Eλ-true stages.

Let γ be an ordinal in the fundamental sequence of λ, meaning that
γ is of the form λ[s0] for some s0. If we choose the least such s0, we
get s0 = nγ. Suppose also that γ is such that nγ > nλ. Let s be the
first γ-true stage that is greater than or equal to nγ — we claim that
s is λ[s]-true. Since we are starting above any γ with nγ > nλ in the
fundamental sequence of λ, this will imply (1).

Let t > s be λ[s]-true. Since both s and t are γ-true, we know that
s ≤γ t — we need to show that s ≤λ[s] t. We will prove that s ≤ξ t by
induction on ξ with γ ≤ ξ ≤ λ[s].

Pick ξ with γ < ξ ≤ λ[s] — we want to show that s ≤ξ t assuming
s ≤δ t for all δ < ξ. By the induction hypothesis, we know that s Eξ t.
For κ < ξ, we get S̊κ�ξs 444 S̊

κ�ξ
t just because s <κ t. Consider κ with

ξ ≤ κ < λ. Then nκ > s0, as otherwise we would have κ ≤ λ[s0] < ξ.
Since s is the first γ-true stage after nγ, there are no stages r with
nγ ≤ r <γ s. So, we have no r’s with nγ ≤ r Eκ s (notice that

κ[r] ≥ γ). Therefore, S̊κs = 〈〉. So, we get S̊κ�ξs 444 S̊
κ�ξ
t trivially.

Suppose now that κ ≥ λ. Then m[ξ,κ) ≤ nλ ≤ nγ ≤ s. Since s Eξ t,
we get S̊κ�ξs = S̊

κ�ξ
t from Lemma IX.49 (2). So, again, we get S̊κ�ξs 444 S̊

κ�ξ
t

trivially.
This finishes the proof of (1). For (2), notice that if s is λ[s]-

true and t > s is λ[t]-true, then s ≤λ[s] t, and hence s Eλ t. So, the
infinitely many stages s that are λ[s]-true form an infiniteEλ-increasing
sequence.

Conversely, suppose that r is Eλ-true and that there is an infinite
sequence r Eλ s0 Eλ s1 Eλ · · · . Since r ≤λ[r] s0 ≤λ[r] s1 ≤λ[r] s2 ≤λ[r]

· · · , we have that r is a λ[r] true stage.
Let us now prove that Sλ ≡T

⊕
ξ<λ T

ξ. We have Tξ ≤T Sλ because

s ∈ Tξ if and only if s ≤ξ t for the first t ∈ Sλ with t > s and λ[t] ≥ ξ.
Conversely, Sλ ≤T

⊕
ξ<λ T

ξ because s ∈ Sλ if and only if s ∈ Tλ[s], as

in Claim (2). �

Lemma IX.54. Suppose that there are infinitely many Eλ-true stages.
Then there are infinitely many λ-true stages.

Furthermore, Tλ ≡T (Sλ)′ uniformly in λ.

Proof. Recall that S̊λ = 〈s ∈ Sλ : s ≥ nλ〉. First, let us notice

that Sλ ≡T S̊λ uniformly in λ because they coincide above nλ and, for
both sets, once you know an element, you know all the elements below
it.
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Let
t0 Eλ t1 Eλ t2 Eλ · · ·

be the sequence of all Eλ-true stages that are greater than or equal to
nλ. So, S̊λ = 〈t0, t1, t2, · · ·〉. Notice that S̊λti = S̊λ ∩ [0, ti). By Lemma
IX.50, among these stages we have

ti ≤λ tj ⇐⇒ S̊λti 444 S̊λtj .

Let X = S̊λ, and let σ0 444 σ1 444 · · · ⊂ X be the X-true sub-strings of
X. Let si = max(σi). We then have that σi = S̊λsi+1

, and hence that
s0 ≤λ s1 ≤λ · · · . So, the si’s are the λ-true stages.

To show that Tλ ≡T (̊Sλ)′, the reader might have guessed that the
reason is that

Tλ ≡T T̊Sλ .

To see this, we have that t ∈ Tλ if, for the first σ ∈ T̊Sλ with t ≤ max(σ),
we have t ≤λ max(σ). Conversely, σ ∈ T̊Sλ if, for the first s ∈ Tλ with

s > max(σ) and s ≥ nλ, we have σ = S̊λs . �

Lemma IX.55. For every λ ∈ L,

• Sλ is ∆0
λ-Turing complete.

• Tλ is ∆0
λ+1-Turing complete.

Proof. From the previous two lemmas, we get that, for all λ ∈ L,

Sλ ≡T
(⊕
ξ<λ

Sξ
′)
.

All these Turing equivalences are uniform in λ. We can prove by trans-
finite recursion that Sλ is ∆0

λ-Turing complete and Tλ is ∆0
λ+1-Turing

complete uniformly in λ. �





CHAPTER X

Iterating the jump of a structure

We introduced the notions of jump of a relation and jump of a
structure in [Part 1, Section ??] and [Part 1, Chapter IX]. With all
the tools we have developed so far, we can now easily iterate these
notions through the computable ordinals and prove the basic results
about them.

Kleene’s complete r.i.c.e. relation ~KA was defined by putting to-
gether all Σc

1-definable relations ([Part 1, Definition ??]).

Definition X.1. We now define the complete r.i.-Σc
α relation ~KAα

on a structure A by putting together all Σc
α-definable relations:

~KAα = {〈i, b̄〉 : A |= ϕΣc
α

i,|b̄|(b̄)} ⊆ N× A<N,

where ϕΣc
α
i,j (x̄) is the ith τ -Σc

α-formula with j free variables as in Section
III.2. It will also be useful to consider the complete r.i.-Σc

<α relation
~KA<α by putting together all Σc

<α-definable relations:

~KA<α = {〈i, b̄〉 : A |= ϕ
Σc
<α

i,|b̄| (b̄)} ⊆ N× A<N,

where ϕ
Σc
<α

i,j (x̄) is the ith τ -Σc
<α-formula with j free variables.

Notice that if α = β + 1, then ~KA<α is essentially the same as ~KAβ ,
up to some computable permutation of the columns.

The jump of a structure was defined by adding ~KA to it. By iterating
this operation, we could define the nth jump of a structure for finite
natural numbers n. For transfinite ordinals, we have the following
definition.

Definition X.2. Given a τ -structure A and an infinite computable
ordinal α, we define the α-jump of A to be the new structure obtained
by adding the complete r.i.-Σc

<α relation to it. That is, we let

A(α) = (A, ~KA<α).

A(α) has the same domain as A but a larger vocabulary. It is a τ ′-
structure, where τ ′ consists of τ together with infinitely many new

191
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relation symbols naming the relations K<α
i,j = {b̄ ∈ Aj : A |= ϕ

Σc
<α

i,j (b̄)}
for i, j ∈ N.

Recall that 0(β+1) is Σ0
1+β-complete and that the difference between

β + 1 and 1 + β is not a typo (Theorem V.16). The ordinals β + 1 and
1 + β are the same when β is finite but different when it is infinite. If
β is infinite, 1 + β = β. That is an unfortunate historical mismatch
of notations between the 0(δ) and Σ0

γ hierarchies. The same mismatch
carries over to the β jumps of structures. Thus, if α is an infinite
successor ordinal, say α = β+1, then A(α) is defined by adding the Σ0

β-

complete relation, which is equivalent to the Σ0
1+β-complete relation.∗

If α is a limit ordinal, then A(α) is defined by adding the Σ0
β-complete

relations for all β < α in a uniform way.
Notice that the definition of the α-th jump of a structure is in-

dependent of the presentation of A. The isomorphism type of A(α)

depends only on the isomorphism type of A. We should mention that
the isomorphism type of A(α) also depends — in a totally unessential
way — on the Gödel numbering of the τ -Σc

<α-formulas, in the same
unessential way that the Turing jump of a real depends on the Gödel
numbering of the partial computable functions.

Remark X.3. Let us remark that the αth jump preserves effective
bi-interpretability (see Definition VII.33 for the case ∆c

α = ∆c
1). That

is, if A and B are effectively bi-interpretable, then so are A(α) and B(α).
The interpretation maps are the same. All one has to observe is that

the relation ~KA
B

<α within the copy AB is r.i.-Σc
<α in B and therefore r.i.

computable in B(α).

X.1. The α-jump-inversion theorems

Friedberg’s jump-inversion theorem [Part 1, Theorem ??] says that
every Turing degree above 0′ is the jump of some degree. Friedberg’s
theorem can be generalized to transfinite iterates of the Turing jump
as follows:

Theorem X.4 (Iterated-jump-inversion theorem for reals. MacIn-
tyre [Mac77]). For every computable ordinal α and every real Z ≥T
0(α), there exists an X such that

X(α) ≡T X ⊕ 0(α) ≡T Z.

∗ That equivalence is assuming we have a computable isomorphism between β
and 1 + β.
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The proof of this theorem is essentially the same as that of Fried-
berg’s theorem we gave in [Part 1, Theorem ??], but using α-Cohen
generic reals instead of 1-Cohen generic reals. We will introduce α-
generic ω-presentations and prove this theorem in Section X.2 below.

There are two different ways one could generalize this theorem to
the α-jump of structures. We call them the first and second jump-
inversion theorems. The first jump-inversion theorem is a generaliza-
tion to the semi-lattice of structures ordered by effective interpretabil-
ity.

Theorem X.5 (First iterated-jump-inversion theorem). For every
computable ordinal α and every structure A that computably codes
0(α+1), there is a structure C whose (α + 1)th-jump is effectively bi-
interpretable with A.

Recall that effective bi-interpretation is one of the strongest no-
tions of equivalence among structures we have in computable structure
theory. For a computable structure theorist, structures that are ef-
fectively bi-interpretable are essentially the same structure. For more
background, see [Part 1, Section VI.3.1].

