
Lecture 5: Debugging

Math 98

Math 98 Lecture 5: Debugging 1 / 11

Reminders and Agenda

Reminders on Dates
I This is the last week of class for Math 98.
I Continue working on HW4 and the project.

Agenda
I Using the MATLAB debugger

F Breakpoints
F Step and Run
F Review the MATLAB Documentation

I Exercise on finding bugs
I Debugging and Programming Best Practices

F Sections 2.7-2.8 of
http://www.sfu.ca/∼wcs/ForGrads/ensc180spring2016f.pdf

Math 98 Lecture 5: Debugging 2 / 11

https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html
http://www.sfu.ca/~wcs/ForGrads/ensc180spring2016f.pdf

bisectionbuggy.m

Consider this implementation of bisection

function p = bisectionbuggy(f, a, b, tol)

while 1

p = (a+b)/2;

if p - a < tol

break;

end

if f(b)*f(p) > 0

a = p;

else

b = p;

end

end

end

Math 98 Lecture 5: Debugging 3 / 11

bisectionbuggy.m

There’s clearly something wrong with this....

>> p = bisectionbuggy(@(x) x, -1, 2, 1e-4)

p =

1.999908447265625

Let’s see if we can smoke out the bug with the debugger.

Math 98 Lecture 5: Debugging 4 / 11

bisectionbuggy.m

Solution: Either change f(a)*f(p) > 0 or f(b)*f(p) < 0 or switch a =

p and b = p

Math 98 Lecture 5: Debugging 5 / 11

Incremental Development

When you start writing scripts that are more than a few lines, you might
find yourself spending more and more time debugging. The more code you
write before you start debugging, the harder it is to find the problem.

Incremental development is a way of programming that tries to
minimize the pain of debugging.

Math 98 Lecture 5: Debugging 6 / 11

Incremental Development: Three Steps
The fundamental steps of incremental debugging are:

1 Always start with a working program. If you have an example from a
book or a program you wrote that is similar to what you are working
on, start with that. Otherwise, start with something you know is
correct, like x = 5. Run the program and confirm that you are
running the program you think you are running. This step is
important, because in most environments there are lots of little things
that can trip you up when you start a new project. Get them out of
the way so you can focus on programming.

2 Make one small, testable change at a time. A “testable” change is
one that displays something on the screen (or has some other effect)
that you can check. Ideally, you should know what the correct answer
is, or be able to check it by performing another computation.

3 Run the program and see if the change worked. If so, go back to Step
2. If not, you will have to do some debugging, but if the change you
made was small, it shouldn’t take long to find the problem.

Math 98 Lecture 5: Debugging 7 / 11

Unit Testing

In large software projects, unit testing is the process of testing software
components in isolation before putting them together.

The programs we have seen so far are not big enough to need unit testing,
but the same principle applies when you are working with a new function
or a new language feature for the first time. You should test it in isolation
before you put it into your program.

Math 98 Lecture 5: Debugging 8 / 11

Unit Testing: Example

For example, suppose you know that x is the sine of some angle and you
want to find the angle. You find the MATLAB function asin, and you are
pretty sure it computes the inverse sine function. Pretty sure is not good
enough; you want to be very sure.
Since we know sin(0) = 0, we could try:

>> asin(0)

ans = 0

which is correct. We also know that sin of 90◦ is 1, so if we try asin(1)

we expect the answer 90, right?

>> asin(1)

ans = 1.5708

What’s going on here?

Math 98 Lecture 5: Debugging 9 / 11

Unit Testing: Example (Cont)

Oops. We forgot that the trig functions in MATLAB work in radians, not
degrees. So the correct answer is π

2 , which we can confirm by dividing
through by π:

>> asin(1)/pi

ans = 0.5000

With this kind of unit testing, you are not really checking for errors in
MATLAB, you are checking your understanding. If you make an error
because you are confused about how MATLAB works, it might take a long
time to find, because when you look at the code, it looks right.

The worst bugs aren’t in your code; they are in your head

Math 98 Lecture 5: Debugging 10 / 11

Debugging in four acts

Reading: Examine your code, read it back to yourself, and check
that it means what you meant to say.

Running: Experiment by making changes and running different
versions. Often if you display the right thing at the right place in the
program, the problem becomes obvious, but sometimes you have to
spend some time to build scaffolding.

Ruminating: Take some time to think! What kind of error is it:
syntax, runtime, logical? What information can you get from the
error messages, or from the output of the program? What kind of
error could cause the problem you?re seeing? What did you change
last, before the problem appeared?

Retreating: At some point, the best thing to do is back off, undoing
recent changes, until you get back to a program that works, and that
you understand. Then you can starting rebuilding.

Math 98 Lecture 5: Debugging 11 / 11

