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Abstract We present a framework for resolving discontinuous solutions of conser-
vation laws using implicit tracking and a high-order discontinuous Galerkin (DG)
discretization. Central to the framework is an optimization problem and associ-
ated sequential quadratic programming solver which simultaneously solves for a
discontinuity-aligned mesh and the corresponding high-order approximation to the
flow that does not require explicit meshing of the a priori unknown discontinuity
surface. We utilize an error-based objective function that penalizes violation of the
DG residual in an enriched test space, which endows the method with r-adaptive
behavior: mesh nodes move to track discontinuities with element faces and improve
the conservation law approximation in smooth regions of the flow. This method
is shown to deliver highly accurate solutions on coarse, high-order discretizations
without nonlinear stabilization and recover optimal convergence rates O(hp+1) for
problems with discontinuous solutions. We demonstrate this framework on a series
of inviscid steady and unsteady conservation laws, the latter of which using both a
space-time and method of lines discretization.
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1 Introduction and background

It is widely believed that higher fidelity is required for problems with propagating
waves, turbulent fluid flow, nonlinear interactions, and multiple scales [33]. This has
resulted in a significant interest in high-order accurate methods, such as discontin-
uous Galerkin (DG) methods [5, 17], which have the potential to produce accurate
solutions on coarse meshes. Among the most significant challenges associated with
high-order methods is their sensitivity to under-resolved features, in particular for
nonlinear problems where the spurious oscillations often cause a breakdown of the
numerical solvers. This is exacerbated for problems with shocks where the low dis-
sipation associated with high-order methods is insufficient to stabilize the solution.
Since shocks are present in many important problems in fields such as aerospace, as-
trophysics, and combustion, this poses a fundamental barrier to widespread adoption
of these methods.

Most of the techniques for addressing shocks are based on shock capturing, that is,
the numerical discretization somehow incorporates the discontinuities independently
of the computational grid. One simple method is to use a sensor that identifies
the mesh elements that contain shocks, and reduce their polynomial degrees [2,
4]. Related, more sophisticated approaches include limiting, such as the weighted
essentially non-oscillatory (WENO) schemes [15, 21, 18]. For high-order methods,
artificial viscosity has also proven to be competitive, since it can smoothly resolve
the jumps in the solution without introducing additional discontinuities between the
elements [25]. The main problem with all these approaches is they lead to globally
first-order accurate schemes. This can be remedied by local mesh refinement around
the shock (h-adaptivity) [9], although the anisotropic high-order mesh adaptation is
challenging and requires highly refined elements near the shock.

An alternative approach is shock tracking or shock fitting, where the computational
mesh is moved such that its faces are aligned with the discontinuities in the solution.
This is natural in the setting of a DG method since the numerical scheme already
incorporates jumps between the elements and the approximate Riemann solvers
employed on the element faces handle the discontinuities correctly. However, it is
a difficult meshing problem since it essentially requires generating a fitted mesh
to the (unknown) shock surface. Many previous approaches employ specialized
formulations and solverswhich are dimension-dependent and do not easily generalize
[16, 14, 3] and/or are limited to relatively simple problems [29, 30, 32]. In addition,
early approaches to shock fitting have been applied to low-order schemes where
the relative advantage over shock capturing is smaller than for high-order methods
[31, 1]. Explicit shock tracking strategies [26, 23] have been proposed which are
able to attain high-order accuracy in the presence of shocks, but require a specialized
strategy to explicitly track the shock separately from the remainder of the flow. These
methods are not easily applicable to discontinuities whose topologies not known a
priori. For these reasons, shock tracking is largely not used in practical CFD today.