Recall that a structure A computably codes a real X if X is com-
putable in every copy of A (see [Part 1, Section ??]). Even if a
structure B does not computably code 0(α+1), we can still apply the
theorem above to get a structure C whose (α+ 1)th-jump is effectively
bi-interpretable with B ⊕ 0(α+1), where B ⊕ 0(α+1) is built by adding
zero-ary relations to A coding 0(α+1). To be precise, A = (B, R) where
R = 0(α+1) × {〈〉} ⊆ N×B<N.

We prove this theorem in Section X.3.

The second α-jump-inversion theorem is not a generalization of the
usual jump-inversion theorem to a more general class of degrees but a
generalization in the sense that, given Z ∈ 2N, it yields X ∈ 2N with
X(α) ≡T Z and some extra properties.

Theorem X.6 (Second iterated-jump-inversion theorem). If Z ∈
2N computes a copy of B(α), then there is an X ∈ 2N satisfying X(α) ≡T
Z that computes a copy G of B.

We will prove this theorem on page 196 below.

X.2. Σc
α-generics

In this section, we prove the iterated version of Friedberg’s jump
inversion theorem for reals, Theorem X.4, and we prove the second
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iterated-jump-inversion theorem for structures, Theorem X.6. To prove
these theorems, we need a new tool: Σc

<α-generics.

Definition X.7. An injective enumeration g of a structure A is
Σc
α-generic if for every Σc

α-definable relation R ⊆ A?, g either forces in
or forces out of R. That is, either there is an initial segment of g in R
(forces in) or there is an initial segment of g with no extensions in R
(forces out). We say that g is Σc

<α-generic if, for every Σc
<α-definable

relation R ⊆ A?, g forces either in or out of R.

If ϕ(Ġ) is an N-Σc
<α-sentence, then the set R ⊂ A? of p̄ forcing ϕ

is Σc
<α-definable by the formula Forceϕ. Thus, if g is a Σc

<α-generic

enumeration, then for every N-Σc
<α-sentence ϕ(Ġ), g has an initial seg-

ment p̄ that either forces ϕ or has no extension that forces ϕ, and hence
forces ¬ϕ. We thus get the following version of Corollary VII.11.

Lemma X.8. If g is Σc
<α-generic, for every N-Σc

<α-sentence ϕ, there
is a p̄ ⊂ g that decides ϕ.

One can then adapt Lemma VII.12 and the forcing-equals-truth
theorem, Theorem VII.13, as follows:

Theorem X.9 (Forcing-equals-truth for Σc
<α-generics). If g is an

Σc
<α–generic enumeration of A, G = g−1(A), and ϕ(Ġ) is an N-Σc

α-
sentence, then

ϕ(G) ⇐⇒ (∃p̄ ⊂ g) p̄  ϕ.

Proof. The proof is identical to that of Theorem VII.13 using
Lemma X.8 above instead of Corollary VII.11, and using transfinite
induction only up level Σc

<α in the proof of Lemma VII.12.
The reason this theorem works for Σc

α-sentences, and not just Σc
<α-

sentences, is that the Σ-case of the transfinite induction does not need
to use the genericity of G. That is, if ϕ is of the form

∨∨
i ψi, then ϕ(G)

holds if and only if ψi(G) holds for some i, and p̄  ϕ if and only if
p̄  ψi for some i. �

The advantage of Σc
<α-generics over Lc,ω-generics is that Σc

<α-generics
are easier to compute:

Lemma X.10. Let α be an infinite computable ordinal. Every ω-
presentation A has a Σc

<α-generic enumeration computable in D(A(α)).

Proof. We build g as the union of an increasing sequence {p̄s :
s ∈ N} with p̄s ∈ A?. At stage s + 1 = 2e, we define p̄s+1 to decide
the e-th Σc

<α-definable relation Re ⊆ A? as follows: If there is a q̄ ⊇ p̄s
with q̄ ∈ Re, we let p̄s+1 = q̄. Otherwise, we let p̄s+1 = p̄s. At stage
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s+ 1 = 2e+ 1, let p̄s+1 = p̄s
aa, where a is the ≤N-least element of the

ω-presentation A which has not been included in p̄s. Finally, we let
g =

⋃
s p̄s ∈ AN. It is not hard to check that g is one-to-one, onto, and

Σc
<α-generic.

To carry out this construction, we need to check at each stage s+ 1
whether there exists a q̄ ⊇ p̄s with q̄ ∈ Re or not. The set of p̄’s such
that ∃q̄ ⊇ p̄ (q̄ ∈ Re), namely the downward closure of Re, is Σc

<α-

definable, and its index can be obtained uniformly from e. Hence, ~KA<α
can decide whether p̄s belongs to the downward closure of Re or not.

The whole construction is thus computable in ~KA<α. �

Lemma X.11. Let α be an infinite computable ordinal. If G is a
Σc
<α-generic ω-presentation, then

D(G(α)) ≡T D(G)(α).

Proof. That ~KG<α ≤T D(G)(α) follows immediately from Lemma
V.6 and Theorem V.16.

For the other direction, recall that, for each m, there is an N-Σ0
β

sentence ϕm(Ġ) for some β < α that holds of D(G) if and only if
m ∈ D(G)(α). We can find these sentences computably in m (Lemma
V.15). We then have that

m ∈ D(G)(α) ⇐⇒
∨∨
n∈N

(
g � n  ϕm

)
⇐⇒

∨∨
n∈N

(
G |= Forceϕm(〈0, ..., n〉)

)
⇐⇒ G |=

∨∨
n∈N

Forceϕm(〈0, ..., n〉),

where the first equivalence follows from the forcing-equals-truth theo-
rem, the second from the definition of Forceϕm , and the third by the def-
inition of forcing a Σ-formula. The sentence

∨∨
n∈N Forceϕm(〈0, ..., n〉)

is Σc
β, and hence we can decide whether it holds or not using ~KG<α. �

The proof of the iterated-jump-inversion theorem for reals uses Σc
<α-

Cohen-generic reals, the same way the proof of the Friedberg jump in-
version theorem [Part 1, Theorem ??] used 1-generic reals. We could
redevelop the whole theory of Σc

<α-generics for the case of Cohen forc-
ing, or we could just note that Cohen generic reals are essentially the
same as the generic enumerations of the structure C = (C;P ), which
has only one unary relation symbol, P, and which has infinitely many
elements in P and infinitely many outside of P . The enumerations g of
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C are in one-to-one correspondence with the infinite binary sequences
G ∈ 2N, where G(n) = 1 ⇐⇒ g(n) ∈ P . We say that G ∈ 2N is
Σc
<α-Cohen-generic if it can be obtained this way from a Σc

<α-generic
enumeration g of C.

Recall that the iterated-jump-inversion theorem for reals, Theorem
X.4, states that, for every Z ≥T 0(α), there exists a G ∈ 2N such that

G(α) ≡T G⊕ 0(α) ≡T Z.

Proof of Theorem X.4. The iterated-jump-inversion the-
orem for reals. Notice that since C is computable, D(C(α)) ≡T 0(α).
Let g be a Σc

<α-generic enumeration of C that is computable in Z and
is built as follows: Carry out the construction of Lemma X.10 step by
step except that, at stages s + 1 = 2e + 1, define p̄s+1 = p̄s

aa, where
a is the ≤N-least element of P C r p̄s if e ∈ Z, and the ≤N-least ele-
ment of (C r P C) r p̄s if e 6∈ Z.† Let G be the associated Σc

<α-generic
ω-presentation and G be the associated Σc

<α-Cohen-generic.
Clearly G(α) ≥T G⊕0(α). From G⊕0(α), we can compute Z because

G⊕0(α) can reconstruct the sequence 〈p̄s : s ∈ N〉 in the construction of
g: Using 0(α), we can run the even stages s+1 = 2e of the construction
of g, and using G, we can figure out if, at the odd stages s+ 1 = 2e+ 1
we picked an element a from P or from C rP .We can thus figure out
whether e ∈ Z or not. Finally, to see that Z can compute G(α), we first
note that G ≡T D(G) and then that

G(α) ≡T D(G)(α) ≡T D(G(α)) ≡T ~KG<α ≤T ~KC<α ⊕ g ≤T Z,
where the second Turing equivalence uses Lemma X.11 and that G is

Σc
<α-generic, the first Turing inequality uses that ~KG<α = g−1(~KC<α), and

the last Turing inequality uses that ~KC<α ≡T 0(α) ≤T Z. �

We can now prove the second iterated-jump-inversion theorem for
structures, Theorem X.6. Recall that it states that if Z computes B(α),
then there is a real X with X(α) ≡T Z that computes a copy G of B.

Proof of Theorem X.6. . The second iterated-jump-inversion
theorem. Consider a Σc

<α-generic enumeration g of B computable in
D(B(α)), and hence in Z. Let G = g−1(B) and

Y = D(G).

Since ~KG<α = g−1(~KB<α), we have that

D(G(α)) ≡T ~KG<α ≤T ~KB<α ⊕ g ≤T Z.
† To see why g is onto notice that, since Z is non-computable, it is infinite and

co-infinite.
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Since G is Σc
<α-generic,

D(G(α)) ≡T D(G)(α) = Y (α),

as proved in Lemma X.11. Thus, Y (α) ≤T Z. By the α-jump inversion
theorem for reals (Theorem X.4) relativized to Y , there is a real X ≥T
Y with X(α) ≡T Z. This X computes G, a copy of B. �

As a corollary, we get that the degree spectrum of the α-jump of a
structure is what it should be: the set of α-jumps of the degrees in the
spectrum of the original structure.‡

Corollary X.12. For every structure B,

DgSp(B(α)) = {Z ∈ 2N : Z ≥T X(α) for some X ∈ DgSp(B)}.