In [34, 36], we introduced a novel approach to shock tracking for steady conser-
vation laws (including space-time formulations of time-dependent problems) that
does not require explicitly generating a mesh of the unknown discontinuity surface.
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Rather, the conservation law is discretized on a mesh without knowledge of the dis-
continuity surface and an optimization problem is formulated such that its solution is
the pair (u, x), where x is the positions of the mesh nodes that cause element faces to
align with discontinuities in the flow and u is the solution of discretized conservation
law on the mesh defined by x. That is, discontinuity tracking is implicitly achieved
through the solution of an optimization problem and will be referred to as implicit
shock tracking. While this approach works with any discretization that allows for
inter-element discontinuities, we focus on high-order DG methods due to the high
degree of accuracy attainable on coarse meshes, proper treatment of discontinuities
with approximate Riemann solvers, and the ability to use curved elements to track
discontinuities with curvature (Fig. 1). The implicit tracking optimization problem
proposed in [36] minimizes the violation of the DG residual in an enriched test
space while enforcing that the standard DG (same test and trial space) equations
are satisfied. This objective function is a surrogate for violation of the infinite-
dimensional weak formulation of the conservation law, which endows the method
with r-adaptive behavior: it promotes alignment of the mesh with discontinuities
and adjusts nodes in smooth region to improve approximation of the conservation
law. The optimization problem is solved using a sequential quadratic programming
method with a Levenberg-Marquardt Hessian approximation that simultaneously
converges the mesh and solution to their optimal values, which never requires the
fully converged DG solution on a non-aligned mesh and does not require nonlinear
stabilization. The combination of implicit tracking with a DG discretization leads
to a high-order accurate numerical method that has been shown to provide accurate
approximations to high-speed inert [34, 36] and reacting flows [35].

Fig. 1: L2 projection of a piecewise constant function onto a non-aligned (left)
vs. discontinuity-aligned mesh with linear (middle) and cubic (right) elements and
corresponding solution. See Example 4.1 of [34] for details.

In [27], we further extend the framework developed in [34, 36] for steady conser-
vation laws and space-time formulations of unsteady conservation laws to a method
of lines discretization approach. While space-time methods are attractive for a num-
ber of reasons, the method of lines approach tends to be more practical for complex
problems. The key ingredients of the method of lines approach are: 1) an Arbitrary
Lagrangian-Eulerian formulation of the conservation law to handle the deforming
mesh (which deforms to track the shock through the domain), 2) semi-discretization
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with DG to obtain a system of ordinary differential equations, 3) high-order tem-
poral discretization with a diagonally implicit Runge Kutta (DIRK) method, and
4) implicit shock tracking at each time step following the approach in [34, 36]. We
utilize a Rankine-Hugoniot based procedure to construct an initial guess for each
timestep which significantly accelerates the performance of the solver and allows to
us to achieve Newton-like convergence.

To our knowledge, the only other approach to implicit shock trackingwas proposed
in [6, 8, 7], where the authors enforce a DG discretization with unconventional
numerical fluxes and the Rankine-Hugoniot interface conditions in a minimum-
residual sense. Interestingly, enforcement of the interface condition circumvented
traditional stability requirements for the DG numerical fluxes, allowing them to
solely rely on fluxes interior to an element. Their method was shown to successfully
track even complex discontinuity surfaces and provide high-order approximations
to the conservation law on traditionally coarse, high-order meshes. Their initial
formulation was extended to viscous problems in [20] and recast as a least-square
discontinuous Galerkin method in [19].

The remainder of this chapter is organized as follows. Section 2 introduces the
governing system of inviscid conservation laws and its discretization using a DG
method. Section 3 presents the error-based objective function and the constrained
optimization framework in both the steady and unsteady case. Section 4 discusses
practical details required for the proposed tracking framework such as initialization
of the SQP solver and topological mesh operations to remove small elements. Finally,
Section 5 presents a number of numerical experiments that demonstrate the method
on a variety of steady and unsteady flows using coarse, high-order meshes and
demonstrates high-order convergence of themethod. For unsteady flows, we compare
the space-time and method of lines approaches and discuss cases when one is more
suitable.

2 Governing equations and high-order discretization

Consider a general system of m inviscid conservation laws, defined on the fixed
domain Ω ⊂ Rd and subject to appropriate boundary conditions,

∂U
∂t
+ ∇ · F(U) = 0 in Ω × [0,T] (1)

where U : Ω × [0,T] → Rm is the solution of the system of conservation laws,
F : Rm → Rm×d is the flux function, ∇ B (∂x1, . . . , ∂xd ) is the gradient operator
in the physical domain such that ∇W(x, t) =

[
∂x1W(x, t) · · · ∂xdW(x, t)

]
∈ RN×d

for any W : Ω × [0,T] → RN and x ∈ Ω, t ∈ [0,T], and the boundary of the
domain ∂Ω has outward unit normal n : ∂Ω → Rd . The conservation law in (1)
is supplemented with the initial condition U(x, 0) = Ū(x) for all x ∈ Ω, where
Ū : Ω → Rm. In general, the solution U(x) may contain discontinuities, in which
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case, the conservation law (1) holds away from the discontinuities and the Rankine-
Hugoniot conditions [22] hold at discontinuities.

We will construct a high-order numerical method that tracks discontinuities with
the computational grid as they evolve through the domain, which places three require-
ments on the discretization: 1) a high-order, stable, and convergent discretization of
the conservation law in (1), 2) employs a solution basis that supports discontinuities
between computational cells or elements, and 3) allows for deformation of the com-
putational domain. As such, our method is based on a standard high-order DG-DIRK
discretization of an Arbitrary Lagrangian-Eulerian (ALE) formulation of the gov-
erning equations. We insist on a high-order discretization given their proven ability
[34, 6] to deliver accurate solutions on coarse discretizations provided discontinuities
are tracked.

2.1 Arbitrary Lagrangian-Eulerian formulation

We use an ALE formulation of the governing equations to account for the time-
dependent domain deformations required to track discontinuities as they evolve. To
this end, we introduce a time-dependent domain mapping (Fig. 2)

G : Ω0 × [0,T] → Ω; G : (X, t) 7→ G(X, t), (2)

where Ω0 ⊂ R
d is a fixed reference domain, T is the final time, and at each time

t ∈ [0,T],G( · , t) : Ω0 → Ω is a diffeomorphism.We note that the domainΩ is fixed,
i.e., Ω occupies the same region of Rd at any time t ∈ [0,T]; the time-dependent
diffeomorphism is introduced as an integral part of the proposed numericalmethod to
track discontinuities as they evolve. Following the approach in [24], the conservation

Ω0 Ω

X1

X2

x1

x2

N n

x = G(X, t)

X = G−1(x, t)

Fig. 2: Mapping between reference and physical domains.

law on the physical domain Ω is transformed to a conservation law on the reference
domain Ω0

∂UX

∂t
+ ∇X · FX (UX ; G, v) = 0 in Ω0 (3)

where UX : Ω0 × [0,T] → Rm is the solution of the transformed conservation law,
FX : Rm×Rd×d×Rd → Rm×d is the transformed flux function,∇X B (∂X1, . . . , ∂Xd

)
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is the gradient operator on the reference domain, and the deformation gradient
G : Ω0 × [0,T] → Rd×d , mapping Jacobian g : Ω0 × [0,T] → R, and mapping
velocity v : Ω0 × [0,T] → Rd are defined as

G = ∇XG, g = det G, v =
∂G

∂t
. (4)

The transformed and physical solutions are related, for any X ∈ Ω0 and t ∈ [0,T], as

UX (X, t) = g(X, t)U(G(X, t), t) (5)

and the transformed flux is defined as

FX : (WX ;Θ, ξ) 7→ [(detΘ)F((detΘ)−1WX ) −WX ⊗ ξ]Θ
−T . (6)

The transformed conservation law is supplemented with the initial condition
UX (X, 0) = ŪX (X) for all X ∈ Ω0, where ŪX : Ω0 → Rm is ŪX (X) =
g(X, 0)Ū(G(X, 0)).

2.2 Discontinuous Galerkin discretization

We use a nodal discontinuous Galerkin method [5, 17] to discretize the transformed
conservation law (3). Let Eh represent a discretization of the reference domain Ω0
into non-overlapping, potentially curved, computational elements. Additionally, we
introduce the DG approximation (trial) space of discontinuous piecewise polynomi-
als associated with the mesh Eh

V
p
h
=

{
v ∈ [L2(Ω0 × [0,T])]m

�� v( · , t)|K ∈ [Pp(K)]m, ∀K ∈ Eh, t ∈ [0,T]
}

(7)

where Pp(K) is the space of polynomial functions of degree at most p ≥ 1 on
the element K , and we take the DG test space to be Vp′

h
, where p′ ≥ p. Finally,

we define the space of admissible domain mappings as the space of continuous
piecewise polynomials of degree q associated with the mesh Eh

Wh =
{
v ∈ [C0(Ω0 × [0,T])]d

�� v( · , t)|K ∈ [Pq(K)]d, ∀K ∈ Eh, t ∈ [0,T]
}

(8)