Proof. For the ⊇-inclusion, it is clear that if Z ≥T X(α) for some
X ∈ DgSp(B), then Z computes a copy of B(α). For the ⊆-inclusion,
if Z computes a copy of B(α), then by the theorem, there is an X such
that Z ≥T X(α) and X ∈ DgSp(B). �

X.3. The first iterated-jump-inversion theorem

Recall that the first iterated-jump-inversion theorem states that if
a structure A computably codes 0(α+1), it is effectively bi-interpretable
with the (α + 1)st jump of another structure C. The main ideas in
the proof of this theorem are due to Goncharov, Harizanov, Knight,
McCoy, R. Miller, and Solomon [GHK+05]. The notions of jump of
a structure or effectively bi-interpretable did not exist back then, so
they did not really prove this same theorem, but the construction of
the structure C below is theirs.

Proof of Theorem X.5. The first iterated-jump-inversion
theorem. If α is finite, the theorem follows by iterating the first
single-jump-inversion theorem [Part 1, Theorem ??] α times. Sup-
pose α is infinite, and hence that the (α + 1)st jump of a structure is

built by adding to it the complete r.i.-Σc
α relation ~KAα .

Every structure is effectively bi-interpretable with a graph [Part
1, Theorem ??]. Therefore, we may assume A is a graph (A;E) with
domain A and edge relation E. The key idea behind this proof is the
following: Pick two structures such that distinguishing between their
copies is ∆0

α+1-complete, and attach to each pair of vertices of A one
of the two structures, depending on whether or not there is an edge
between them. Let us look at the details.

‡ Recall from [Part 1, Definition V.1] that the degree spectrum of a structure
M is defined as DgSp(M) = {X ∈ 2N : X computes a copy of M}.
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Consider two computable, rigid,§ uniformly ∆0
α+1-categorical¶ struc-

tures, K and L, which are α-back-and-forth equivalent but (α + 1)-
back-and-forth incomparable. So, we have that K ≡α L, K 6≤α+1 L
and L 6≤α+1 K. Assume also that their back-and-forth relations are
computable up to α and that there are computable Πc

α+1 formulas wit-
nessing that K and L are ≤α+1-incomparable, i.e., Πc

α+1 formulas ϕ
and ψ such that K |= ϕ ∧ ¬ψ and L |= ¬ϕ ∧ ψ. Examples of such
structures will be built in Lemma X.14 below. Just to simplify the
notation, let us assume these structures are linear orderings, as are the
ones we will build in Lemma X.14. Let us use E to denote the ordering
relation on these structures, so we have K = (K;EK) and L = (L;EL).
If we are given a computable ω-presentation that we know is isomor-
phic to either K or L, we can use the Πc

α+1 formulas ϕ and ψ to tell
whether we have a copy of K or of L in a ∆0

α+1 way. Conversely, from
the pair-of-structures theorem (Theorem VIII.7), we know that distin-
guishing between computable ω-presentations of K and L is ∆0

α+1-hard.
So, distinguishing between computable ω-presentations of K and L is
∆0
α+1-complete.

We can now define C by removing the edge relation E and attaching
to each pair of vertices of A one of these two structures, depending on
whether there is an edge between the two vertices or not. We define
C as (C;A,R), where A is a unary relation and R a 4-ary relation.
The domain C of C consists of the disjoint union of the domain A of
A and another set B. We use the unary relation A to identify the
elements of A. Partition B into infinitely many sets Ba,b indexed by
〈a, b〉 ∈ A2. On Ba,b, define a binary relation Ra,b such that (Ba,b;Ra,b)
is a structure isomorphic to either K or L, and it is isomorphic to K if
and only if 〈a, b〉 ∈ E. Finally, we define the 4-ary relation

R ⊆ A× A×B ×B

by putting together the relations Ra,b. That is R = {〈a, b, c, d〉 : 〈c, d〉 ∈
Ra,b}.

§A structure is rigid if it has no non-trivial automorphisms.
¶A computable structure A is uniformly ∆0

β-categorical if there is a ∆0
β operator

Γ such that, for all copies G of A, ΓD(G) is an isomorphism between G and A.
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C can be easily effectively interpreted in A as follows. Let B =
N× A2, and let CA = A ∪B. Then define R as follows:

RC
A

= {〈a, b, 〈n, a, b〉, 〈m, a, b〉〉 ∈ A2 ×B2 :

for 〈a, b〉 ∈ E & 〈n,m〉 ∈EK}
∪ {〈a, b, 〈n, a, b〉, 〈m, a, b〉〉 ∈ A2 ×B2 :

for 〈a, b〉 ∈ A2 r E & 〈n,m〉 ∈EL}.

To show that this is actually an effective interpretation of C(α+1), and

not just of C, we need to show that ~KC
A
α (viewed as a relation in N×A<N)

is r.i. computable in A. To see this, fix an ω-presentation of A. The
construction above then gives us an ω-presentation CA of C. Use the
α-jump-inversion theorem for reals (Theorem X.4) to get an oracle X ∈
2N such that X(α+1) ≡T D(A) (we can do this because A computably

codes 0(α+1) by assumption). We will now construct C̃, a second copy of
C that is computable in X. For each 〈a, b〉 ∈ A2, X(α+1) knows whether
or not 〈a, b〉 ∈ E, and hence computably in X, we can uniformly build

structures B̃a,b for each 〈a, b〉 ∈ A2 such that

B̃a,b ∼=

{
K if 〈a, b〉 ∈ E,
L if 〈a, b〉 6∈ E.

To do this, we use the Pair-of-Structures Theorem (Theorem VIII.8).

We then define C̃ by putting the set A together with disjoint copies

of all the B̃a,b for 〈a, b〉 ∈ A2 and defining

R̃(a, b, n,m) ⇐⇒ 〈n,m〉 ∈EB̃a,b .

An important point is that D(A) can compute an isomorphism between

C̃ and CA. This is because X(α+1) can compute isomorphisms between

B̃a,b and Ba,b for all 〈a, b〉 ∈ A2, as noted in Remark VIII.9. Since

D(C̃) ≤T X, we have that ~KC̃α is computable in X(α+1), and hence

in D(A). Going through the isomorphism between C̃ and CA, we get

that ~KC
A
α is also computable in D(A). Since this worked for every ω-

presentation of A, we have that ~KC
A
α is r.i. computable in A. This

proves that we have an effective interpretation of C(α+1) in A.
The effective interpretation of A within C(α+1) is more direct. The

domain of the interpretation is, of course, A itself, as identified by the
relation A within C. Notice that E is ∆c

α+1 in C. This is because, to
decide if 〈a, b〉 ∈ A2, we need to decide whether Ba,b ∼= K or Ba,b ∼= L,
which we can do by checking which of the Πc

α+1 sentences ϕ and ψ
holds on the structure Ba,b.
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The last step is to check that these two effective interpretations
form an effective bi-interpretation, i.e., that the composition of the
isomorphisms are r.i. computable in the respective structures. First,
notice that the interpretation of A inside C inside A is the identity, and
hence obviously r.i. computable in A. Second, for the interpretation of
C inside A inside C, the A-part stays the same. The copies of Ba,b are
not the same, but since they are isomorphic to either K or L, and K
and L are rigid and uniformly relatively ∆0

α+1-categorical, the unique

isomorphism between them can be computed in C(α+1). Let us see why
this is the case. Since K and L are uniformly ∆0

α+1-categorical, they
have c.e. Scott families of τ -Σc

α+1 formulas (Remark VII.22). These

formulas are Σc
1 over the vocabulary of C(α+1), which contains symbols

for all Σc
α-relations. So, K and L are computably categorical relative

to D(C(α+1)). We thus have that the unique isomorphism from C to
the copy of C inside A inside C is r.i.-computable in C(α+1). �

Remark X.13. The structure we built in the proof above is some-
times called a strong (α + 1)st jump inversion. The reason is that it
satisfies the following stronger property:

For every real X, if X(α+1) computes a copy of A,
then X computes a copy of C.

We showed that this was the case when we built C̃ in the proof above.

Lemma X.14. For every computable ordinal α, there exist com-
putable, rigid, uniformly ∆0

α+1-categorical linear orderings which are
α-back-and-forth equivalent and (α + 1)-back-and-forth incomparable.
Furthermore, the α back-and-forth relations are computable up to α,
and the (α+1) back-and-forth incomparability is witnessed by two com-
putable Πc

α+1 formulas.

Proof. Let us start with an intermediate step. Let us first show
that there exist computable ordinals A and B with A <α+1 B which
are rigid, uniformly relatively ∆0

α+1-categorical, and have the back-
and-forth relations computable up to α + 1. We consider two cases
depending on whether α is even or odd.

If α + 1 = 2β + 1, consider the linear orderings

A = ωβ + ωβ and B = ωβ.

It follows from Lemma II.38 that ωβ · 2 <2β+1 ω
β. Their parametrized

Scott rank is 2β (Corollary II.40). To get this Scott rank, B needs no
parameters, while A needs one parameter, namely the first element of
the second copy of ωβ. This parameter is Π0

2β, as it is the only point
which is a β-limit (see Exercise II.20). Then, as in Case 2 on page 45,



X.3. THE FIRST ITERATED-JUMP-INVERSION THEOREM 201

we get that these structures have parameterless Scott rank 2β+1. This
means that every element has a Σin

2β+1 definition. These definitions are

actually Σc
2β+1 — we leave it to the reader to verify this.‖ So, the

structures are uniformly ∆0
α+1-categorical. It is also easy to see that

there is a computable Πc
2β+1 sentence true in B, false in A, saying that

there is no β-limit.
If α + 1 = 2β + 2, consider the linear orderings

A = ωβ+1 + ωβ, and B = ωβ+1.