Then, the DG residual form r : Vp
h
×V

p′

h
×Wh → R is given by

rp,p
′

h
: (WX, ψX,Q) 7→

∑
K ∈Eh,q

rp,p
′

K (WX, ψX,Q), (9)

where the elemental DG form rp,p
′

K : Vp
h
×V

p′

h
×Wh → R is given by
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rp,p
′

K : (WX, ψX,Q) 7→

∫
K

ψX · ÛWX dV

+

∫
∂K

ψ+X · HX (W+X,W
−
X, N;∇XQ, ÛQ) dS

−

∫
K

FX (WX ;∇XQ, ÛQ) : ∇XψX dV,

(10)

where N is the outward normal to the surface ∂K ,HX : Rm×Rm×Rd×Rd×d×Rd →
Rm is the numerical flux function associated with the reference inviscid flux FX , and
W+X (W−X ) is the interior (exterior) trace ofWX to elementK; for points X ∈ ∂K∩∂Ω0,
W−X is a boundary state constructed to enforce the appropriate boundary condition.
In this work, we take the numerical flux to be a smoothed version of the Roe flux
(Section 2.3 of [36]).

Next, we introduce a (nodal) basis over each element for the trial space (Vp
h
),

test space (Vp′

h
), and mapping space (Wh) to reduce (10) to a system of ordinary

differential equations (ODEs) in residual form. In the case where p′ = p, we denote
the residual runs : RNu × RNu × RNx × RNx → RNu , which is defined as

runs : (ẘ, w, ẙ, y) 7→ mẘ + f (w, y, ẙ), (11)

where Nu = dimVp
h
, Nx = dimWh , m ∈ RNu×Nu is the mass matrix associated

with the test/trial spaceVp
h
, and f : RNu ×RNx ×RNx → RNu is the algebraic form

of the second and third terms in (10). In this notation, the standard DG discretization
reads: given x : [0,T] → RNx , find u : [0,T] → RNu such that

runs( Ûu(t), u(t), Ûx(t), x(t)) = 0, u(0) = ū, x(0) = x̄, (12)

for all t ∈ [0,T], where u is the time-dependent coefficients of the DG solution,
x is the time-dependent coefficients of the domain mapping (nodal coordinates of
the mesh), ū ∈ RNu is the algebraic representation of the initial condition ŪX , and
x̄ ∈ RNx is an initial condition for the nodal coordinates. Typically, the evolution
of the mesh coordinates x(t) is known analytically or governed by a dynamical
system (e.g., fluid-structure interaction); however, in this work, it will be determined
as the solution of an optimization problem (after temporal discretization) such that
discontinuities are tracked over time.

Finally, we use the expansions in the nodal bases to define the enriched residual
Runs : RNu ×RNu ×RNx ×RNx → RN ′u associated with a trial space of degree p′ as

Runs : (ẘ, w, ẙ, y) 7→ Mẘ + F(w, y, ẙ), (13)

where N ′u = dimVp′

h
, M ∈ RN ′u×Nu is the mass matrix associated with the test

space Vp′

h
and trial space Vp

h
, and F : RNu × RNx × RNx → RN ′u is the algebraic

form of the second and third terms in (10). In this work, we take p′ = p+1, but other
choices are possible as well. The enriched residual will be used in the subsequent
sections to define the implicit tracking objective function.
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2.3 High-order temporal discretization

Proceedingwith themethod of lines, we discretize the dynamical system in (12) using
a diagonally implicit Runge-Kutta method (DIRK) to yield a sequence of algebraic
systems of equations. Unlike fully implicit Runge-Kutta methods, an s-stage DIRK
scheme has a Butcher tableau (A, b, c) ∈ Rs×s ×Rs ×Rs where A is lower triangular
(Table 1). As a result, the ith stage only depends on the solution for stages 1, . . . , i,

Table 1: Butcher tableau for DIRK schemes

c A

bT
=

c1 a11
...