It follows from Exercise II.44 that ωβ+1 + ωβ <2β+1 ωβ+1.∗∗ Their
parametrized Scott rank is 2β + 2 (Corollary II.40). B does not need
parameters, while A needs one parameter, namely the first element
of the rightmost copy of ωβ. This parameter is Π0

2β+1, as it is the
rightmost β-limit (see Exercise II.20). Then, as in Case 3 on page 46,
we get that these structures have parameterless Scott rank 2β+2. This
means that every element has a Σin

2β+2 definition. These definitions are
actually Σc

2β+2 — again, we leave it to the reader to verify this. So, the

structures are uniformly ∆0
α+1-categorical. It is also easy to see that

there is a computable Πc
2β+2 sentence true in B, false in A, saying that

there is no rightmost β-limit.
All well-orders are rigid. The back-and-forth relations are com-

putable up to α+1, as they can be calculated using Exercise II.44. So,
A and B satisfy all the properties we wanted them to. Finally, let

K = A+ 1 + B∗ and L = B + 1 +A∗.
Here B∗ is the reverse linear ordering, that is, (B;E)∗ = (B;D). It
is not hard to see that, given infinite well-orderings C, D, E , and F ,
C + 1 + D∗ ≤α E + 1 + F∗ if and only if C ≤α E and D ≤α F .††

Since the structures A and B that we defined above satisfy A ≡α B
and B 6≤α+1 A, we get K ≡α L, K 6≤α+1 L and L 6≤α+1 K. Rigidity,
uniform ∆0

α+1 categoricity,‡‡ and the computability of the back-and-
forth relations remain true in K and L. �

‖These definitions say that the interval to the left of the point or between the
middle element and the point has a certain order-type.

∗∗When we apply Exercise II.44, we are in the situation where α = β, δ = 0,
β1 = ω + 1, γ1 = ω, m = 1, and n = 0.

†† That C ≤α E and D ≤α F imply C + 1 + D∗ ≤α E + 1 + F∗ follows from
Lemma II.37. That C + 1 +D∗ ≤α E + 1 +F∗ implies C ≤α E and D ≤α F follows
from the observation that the 1 in the middle is the only point that is a left- and
right-limit in both linear orderings, and hence has a Πc

2 definition and hence must
be matched.

‡‡ ∆0
α+1 categoricity is uniform because, since the middle 1 is Πc

2-definable, we

easily pick it up first using a ∆0
α+1 oracle.



202 X. ITERATING THE JUMP OF A STRUCTURE

Goncharov, Harizanov, Knight, McCoy, R. Miller, and Solomon
[GHK+05] introduced this construction mainly to prove the following
result:

Corollary X.15. There is a structure that is ∆0
α+1-categorical but

not relatively so.

Proof. Assume α is infinite, and hence that 0(α+1) is ∆0
α+1-Turing

complete. For finite n, the proof is the same, as long as we keep in
mind that it is 0(n) who is ∆0

n+1 Turing complete, instead of 0(n+1).
Using ideas of Nurtazin [Nur74], Goncharov showed that there

exists a computably categorical structure that is not relatively com-
putably categorical [Part 1, Theorem ??]. Relativizing [Part 1, Theo-
rem ??] to 0(α+1), we get a 0(α+1)-computable structure A that is 0(α+1)-
computably categorical, but not 0(α+1)-relatively computably categor-
ical. Let C be the structure built from A in the proof of the first
(α + 1)-jump-inversion theorem. From Remark X.13, we get that C
has a computable presentation. Thus, we may assume that C is that
computable ω-presentation and that A is the ω-presentation obtained
from the effective bi-interpretation with C(α+1). We claim that C is
∆0
α+1-categorical but not relatively so.

To prove that C is ∆0
α+1 categorical, let Ĉ be a computable copy of C.

Then, Ĉ is associated via the effective bi-interpretation with a copy Â of
A. Notice that the ω-presentation Â is computable in 0(α+1). Since A
is 0(α+1)-computably categorical, 0(α+1) can compute an isomorphism
between A and Â. Using the effective bi-interpretations, 0(α+1) can
then compute an isomorphism from C to Ĉ.

Let us now prove that C is not relatively ∆0
α-categorical. Since A

is not 0(α+1)-relatively computably categorical, there is a copy Â of
A computable in some oracle Y ≥T 0(α+1) that is not Y -computably
isomorphic to A. Let Ĉ be the copy of C associated via the effective
bi-interpretation with Â. Use the α-jump-inversion theorem for reals
(Theorem X.4) to get X ∈ 2<N, with X(α+1) ≡T Y . The oracle X might

not compute the ω-presentation Ĉ, but as in the proof of the theorem,

it computes a copy C̃ of Ĉ that is X(α+1)-computably isomorphic to Ĉ.
We claim that there is no X(α+1)-computable isomorphism between C
and C̃. That would prove that C is not relatively ∆0

α+1-categorical. As

for the claim, if there was an X(α+1)-computable isomorphism between

C and C̃, there would be one between C and Ĉ, and using the effective
bi-interpretations, we would get a X(α+1)-computable isomorphism be-
tween A and Â, which we assumed does not exist. �
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Theorem X.5 works only for successor ordinals α + 1. Ivan Soskov
[Sos13] proved that it is not possible to invert the λ-jump for limit
ordinals λ, even up to Muchnik equivalence. He showed that there
exists a structure A which computably codes 0(ω), but such that there
is no structure C whose ω-jump is Muchnik equivalent to A. (Recall
that two structures are Muchnik equivalent if they have the same degree
spectra [Part 1, Section VI.1].)

Corollary X.15, which was proved in [GHK+05], is stated only for
successor ordinals because the proof we give does not work for limit
ordinals. The limit case was proved a few years later by Chisholm,
Fokina, Goncharov, Harizanov, Knight, and Quinn [CFG+09].





CHAPTER XI

The isomorphism problem

So far we have been looking at complexity questions about single
structures. Let us concentrate now on classes of structures. We con-
sider classes K ⊆ Modτ that are closed under isomorphisms, that is,
such that if A ∼= B and A ∈ K, then B ∈ K too. Recall that Modτ
is the class of all ω-presentations of τ -structures. The first way to
measure the complexity of a class of structures is by how hard it is
to recognize that a structure belongs to it. We already showed that a
class K that is closed under isomorphisms is N-Σ0

α (as a subset of 2N)
if and only if it is axiomatizable by a τ -Σc

α sentence (Theorem VII.25).
A second measure of complexity is by how hard it is to tell when two
structures within the class are isomorphic to each other. We call this
the isomorphism problem:

Definition XI.1. Given a class of ω-presentations K ⊆ Modτ , we
let

Iso(K) = {〈A,B〉 ∈ K2 : A ∼= B}.

Iso(K) is an equivalence relation on K. Viewing K as a subset of 2N,
Iso(K) is Σ1

1, as that is what it takes to say that there exists a function
which is an isomorphism. The study of Σ1

1 equivalence relations on reals
is a deep and active topic of investigation in descriptive set theory.

XI.1. Complexity as set of pairs

The first way to study the complexity of the isomorphism problem is
by looking at Iso(K) as a subset of (2N)2, which is itself homeomorphic
to 2N, and look at its complexity as a set. We already mentioned that
it is Σ1

1. For some classes of structures, this set of pairs is Σ1
1 complete,

and for others it is not. An example of a class where this set of pairs
is Σ1

1 complete is the class of linear orderings. Recall that LO denotes
the class of ω-presentations of linear orderings.

Lemma XI.2. Iso(LO) is Σ1
1 complete.

Proof. Let R ⊆ 2N be a Σ1
1 set. We will define a computable map

that, given X ∈ 2N, produces a pair of structures 〈LX ,HX〉 which are

205
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isomorphic to each other if and only if X ∈ R. The right structure
in the pair is the Harrison linear ordering relative to X (see Lemma
VI.11). We will make LX isomorphic to HX if X ∈ R (the Σ1

1 case)
and LX well-ordered if X 6∈ R (the Π1

1 case).
Let T be a computable tree such that, for X ∈ 2N, X ∈ R if

and only if TX is ill-founded (see the proof of Corollary IV.7). Let
S be a computable operator that outputs the Harrison tree relative
to X, that is, the tree of descending sequences of HX .∗ So, SX is an
ill-founded tree that has no paths hyperarithmetic in X. Recall the
product operation on trees (Definition IV.14): Given two trees T and
S, it produces a new tree T ∗ S such that any path through T ∗ S is
essentially of the form X ⊕ Y , where X is a path through T and Y is
a path through S. Recall also that ≤

KB
denotes the Kleene–Brouwer

linear ordering on N<N from Definition I.24. Define

AX = (TX ∗ SX ;≤
KB

) and LX = AX · ω.
Since SX has paths for all X, we have that AX has a path if and only
if TX does. Equivalently, LX is well-ordered if and only if X 6∈ R.
Furthermore, any path through TX ∗SX must compute a path through
SX , so it cannot be hyperarithmetic in X. So, the Kleene–Brouwer
ordering (TX ∗SX ;≤

KB
) has no descending sequence hyperarithmetic in

X.† So, AX is isomorphic to an initial segment of ωX1 (1+Q) (Theorem
VI.7). Then, ifAX is ill-founded, it must have order type ωX1 +ωX1 ·Q+β
for some β < ωX1 . Using that β + ωX1

∼= ωX1 , we get that, in that case,

LX = AX · ω ∼= (ωX1 + ωX1 ·Q + β) · ω
∼= ωX1 + ωX1 ·Q + (β + ωX1 + ωX1 ·Q) · ω

∼= ωX1 · (1 + Q) · (1 + ω) ∼= ωX1 · (1 + Q).

So, if AX is ill-founded, LX is isomorphic to HX . We then have
that LX ∼= HX if and only if X ∈ R. The map X 7→ 〈LX ,HX〉 reduces
R to Iso(LO). �

The lemma above can be used to show that Iso(K) is Σ1
1-complete

for a whole lot of other classes by reducing LO to K, but only worrying
about the well-orderings and the Harrison linear orderings within LO
and ignoring the rest.