...
. . .

cs as1 . . . ass

b1 . . . bs

allowing the stages to be solved sequentially. We partition the time interval [0,T]
into NT intervals of equal size ∆t = T/NT with endpoints {tn}NT

n=0, where t0 = 0
and tn = tn−1 + ∆t for n = 1, . . . , NT . An s-stage DIRK discretization of (12) with
Butcher tableau (A, b, c) reads: for n = 1, . . . , NT and i = 1, . . . , s,

u0 = ū, un+1 = un +

s∑
j=1

bikun, j, un,i = un +

i∑
j=1

ai j kun, j

x0 = x̄, xn+1 = xn +
s∑
j=1

bikx
n, j, xn,i = xn +

i∑
j=1

ai j kx
n, j

mkun,i = −∆t f
(
un,i, xn,i, νn,i

)
, kx

i = ∆tνn,i

(14)

where u0, un, un,i, k
u
n,i ∈ R

Nu and x0, xn, xn,i, k
x
n,i ∈ R

Nx are implicitly defined as
the solution of (14); un ≈ u(tn) and xn ≈ x(tn) are the state and mesh approximation
at each time step n = 0, . . . ,T ; un,i ≈ u(tn + ci∆t) and xn,i ≈ x(tn + ci∆t) are the
state and mesh approximations at each stage i = 1, . . . , s of each time interval
n = 1, . . . ,T ; kun,i and kx

n,i are the solution and mesh stage updates, and νn,i ∈ R
Nx

is a stage-consistent mesh velocity [11, 27] defined as

νn,i =
i∑

j=1
(A−1)i j

xn, j − xn

∆t
, (15)

i.e., the mesh velocity is consistent with the DIRK scheme and the mesh position at
the stages.

We convert themodifiedDIRK system in (14) to residual form rn,i : RNu×RNx →

RNu at a fixed step n ∈ {1, . . . , NT } and stage i ∈ {1, . . . , s} as
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runsn,i : (w, y) 7→ mξn,i(w) + ∆t f (w, y, ζn,i(y)), (16)

where ξn,i : RNu → RNu maps the state stage (un,i) to the corresponding stage
update (kun,i)

ξn,i : w 7→ (A−1)ii(w − un) +

i−1∑
j=1
(A−1)i j(un, j − un) (17)

and ζn,i : RNx → RNx maps the mesh stage (xn,i) to the corresponding stage-
consistent velocity (vn,i) as

ζn,i : y 7→ (A−1)ii
y − xn
∆t

+

i−1∑
j=1
(A−1)i j

xn, j − xn

∆t
. (18)

Similarly, we define the corresponding fully discrete enriched residual function
Rn,i : RNu × RNx → RN ′u as

Runs
n,i : (w, y) 7→ Mξn,i(w) + ∆tF(w, y, ζn,i(y)), (19)

which we use in next section to define the objective function of the implicit tracking
optimization problem. Notice that only the spatial test space is enriched in the
definition of Runs

n,i relative to runsn,i ; the temporal discretization in runsn,i and Runs
n,i is

identical.
In this work, we consider a third-order L-stable DIRK scheme with three stages,

which we denote by DIRK3. The Butcher tableau is given in Table 2.

Table 2: Butcher tableau for DIRK3, where β = 0.435866521508459, γ =
−

6β2−16β+1
4 , and ω = 6β2−20β+5

4 .

β β
1+β

2
1+β

2 − β β
γ +ω + β γ ω β

γ ω β

2.4 Special case: reduction to steady conservation law

We close this section by noting that this discretization procedure simplifies con-
siderably for the special case of the steady conservation law, which is obtained by
dropping the time derivative term in (1). In this setting, the mapping (2) is indepen-
dent of time so all terms depending on the mapping velocity vanish. Furthermore,
the transformed state UX does not need to account for the mapping Jacobian, which
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further simplifies the definition of the transformed flux. In the steady setting, the
DG discretization leads to an algebraic residual form r ste : RNu × RNx → RNu and
enriched residual form Rste : RNu × RNx → RN ′u . A standard DG discretization
reads: given x ∈ RNx , find u ∈ RNu such that r(u, x) = 0. See Section 2 of [36] for
details.

3 Implicit shock tracking

In this section, we present the implicit tracking framework that poses an optimization
problem over the discrete solution and mesh that aims to align element faces with
discontinuities in the solution. First, we introduce the optimization formulation
for steady conservation laws and extend it to the unsteady case (method of lines
discretization) by “solving a steady problem at each timestep”.