∗Recall that, given a linear ordering P, the tree of descending sequences of P
is TP = {σ ∈ P<N : σ(0) >P σ(1) >P · · · >P σ(|σ| − 1)}. Its infinite paths are
exactly the infinite descending sequences of P. See page 12.

† This is because, if we look into the proof of Theorem I.26, we can see that if
f is a descending sequence in the Kleene–Brouwer ordering of a tree, its jump, f ′,
can compute a path through the tree (as it can be obtained using a limit).



XI.2. COMPLEXITY AS EQUIVALENCE RELATIONS ON THE REALS 207

If a Σ1
1-subset of 2N is not Σ1

1-complete, it must be Borel: This fol-
lows from a theorem in descriptive set theory called Wadge’s theorem,
which uses Σ1

1∧Π1
1-determinacy.‡ The following theorem characterizes

the classes for which Iso(K) is not Σ1
1-complete.

Theorem XI.3. Let K be closed under isomorphisms. The follow-
ing are equivalent:

(1) The isomorphism problem for K is Borel.
(2) K has bounded Scott rank. That is, there is an α < ω1 such that
all structures in K have Scott rank less than α.

Proof. For the implication (2)⇒(1), notice that all structures in K
have Σin

α+2 Scott sentences (Proposition II.26). Hence, if two structures
in K are α + 2-back-and-forth equivalent, they are isomorphic. The
relation ≡α+2 is Π0

2α+4 (just count quantifiers in Definition II.32) and
in particular Borel.

For the implication (1)⇒(2), let α < ω1 be such that Iso(K) is Σ0
α.

For each structure A ∈ K, the class of ω-presentations B which are
isomorphic to A is Σ0

α with parameter D(A). By the Lopez-Escobar–
Vaught theorem, Theorem VII.25, this class must be axiomatizable by
a Σin

α sentence, meaning that A has a Σin
α -Scott sentence. Therefore,

it must have Scott rank at below α (Proposition II.26). �

XI.2. Complexity as equivalence relations on the reals

Reducibilities between classes allow us to classify their complexity
by comparing them to other classes. With this in mind, Friedman and
Stanley [FS89] defined the notion of Borel reducibility. Since then, the
study of Borel reducibility on arbitrary Borel and analytic equivalence
relations has been extremely active in descriptive set theory.

Definition XI.4. (H. Friedman and L. Stanley [FS89]) A class of
structures K is Borel reducible to a class S, written K ≤B S, if there is a
Borel function f : K→ S that preserves isomorphism. That is, f maps
ω-presentations in K to ω-presentations in S, and for all A, Ã ∈ K,

A ∼= Ã ⇐⇒ f(A) ∼= f(Ã).

‡Under AD, Wadge’s theorem [Wad83] states that for every two sets R,S ⊆
2N, either there is a continuous function F : 2N → 2N such that R = F−1(S),
or there is a continuous function G : 2N → 2N such that S = G−1(Rc). When
R = F−1(S), we say that R continuously reduces to S. If S is not Σ1

1-complete
and R is, then R cannot continuously reduce to S. So, by Wadge’s theorem, S
must continuously reduce to the complement of R, which is Π1

1, and hence S is
Π1

1 itself too, and in particular Borel. Wadge’s theorem for Σ1
1 sets uses Σ1

1 ∧Π1
1-

determinacy.
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A class K is on top for Borel reducibility if, for every vocabulary τ ,
the class of τ -structures is Borel-reducible to K.§

Friedman and Stanley first observed that it is enough to use the
vocabulary with only one binary relation (i.e., directed graphs) in the
definition above. Then they built Borel reductions to show that the
classes of graphs [Part 1, Theorem ??], trees, linear orderings [Part
1, Lemma VI.18], 2-step nilpotent groups, and fields are all on top
for Borel reducibility. Camerlo and Gao [CG01] added Boolean alge-
bras to that list. The question of whether torsion-free abelian groups
are also on top has been open since Friedman and Stanley’s ’89 pa-
per. Paolini and Shelah [PS24], and Laskowski and Ulrich [LU] have
recently independently obtained an affirmative solution.

If a class K is on top under Borel reducibility, its isomorphism
problem must be Σ1

1-complete as a set of pairs. This is because if K is
on top under Borel reducibility, LO must reduce to K, and we can use
the Borel reduction and the Σ1

1-completeness of Iso(LO) to show that
Iso(K) must be Σ1

1-complete too. Therefore, if K is on top under Borel
reducibility, it must have unbounded Scott rank below ω1. Classes
like finitely branching trees, p-groups of finite rank, Q-vector spaces,
algebraically closed fields, equivalence structures, etc., all have bounded
Scott rank, and hence are not on top under Borel reducibility. An
example that stands out is torsion abelian groups. Their isomorphism
problem is Σ1

1-complete as sets of pairs, but they are not on top for
Borel reducibility [FS89, Theorem 5]. Briefly, the reason why torsion
abelian groups are not on top for Borel reducibility is that if a G is a

torsion abelian group with ω
D(G)
1 = ωCK1 , then the isomorphism type

of G is determined by its Lc,ω theory (using the Ulm invariants of its
p-sub-groups), while there are non-hyperarithmetic structures A with

ω
D(A)
1 = ωCK1 for which you need all their LD(A)

c,ω theories to determine
their isomorphism type.

XI.3. Turing-computable reducibility

If the reduction f in the definition of Borel reducibility (Definition
XI.4) is continuous, we say that K is continuously reducible to S. If
the reduction f is computable, we say that K is Turing-computable
reducible to S. The notion of Turing-computable reducibility between

§In the literature, these classes are sometimes called Borel complete. We want to
avoid that notation here. The reason is that when we say that K is Σ1

1-complete,
we mean that there is a continuous reduction from any Σ1

1 subset of 2ω to the
isomorphism problem of K as a set and not as an equivalence relation. Reductions
that preserve equivalence relations are quite different.
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classes of structures was first studied by Calvert, Cummins, Knight,
and S. Miller [CCKM04]. A class K is then on top for Turing-
computable (continuous) reducibility if, for every computable vocab-
ulary τ , the class of τ -structures Turing-computably (continuously)
reduces to K.

Notice that K is continuously reducible to S if and only if it is
Turing-computable reducible to S relative to some oracle X. The fol-
lowing theorem connects Borel reducibility with Turing-computable re-
ducibility. We use K(α) to denote the class of α-jumps of the structures
in K (see Chapter X).

Theorem XI.5. A class K Borel reduces to a class S if and only
if there is an oracle X and an X-computable ordinal α such that K(α)

X-Turing computably reduces to S.

Proof. The (⇐) implication is straightforward, as we would then
have a ∆0

α(X) reduction from K to S.
For the (⇒) implication, let Φ be a Borel reduction from K to S. Let

X and α be such that Φ is ∆0
α(X). There is an X-computable operator

Ψ such that Φ(D(B)) = Ψ(D(B)(α)) for every B ∈ K. Notice that we
want an operator that acts on D(B(α)), while Ψ acts on D(B)(α). So, a
bit more work is needed.

Let us define an X-Turing computable reduction Γ from K(α) to S.
Suppose we are given D(A(α)), and we want to define Γ(D(A(α))). We
can uniformly produce a Σc

<α-generic enumeration g of A computable
in D(A(α)) (see Lemma X.10). Let G be the associated Σc

<α-generic
ω-presentation. We then get that

D(G)(α) ≡T D(G(α)) ≤T g ⊕D(A(α)) ≤T D(A(α))

(see Lemma X.11). Furthermore, we can observe from the proofs of
Lemmas X.10 and X.11 that D(G)(α) ≤T D(A(α)) uniformly in A. De-
fine Γ(D(A(α))) as the output of the X-computable operator Ψ when
applied to D(G)(α). We get that Γ(D(A(α))) is a structure isomorphic
to Φ(G), which is isomorphic to Φ(A). �

All the reducibilities produced in [FS89] are not only Borel but
also effective, showing that trees, linear orderings, nilpotent groups,
and fields are actually on top for Turing-computable reducibility. This
happens for a reason:

Corollary XI.6. If K is on top for Borel reducibility, it is on top
for continuous reducibility.

Proof. Let G be the class of graphs, which we know is on top
for continuous reducibility ([Part 1, Theorem ??]). Since K is on top
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for Borel reducibility, G Borel embeds in K, and hence G(α) contin-
uously embeds in K for some ordinal α. Let G(−α) be the class of
α-jump inversions of all graphs, as in the first iterated-jump-inversion
theorem, Theorem X.5.¶ The class G(−α) reduces to G via effective
bi-interpretability (again by [Part 1, Theorem ??]). So G, which is
effectively bi-interpretable with G(−α)(α), continuously embeds in G(α),
which continuously embeds in K. �

The fact that Turing-computable reducibility is finer than Borel re-
ducibility allows us to get finer comparability results. For instance, any
two classes of structures with countably-infinite many models are Borel-
equivalent. However, this is not the case for Turing-computable re-
ducibility, and an interesting structure can be found among the classes
with only countably many models (see [KMVB07]). There are even
classes with finitely many structures that are not trivial under Turing-
computable reducibility. One of the most interesting facts about Turing-
computable reducibility is that it preserves the back-and-forth struc-
ture:

Theorem XI.7 (Pull Back theorem). (Knight, S. Miller and Van-
den Boom [KMVB07]) Let Φ be a Turing computable reduction from
K to S. Then, for every Πc

α-sentence ϕ, there is a Πc
α sentence ϕ∗ such

that, for all A ∈ K,

A |= ϕ∗ ⇐⇒ Φ(A) |= ϕ.

Proof. Consider the forcing that produces generic copies of A
for A in K. Let ψ be the N-Π0

α-formula that says that the structure
Φ(Ġ) satisfies ϕ. Let ϕ∗ be the sentence Forceψ(〈〉), which says that

the empty tuple forces Φ(Ġ) to satisfy ϕ. Notice that the sentence
Forceψ(〈〉) does not depend on the structure A.