3.1 Steady case

We formulate the problem of tracking discontinuities as a constrained optimization
problem over the PDE state and coordinates of the mesh nodes that minimizes an
objective function, f : RNu × RNx → R, while enforcing the DG discretization of
the conservation law. That is, we define u ∈ RNu and x ∈ RNx as

(u, x) B arg min
w∈RNu ,y∈RNx

f (w, y) subject to: r ste(w, y) = 0. (20)

The objective function is constructed such that the solution of the optimization
problem (u, x) is a mesh (x) that aligns element faces with discontinuities in the
DG solution (u). The optimization-based tracking method directly inherits the ben-
efits of standard DG methods, i.e., high-order accuracy and conservation, due to
the constraint that exactly enforces the DG discretization. Finally, the proposed
optimization-based tracking method is nonlinearly stable if all discontinuities are
successfully tracked, i.e., additional stabilization (e.g., limiting, artificial viscosity)
is not required, which we demonstrate in our numerical experiments in Section 5.

We propose an objective function that consists of two terms: one term penalizes a
measure of the DG solution error ferr : RNu ×RNx → R and the other term penalizes
distortion of the mesh fmsh : RNx → R, i.e.,

f : (w, y) 7→ ferr(w, y) + κ
2 fmsh(y), (21)

where κ ∈ R+ is a parameter that weights the contribution of the two terms. Since a
piecewise polynomial solution on an aligned mesh will have much lower error than
on a non-aligned mesh, ferr promotes alignment of the mesh with discontinuities
while fmsh prevents the mesh from entangling or becoming unacceptably skewed.



High-Order Implicit Shock Tracking (HOIST) 11

For the error-like tracking term,we use the norm of theDG residual corresponding
to an enriched test space, i.e.,

ferr : (w, y) 7→
1
2
Rste(w, y)TRste(w, y), (22)

where we enrich the test space using polynomials of one degree higher than the trial
space. This follows on a large body of work that uses residual-based error indicators
to drive h-, p-, and r-adaptivity [10]. Furthermore, it was shown to lead to a robust
and reliable tracking framework [36].

To maintain a high-quality mesh, we define fmsh as the distortion of the physical
mesh relative to the distortion of the reference mesh

fmsh : y 7→
1
2
(Rmsh(y) − Rmsh(X))

T (Rmsh(y) − Rmsh(X)), (23)

where Rmsh : RNx → R |Eh,q | is the algebraic system corresponding to the elemental
mesh distortion rmsh

K : Wh → R, commonly used for high-order mesh generation
[13], defined as

rKmsh : Q 7→
∫
K

(
‖∇XQ‖

2
F

d(det∇XQ)2/d+

)2

dv (24)

and X ∈ RNx is the nodal coordinates of the reference mesh.
The optimization problem in (20) is solved using the sequential quadratic pro-

gramming (SQP) method proposed in [36] that defines the sequences {u(k)}∞
k=0 ⊂

RNu and {x(k)}∞
k=0 ⊂ R

Nx as

u(k+1) = u(k) + αk+1∆u
(k+1), x(k+1) = x(k) + αk+1∆x

(k+1), (25)

for k = 0, 1, . . . , where αk+1 ∈ (0, 1] is a step length determined via a line search
applied to the `1 merit function, and ∆u(k+1) ∈ RNu and ∆x(k+1) ∈ RNx are search
directions. At a given iteration k, the search directions ∆u(k) and ∆x(k) are computed
simultaneously as the solution of a quadratic approximation to the optimization prob-
lem in (20) with a regularized Levenberg-Marquardt approximation of the Hessian;
for details, see section 4 of [36].

3.2 Unsteady case (method of lines)

We extend the steady implicit shock tracking framework in Section 3.2 to time-
dependent problems discretized using a method of lines approach (in contrast to
the space-time approach in [6, 36]). To begin, we formulate the problem of tracking
discontinuities at a given stage i and timestep n as a constrained optimization problem
over the PDE state and mesh stage that minimizes an objective function, fn,i :
RNu × RNx → R, while enforcing the DG-DIRK discretization. That is, we define
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un,i ∈ R
Nu and xn,i ∈ R

Nx as

(un,i, xn,i) B arg min
w∈RNu ,y∈RNx

fn,i(w, y) subject to: runs
n,i (w, y) = 0. (26)

for n = 1, . . . , NT and i = 1, . . . , s. As in the steady case, the objective function is
constructed such that the solution of the PDE-constrained optimization problem is a
feature-aligned mesh by using the norm of the enriched DG-DIRK residual

fn,i : (w, y) 7→
1
2

Runs
n,i (w, y)

2
2 . (27)

This choice of optimization formulation exactly matches the form of the optimization
problem in (20), and therefore, we use the same SQP solver to compute the solution
of (26). For a fixed time step n, once the stage states {un,i}

s
i=1 and meshes {xn,i}si=1

are computed, the state and mesh can be advanced to the next time step (un+1 and
xn+1) using the relationships in (14). The DIRK schemes considered in this work
(Table 1) satisfy the property that Asi = bi for i = 1, . . . , s, which implies the state
and mesh at the final stage of time step n are identical to the state and mesh at time
step n + 1, i.e., un+1 = un,s and xn+1 = xn,s .