If A |= ϕ∗, then 〈〉  ψ, and hence for every generic copy G of
A, Φ(G) satisfies ϕ. Since Φ preserves isomorphisms, Φ(A) |= ϕ too.
Conversely, if Φ(A) |= ϕ, then since Φ preserves isomorphisms, Φ(G) |=
ϕ for all generic copies G of A. It follows that 〈〉  ψ, and hence that
A |= ϕ∗. �

Corollary XI.8. Let Φ be a Turing computable reduction from K
to S and A a structure in K. Then Πc

α-Th(Φ(A)) ≤m Πc
α-Th(A).

¶ Note that the construction in the proof of Theorem X.5 works even if the
graph does not computably code 0(α). The α-th jump of the inversion will then be
equivalent to the original graph joined with 0(α).
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Proof. To see this, one has to notice that the map from ϕ to ϕ∗

of the previous theorem is computable in ϕ. This map provides the
desired many-one reduction. �

Corollary XI.9. Let Φ be a Turing computable reduction from K
to S, let A and Ã be structures in K, and let α be any ordinal. Then

A ≤α Ã ⇒ Φ(A) ≤α Φ(Ã).

Proof. Assume A ≤α Ã. We want to show that every Πin
α sen-

tence true about Φ(A) is also true about Φ(Ã). By relativization, the
lemma above works for all infinitary formulas as well, not just the com-
putable ones. So, if a Πin

α sentence ϕ is true about Φ(A), then the Πin
α

sentence ϕ∗ is true about A, and hence about Ã, and hence ϕ is true

about Φ(Ã). �

This theorem allowed Knight, S. Miller and Vanden Boom [KMVB07]
to characterize the classes K such that K Turing-computably reduces
to S for certain fixed classes S. An interesting example is Q-vector
spaces:

Corollary XI.10. If a class K Turing-computably embeds in the
class VS of Q-vector spaces, then there exists a computable sequence of
Πc

2 sentences 〈ψn : n ∈ N〉 such that:

• ϕn implies ϕn+1 for all n, and
• if two structures satisfy the same sentences from this sequence,

they are isomorphic.

Proof. Let ϕn be the Πc
2 sentence that says that a Q-vector space

does not have n + 1 linearly independent vectors, or, in other words,
that it has dimension less than or equal to n. Let ψn be the formula ϕ∗n
given by the theorem above. It is not hard to verify that the formulas
ψn are as needed. �

The converse of this corollary is also true [KMVB07]. To prove
this, one first has to computably build, from a structure A ∈ K, a
D(A)-computable function f : N → N whose lim-inf is the greatest n
such that A |= ψn, and then use this function to computably build a
vector space whose dimension is the lim-inf of f , using similar ideas to
those in [Part 1, Lemma VII.13]. We omit the details as they are not
relevant to the material in this chapter.

XI.4. The isomorphism problem on indices

Another way of studying the complexity of the isomorphism prob-
lem is by looking at it as an equivalence relation on numbers, namely
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on the indices of the computable structures in the class. Let

iso(K) = {〈n,m〉 ∈ ω2 : n and m being indices

for isomorphic computable structures in K}.

At first, it might seem that there should not be any meaningful differ-
ence between the study of iso(K) and Iso(K) on natural classes of struc-
tures. Surprisingly enough, recent work has shown that there are in-
teresting qualitative differences [FF09, FFH+12, CHM12, Mon16].

Definition XI.11. We say that a class of structures K is effectively
reducible to a class S if there is a computable function f : ω → ω which
maps indices of computable structures in K to indices of computable
structures in S such that, for indices m and n of structures in K,

〈m,n〉 ∈ iso(K) ⇐⇒ 〈f(m), f(n)〉 ∈ iso(S).

A class of structures K is said to be on top for effective reducibility if,
for any computable vocabulary τ , the class of τ -structures effectively
reduces to it.

E. Fokina, S. Friedman, V. Harizanov, J. Knight, C. McCoy and A.
Montalbán [FFH+12] gave proofs that linear orderings, trees, fields,
p-groups, and torsion-free abelian groups are all on top for effective
reducibility. Montalbán [Mon16] then provided a general method for
proving that a class is on top by showing that if one can build an η-
tree as in Section IX.6 for a non-standard η where paths that are not
equivalent below ωCK1 have non-isomorphic structures, then one can
reduce any Σ1

1-equivalence relation on N to iso(K).
It is not hard to see that Turing-computable reducibility implies

effective reducibility. This implication does not reverse. Effective re-
ducibility does not even imply Borel-reducibility. The main example
is p-groups, which is on top for effective reducibility but not for Borel-
reducibility.

It is not hard to see that if a class is on top for effective reducibil-
ity, its isomorphism-index-set, iso(K), must be Σ1

1-complete. Thus,
Q-vector spaces, equivalence structures, torsion-free abelian groups of
finite rank, etc. cannot be on top because they have arithmetic iso-
morphism problems. So far, this is the only way we know to produce
examples of classes which are not on top.

Definition XI.12. A class K is intermediate for effective reducibil-
ity if it is not on top for effective reducibility, and its isomorphism-
index-set is not hyperarithmetic.
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No specific example of an intermediate class is known. Becker
[Bec13], and independently Knight and Montalbán [unpublished], showed
that such a class of structures exists under the assumption that Vaught’s
conjecture fails (relative to some oracle). We will give a proof of this
in the next chapter.





CHAPTER XII

Vaught’s Conjecture

Vaught’s Conjecture states that the number of countable models
of an Lω1,ω-sentence is either countable or continuum, but never in
between [Vau61]. Of course, we are counting isomorphism types of
models, not ω-presentations. One has to think of Vaught’s Conjec-
ture in the context where the continuum hypothesis (CH) is false, as
otherwise Vaught’s Conjecture is trivially true. The conjecture is still
open.

One of the most important partial results towards Vaught’s conjec-
ture is Morley’s theorem [Mor70]. Morley showed that the number of
countable models of an Lω1,ω-sentence has to be either countable, ℵ1,
or continuum, ruling out all other options. Some years later, Burgess
showed that this is part of a more general behavior: The number of
equivalence classes of a Σ1

1 equivalence relation E on 2N has to be ei-
ther countable, ℵ1, or continuum [Bur78]. This applies to Vaught’s
conjecture, as if K ⊆ Modτ is the class of ω-presentations of some Lω1,ω-
sentence Θ, then Iso(K) is Σ1

1, and the number of countable models of
Θ is the number of equivalence classes of Iso(K). Burgess’s result is
actually a bit stronger. It says that if there are more than ℵ1 equiva-
lence classes, there must be perfectly many classes, meaning that there
is a perfect subset of 2N all of whose members are E-inequivalent. Each
perfect subset of 2N is the set of paths [T ] of some tree T ⊆ 2<N with-
out dead ends and without isolated paths. Such trees are isomorphic
to 2<N, and their sets of paths are homeomorphic to 2N. Perfect sets
always contain continuum many elements. So, we can re-state Vaught’s
conjecture as stating that the set of models of an Lω1,ω-sentence is either
countable or contains a perfect set of non-isomorphic ω-presentations.
This formulation is now meaningful independent of whether CH holds
or not.

The original statement of Vaught’s Conjecture was for finitary first-
order theories instead of Lω1,ω-sentences, and, as far as we know, the
Lω1,ω formulation we use here may be stronger than the other. Since
most techniques used to study Vaught’s conjecture from the viewpoint

215
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of computability or descriptive set theory work the same for both sit-
uations, and Lω1,ω is better suited for dealing with complexity consid-
erations, it is common for computability or descriptive set theorists to
use the Lω1,ω formulation.

XII.1. The back-and-forth structure

Morley’s theorem can be proved using Silver’s theorem [Sil80]. Sil-
ver’s theorem states that every Borel equivalence relation on 2N has
either countably many or perfectly many equivalence classes.

Proof of Morley’s theorem. Let K ⊆ Modτ be the set of ω-
presentations of an Lω1,ω-sentence. Assume that K has less than con-
tinuum many models. We will show it has at most ℵ1.

For each α < ω1, the α-back-and-forth equivalence relation ≡α
is a Borel equivalence relation on Modτ .

∗ Thus, the number of ≡α-
equivalence classes within K is either countable or continuum. There-
fore, if the number of non-isomorphic structures in K is less than 2ℵ0 ,
the number of ≡α-equivalence classes must be countable for each count-
able ordinal α.

We claim that it follows that, for each α < ω1, the number of struc-
tures in K of Scott rank α is at most countable, implying that the total
number must be at most ℵ1. To see this, just recall that all structures of
Scott rank α have Σin

α+2 Scott sentences (Proposition II.26). Therefore,
if two structures of Scott rank α are (α+ 2)-back-and-forth equivalent,
they must be isomorphic. Since there are only countably many ≡α+2-
equivalence classes, there are only countably many isomorphism types
among the structures of Scott rank α. �

We say that an Lω1,ω-sentence Θ is scattered if it has countably many
≡α-equivalence classes for all α < ω1. By the argument in the proof
above, if a sentence Θ is scattered and the Scott ranks of the models
of Θ are bounded by some α < ω1, then Θ must have countably many
models. The proof above also tells us that if Θ has less than continuum
many models, it must be scattered. Conversely, if a sentence Θ is
scattered, it cannot have perfectly many non-isomorphic models: This
is clear under ¬CH. The proof that it is true under CH uses techniques
from set theory that are beyond the scope of this book.

Definition XII.1. We say that an Lω1,ω-sentence Θ is unbounded
if it has models of arbitrarily high Scott rank below ω1.

∗ Just by counting quantifiers in the definition of ≡α (Definition II.32), one can
see that it is Π0

2α.
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When we refer to a counterexample to Vaught’s conjecture we mean
a scattered, unbounded Lω1,ω-sentence.

Definition XII.2. A class of structures K is Σin
α -small if there are

only countably many different Σin
α -types realized among all the tuples

on all the structures in K.

If two structures are ≡α+2-equivalent, they must realize the same
Σin
α -types, because every tuple in one structure is ≡α-equivalent to a

tuple in the other. So, a class is scattered if and only if it is Σin
α -small for

all α < ω1. Σin
α -small classes are very nice from a complexity point of

view. For instance, if we have a Σin
α -small class, we can define canonical

structural α-jumps, and we can translate many of the results on Σ-small
classes from [Part 1, Chapter ??]. We saw many examples of Σin

1 -small
classes in [Part 1, Chapter ??]. The class of linear orderings is Σin

2 -
small but not Σin

3 small ([Kni86], see [Part 1, Chapter ??]). The class
of Boolean algebras is Σin

n -small for all n ∈ N, but it is not Σin
ω -small

([JS94], see [HM12]).

Definition XII.3. Given a class of structures K, we define its back-
and-forth ordinal as the least ordinal α such that K is not Σα-small.

If Θ has countably many models, we let its back-and-forth ordinal
be ∞. If Θ is a counterexample to Vaught’s conjecture, its back-and-
forth ordinal is ω1.† If Θ has perfectly many models, it cannot be
scattered, so its back-and-forth ordinal must be below ω1.

One can build examples of Lω1,ω sentences with any given back-
and-forth ordinal if one is allowed to choose the axiomatizing sentence
to be of any complexity. But, if one is only allowed to use, say Πin

2

sentences, the highest back-and-forth ordinal we know so far that is
not ∞ is that of Boolean algebras: ω. One is not really losing much
generality by restricting oneself to Πin

2 sentences, as one can transform
any Lω1,ω-axiomatizable class into a Πin

2 -axiomatizable class using Mor-
leyization as in Section II.5. A possible proof of Vaught’s conjecture
may come by proving that no unbounded Πin

2 sentence has back-and-
forth ordinal above ω. This last line is related, but not equivalent, to
Martin’s strengthening of Vaught’s conjecture (see [Gao01] for more
information on the model-theoretic Martin’s conjecture).

XII.2. Minimal theories

Recall that a sentence Θ is unbounded if it has models of arbitrarily
high Scott rank below ω1.

†Since counterexamples to Vaught’s conjecture have uncountably many count-
able models, they realize uncountably many Lω1,ω-types by Lemma II.7.
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Definition XII.4. We say that an Lω1,ω-sentence Θ is minimally
unbounded if it is unbounded, but for every Lω1,ω-sentence ϕ, one of
Θ ∧ ϕ or Θ ∧ ¬ϕ is bounded.

Harnik and Makkai showed that if there is a counterexample to
Vaught’s conjecture, there is one that is minimally unbounded ([HM77],
see also [Ste78, Theorem 1.5.11]). Minimally unbounded Lω1,ω-sentences
have interesting properties, as we will see in the next section. This sec-
tion is dedicated to proving Steel’s theorem. We need two lemmas.

Lemma XII.5. For every structure A, there is a sentence ψA,α such
that, for any other structure B,

B |= ψA,α ⇐⇒ B ≡α A.

Proof. In Lemma VI.14, we defined formulas ϕā,β and ψā,β for
ā ∈ A<N such that, for every structure B and tuple b̄ ∈ B|ā|,

B |= ϕā,β(b̄) ⇐⇒ (A, ā) ≤β (B, b̄),
and

B |= ψā,β(b̄) ⇐⇒ (A, ā) ≥β (B, b̄).
The sentence ψA,α is then defined as ϕ〈〉,α ∧ ψ〈〉,α. �

Lemma XII.6. Let {Ai : i ∈ N} be a sequence of structures and
〈αi : i ∈ N〉 an increasing sequence of countable ordinals such that

A0 ≡α0+3 A1 ≡α1+3 A2 ≡α2+3 A3 ≡α3+3 · · ·
There is a structure A∞ with A∞ ≡αi Ai for all i ∈ N.

Proof. We will build a sequence {āi : i ∈ N} of tuples with āi ∈
A<N
i such that, for each i ∈ N,

(1) (Ai, āi) ≡αi+1 (Ai+1, āi+1), and
(2) for each b̄ ∈ A<N

i , there is a k > i and a tuple c̄ of elements of
āk such that (Ai, āi, b̄) ≤αi (Ak, āk � |āi|, c̄).

Since (Ai, āi) ≡αi+1 (Ai+1, āi+1), we have that DAi(āi) ⊆ DAi+1
(āi),

and hence we can define A∞ to be the ω-presentation with diagram

D(A∞) =
⋃
n

DAi(āi).

Before proving that the limit structure A∞ is as needed, let us prove
that such a sequence of tuples exists.

Start with ā0 = 〈〉 as usual. Suppose ā0, ā1, ..., ās have been defined
already. We define ās+1 in two steps. To take care of (1), using that
As ≥αs+3 As+1, find d̄0 ∈ A<N

s+1 such that (As, ās) ≤αs+2 (As+1, d̄0). To
take care of (2), we consider only one i < s and one tuple b̄ ∈ A<N

i
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at a time: Let i, j < s be such that p〈i, j〉q= s,‡ and let b̄ be the
tuple of the first j elements in the ω-presentation of Ai. Using that
(Ai, āi) ≡αi+1 (As, ās�|āi|) ≤αs+1 (As+1, d̄0�|āi|), and in particular that
(Ai, āi) ≥αi+1 (As+1, d̄0 � |āi|), find c̄ ∈ A<N

s+1 such that (Ai, āi, b̄i) ≤αi
(As+1, d̄0 � |āi|, c̄), and let ās+1 = d̄0

ac̄.§

Now that we have defined the tuples ās ∈ A<N
s , we want to prove

that, for each i, (Ai, āi) ≡αi (A∞, 〈0, ..., |āi| − 1〉). We prove by trans-
finite induction that, for all ordinals γ, we have that

• for all i with γ ≤ αi, (Ai, āi) ≥γ (A∞, 〈0, ..., |āi| − 1〉), and
• for all i with γ ≤ αi, (Ai, āi) ≤γ (A∞, 〈0, ..., |āi| − 1〉).

For the first part, take δ < γ and b̄ inAi disjoint from āi. Let k and c̄ be
as in (2). By the induction hypothesis, (Ak, āk) ≤δ (A∞, 〈0, ..., |āk| −
1〉), and hence (Ai, āi, b̄) ≤δ (A∞, 〈0, ..., |āi| − 1〉, n̄), where n̄ is the list
of indices of the elements of c̄ within āk. This shows that (Ai, āi) ≥γ
(A∞, 〈0, ..., |āi| − 1〉).

For the second part, consider δ < γ and c̄ in A∞ disjoint from
〈0, ..., |āi|−1〉. Let k be large enough so that c̄ is included in 〈0, ..., |āk|−
1〉 within A∞. By the induction hypothesis, we know that (Ak, āk) ≥δ
(A∞, 〈0, ..., |āk| − 1〉). Since (Ai, āi) ≡αi+1 (Ak, āk), there is a tuple b̄
in Ai such that (Ai, āi, b̄) ≥αi (Ak, āk � |āi|, c̄). In particular, we have
that (Ai, āi, b̄) ≥δ (Ak, āk � |āi|, c̄) ≥δ (A∞, 〈0, ..., |āi| − 1〉, c̄), as needed
to show (Ai, āi) ≤γ (A∞, 〈0, ..., |āi| − 1〉). �

With a bit more work, one can prove a sharper formulation of this
lemma where the assumption is just that Ai ≥αi Ai+1 for all i, the
conclusion is that Ai ≥αi A∞, and the sequence of αi’s is only assumed
to be non-decreasing and may even be constant. We do not need that
formulation here.

Theorem XII.7. If Θ is a counterexample to Vaught’s conjecture,
there is an Lω1,ω-sentence ϕ such that Θ∧ϕ is a minimally unbounded
counterexample to Vaught’s conjecture.

Proof. Suppose, working toward a contradiction, that there is no
such formula ϕ. Let α be such that Θ is Πin

α .
The first step is to build a tree of structures {Aσ : σ ∈ 2<N} and

an increasing sequence of countable ordinals 〈αi : i ∈ N〉 with α0 = α
such that, for all i ∈ N, σ, τ ∈ 2<N,

σ � i = τ � i ⇐⇒ Aσ ≡αi Aτ .
‡Here, p〈i, j〉q is the number coding the pair 〈i, j〉 in some standard effective

bijection N2 → N.
§ If c̄ is not disjoint from d̄0, define ās+1 by adding only the elements of c̄ that

are not in d̄0.
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We will then use this tree to build perfectly many models of Θ and
reach a contradiction. The structures Aσ are defined by recursion on
the length of σ. Let A〈〉 be a model of Θ for which ψA,α is unbounded,
where ψA,α is as in Lemma XII.5 above. In other words, A〈〉 satisfies
that there are structures ≡α-equivalent to it of arbitrarily high Scott
rank below ω1. To see why such an A〈〉 exists, notice that, since there
exist only countably many ≡α-equivalence classes among the models of
Θ, if they were all bounded below ω1, Θ would be bounded too. We
remark that since Θ is Πin

α and A is a model of Θ, ψA,α implies Θ.
Suppose we have already defined αi and Aσ for all σ ∈ 2i in such a

way that ψAσ ,αi is unbounded. For each σ ∈ 2i, since we are assuming
that no sentence Θ∧ϕ is minimally unbounded, there must exist a sen-
tence ϕσ such that both ψAσ ,αi ∧ ϕσ and ψAσ ,αi ∧ ¬ϕσ are unbounded.
Let αi+1 be such that all those formulas are Πin

αi+1
for all σ ∈ 2i. For

each σ ∈ 2i, let Aσa0 be a structure satisfying ψAσ ,αi ∧ ϕσ and such
that ψA

σa0
,αi+1

is unbounded. To see why such a structure exists, notice
that, since there exist only countably many ≡αi+1

-equivalence classes
among the models of ψAσ ,αi ∧ ϕσ, one must be unbounded. Analo-
gously, define Aσa1 satisfying ψAσ ,αi ∧ ¬ϕσ and such that ψA

σa1
,αi+1

is
unbounded. Notice that both Aσa0 and Aσa1 are ≡αi-equivalent to Aσ,
but Aσa0 6≡αi+1

Aσa1. This finishes the construction of the tree.
Finally, for the contradiction, we build a perfect set of non-isomorphic

models of Θ. For each X ∈ 2N, let AX be a structure such that
AX ≡αi−3

AX�i for all i ≥ 2, as given by Lemma XII.6 above. To see
that these models are all non-isomorphic, consider X and Y ∈ 2N. Let
i be such that X � i 6= Y � i. We then have

AX ≡αi AX�i+3 6≡αi AY �i+3 ≡αi AY .

Notice that these are all models of Θ, since, as we mentioned above, Θ is
implied by ψA〈〉,α0 . This contradiction with Θ being a counterexample
to Vaught’s conjecture came from the assumption that no sentence of
the form Θ ∧ ϕ is minimally unbounded. �

The following lemma gives a characterization of minimally unbounded
theories.

Lemma XII.8. If Θ is minimally unbounded, there is a closed and
unbounded set of countable ordinals C such that, for all α ∈ C, there
is only one α-back-and-forth equivalence class among the models of Θ
of Scott rank greater than or equal to α.

Proof. We will define C as the set of fixed points of a monotone,
continuous function f : ω1 → ω1, which we define as follows. For each
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ordinal β, there must exist a unique β-back-and-forth equivalence class
of models of Θ that is unbounded: There must be at least one because
there are only countably many ≡β-equivalence classes and they cannot
all be bounded. There is at most one because if Aβ is a model of Θ in
that ≡β-equivalence classes, then Θ ∧ ψAβ ,β is unbounded and, by the
minimality of Θ, Θ ∧ ¬ψAβ ,β is bounded. Fix such a structure Aβ for
each β < ω1. Notice that if γ > β, then Aγ ≡β Aβ. Define

Kβ = {B ∈ Mod(Θ),B 6≡β Aβ}

and

f(β) = sup({SR(B) + 1 : B ∈ Kβ} ∪ {β}).

Observe that, for an ordinal α, f(α) = α if and only if all models in
Kα have Scott rank less than α. Equivalently, f(α) = α if and only
if Aα is α-back-and-forth equivalent to all models of Θ of Scott rank
greater than or equal to α. We define C as the set of fixed points of f .

If β ≤ γ, then Kβ ⊆ Kγ, and hence f(β) ≤ f(γ). If λ is a limit
ordinal, then Kλ =

⋃
γ<λKγ by the continuity of the back-and-forth

relations. It follows that f(λ) = supγ<λ f(γ). The function f is thus
continuous and monotone.

C is unbounded because for every β0 ∈ ω1, limn∈N

n times︷ ︸︸ ︷
f ◦ f ◦ · · · ◦ f(β0)

is a fixed point of f greater than or equal to β0. It is closed because if
γ0, γ1, ... is an increasing sequence of members of C with limit λ, then
f(λ) = supi∈N f(γi) = supi∈N γi = λ, and hence λ ∈ C too. �

Remark XII.9. For Θ as in the previous lemma, we also get that
relative to all oracles on some cone, all models of Θ of Scott rank
greater than or equal to ωCK1 are ωCK1 -back-and-forth equivalent to
each other. This follows from a descriptive set theoretic consequence
of Turing determinacy: For every closed and unbounded set C ⊆ ω1,
there is an oracle C such that all C-admissible ordinals belong to C,
where the C-admissible ordinals are those of the form ωX1 for some
X ≥T C.

XII.3. Connections with computability theory

Minimal counterexamples to Vaught’s conjecture, if they exist, have
very interesting computability theoretic properties. Studying their
properties could either help us build one or lead us to a contradiction
and a proof that they do not exist.
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Suppose that an Lω1,ω sentence Θ is a minimal counterexample to
Vaught’s conjecture. The following properties hold on a cone:¶

(1) Every model A of Θ with ωA1 = ωCK1 has a computable copy.
Furthermore, there is a computable list containing all those
models and with the added property that their back-and-forth
relations are computable up to ωCK1 .‖

(2) Every model A of Θ has degree spectrum {X ∈ 2N : ωX1 ≥
ωA1 }.

(3) There is only one computable model of Θ of high Scott rank,
and it has Scott rank ωCK1 + 1.

(4) Θ is intermediate for effective reducibility.

We will not prove these results, as the techniques fall outside the
scope of this book.

Property (1) was proved in [Mon13] using the existence of 0]. The
first line, namely that all models with ωA1 = ωCK1 have computable
copies, follows from a much more general result from [Mon15b]: If a
Σ1

1-equivalence relation E on 2N does not have perfectly many equiv-
alence classes relative to all oracles on some cone, we have that, every
real that is low for ω1 is E-equivalent to a computable real. The sec-
ond line, namely that one can list all those models in a way that the
back-and-forth structure is computable, is done in [Mon13]. To show
that the oracles that can do this are co-final in the Turing degrees, one
has to use overspill to show that, given X and a list of X-computable
models of Θ, there is a Y ≥T X with ωX1 = ωY1 that computes the
back-and-forth relations on that list up to some X-computable Har-
rison linear ordering. Once we know that those oracles are co-final,
we can use Turing determinacy to get that there is a cone of them.
It is not hard to see that if Θ satisfies (1) on a cone, then it cannot
have perfectly many models. It was proved in [Mon13] that an Lω1,ω-
sentence Θ is a counterexample to Vaught’s conjecture if and only if it
is unbounded and satisfies that, for every oracle on some cone, every
hyperarithmetic model has a computable copy. This is a computability
theoretic statement equivalent to Vaught’s conjecture.

Item (2) follows from (1) by relativization.
For (3), let C be an oracle such that all ordinals of the form ωX1 for

X ≥T C belong to the set C as in Remark XII.9. Furthermore, assume

¶When we say that a property holds on a cone we mean that there exists a
C ∈ 2N such that, for every X ≥T C, we have that the property holds relative to
X.

‖We mean that the back-and-forth relations are computable up to ωCK1 , but
not including ωCK1 , of course.



XII.3. CONNECTIONS WITH COMPUTABILITY THEORY 223

that relative to all oracles on that cone, there is a list of all the com-
putable models of Θ where the back-and-forth structure is computable
as in (1). First, there must exist at least one model of high-Scott rank
because of Corollary VI.26. Since there is only one ≡ωCK1

-equivalence

class that contains all the models of Θ of Scott Rank beyond ωCK1 , we
get that all computable models of Θ of high-Scott rank must be ≡ωCK1

-
equivalent to each other. They must then be isomorphic by Lemma
VI.17. By Turing determinacy, either this unique model has Scott
rank ωCK1 + 1 on a cone or it has Scott rank ωCK1 on a cone. The latter
situation is ruled out by a result of Sacks [Sac83] saying that on a
counterexample to Vaught’s conjecture, there must exist models with
SR(A) = ωA1 + 1.

We know of no examples of Lc,ω-sentences with a unique computable
model of high-Scott rank, except for the counterexamples to Vaught’s
conjecture — of which we know none. It is not known whether Θ
having exactly one model of high Scott rank relative to every oracle on
some cone implies that Θ is a counterexample to Vaught’s conjecture.

Property (4) refers to the notion of effective reducibility introduced
in Section XI.4. Use the same cone as in the previous paragraphs. The
equivalence relation iso(ModΘ) on ω would then have only one non-
hyperarithmetic equivalence class, namely the class of indices of the
unique model of high Scott rank. All the other ones have Scott rank be-
low ωCK1 , and hence have computable Scott sentences (Theorem VI.15),
which makes their equivalence class hyperarithmetic. There are plenty
of Σ1

1 equivalence relations on N that have more than one equivalence
class that is Σ1

1 complete. These relations could not effectively reduce
to iso(ModΘ). It follows that iso(ModΘ) is not on top for effective re-
ducibility. Since we have a list of the computable models of Θ where
we can compute the back-and-forth relations, we get from the pair-
of-structures theorem (Theorem VIII.7) that the isomorphism relation
cannot be hyperarithmetic. So, iso(ModΘ) is intermediate for effective
reducibility.∗∗ It is not know whether this is the only way to obtain
a Lc,ω-sentence that is intermediate for effective reducibility. Results
of [Mon16] get close, but short of proving that Vaught’s conjecture
is equivalent to the statement that there are no Lω1,ω-sentences that
are intermediate for effective reducibility relative to all oracles on some
cone.

Example XII.10. Here is an example of a class that satisfies all
the computability theoretic properties listed above, except that it is

∗∗The proof we present here is due to Knight and Montalbán [unpublished].
This was also proved independently by Becker [Bec13].
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not Lω1,ω-axiomatizable. A class of structures is said to be pseudo-
elementary if it can be axiomatized by a sentence of the form ∃R ϕ(R),
where ϕ is a τ ∪ {R}-formula, and R is a second-order variable for a
relation. Such classes are Σ1

1 but not necessarily Borel. Kunen found
the following pseudo-elementary class that has uncountably but not
perfectly many models: the class of linear orderings on which every
two elements are automorphic. It can be shown that these are exactly
the linear orderings of the form ZL for some linear ordering L (see
Exercise I.14), which as we saw in Observation I.10, are the linear
orderings of form Zα or Zα ·Q for some ordinal α.
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