Unlike the steady case (21), we do not include the mesh quality term in the
objective function for the unsteady (method of lines) case. In the steady case, there is
no information about the shock location a priori, which usually requires significant
deformation of the initial mesh to align with shocks, necessitating the use of fmsh
(23). However, in the context of timestepping, we have useful information from the
previous timestep to use as an initial guess for both the state and mesh. We can
combine this information along with the Rankine-Hugoniot conditions and a high-
order mesh smoothing procedure to obtain an excellent initial guess for the mesh at
each Runge-Kutta stage (Section 4.1.2). In a sense, the additional time dimension
allows the mesh regularization to be decoupled from the implicit shock tracking
procedure, which is one advantage of the method of lines discretization over the
space-time formulation.

4 Practical considerations

4.1 Solution and mesh initialization

The implicit shock tracking optimization problems in (20) and (26) are non-convex
and therefore the initial guess for the SQP solver is critical to obtain a good solution.
In the present context, this means we must provide a reasonable initial guess for the
mesh coordinates x(0) and DG solution u(0).
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4.1.1 Steady case

The mesh is always initialized from the reference mesh which comes from mesh
generation without knowledge of the discontinuity surface. To avoid local minima
in the optimization problem (20) that arise when high-order meshes are used, we
usually initialize the tracking problem for p ≥ 0, q > 1 (solution space of degree p
and mesh of degree q) from the solution of the tracking problem for p′ ≤ p, q′ = 1
because we have observed that q = 1 tracking is quite robust (Section 5.1.1 of [36])
and convergence of the q > 1 solution from a straight-sided tracking mesh is rapid.

4.1.2 Unsteady case (method of lines)

In the method of lines setting where implicit shock tracking is performed at each
time step, an obvious idea for the initial guess of the optimization problem (26)
is the converged mesh and solution from the previous time tn. In practice, this
is too far off to attain good convergence properties except for prohibitively small
choices of timestep ∆t. Instead, we employ an initial guess where we advect each
node on the discontinuity surface from the previous time by the instantaneous shock
speed determined by the Rankine-Hugoniot conditions. The remaining nodes are
updated using standard optimization-based mesh smoothing using the high-order
mesh distortion metric (24). This provides a good initial guess for the shock-aligned
mesh for each stage of the optimization problem (Fig. 3). In general, we will need
a regularized distortion metric following a procedure described in [12] to handle
tangled meshes.

For the initial guess for the solution, we use the converged physical solution (U)
from the previous timestep. However, since we applied our DG discretization to the
transformed conservation law (3), we are solving for the reference solution (UX ).
Therefore, to use the physical solution at time tn as the initial guess for time tn+1,
we multiply it by the ratio of the Jacobian of the initial guess for the mapping at
time tn+1 (advection based on Rankine-Hugoniot conditions and smoothing) to the
Jacobian of the converged mapping at time tn. Future work to enhance the robustness
of these initial guesses might consider more advanced methods to approximate the
shock velocity [26] and extrapolation based estimates for the solution.

4.2 Edge collapses and solution transfer

As we will show in our numerical experiments in Section 5, for the steady case
we typically start with an initial mesh that is far from alignment with the shock.
In general, this requires large deformations of the initial mesh, which can result in
severely ill-conditioned elements and drastically degrade the quality of our solution.
To address this, we follow the approach in [6, 36] and collapse elements once they
become problematic. In particular, after each SQP iteration, we tag elements for
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Fig. 3: Shock nodes ( ) (left), advected by instantaneous shock speed (middle)
and smoothed mesh (right).

removal if their volume is smaller than some fraction (20% in this work) of their
initial volume and remove them by collapsing their shortest edge and updating the
connectivity of the mesh (Fig. 4). Further details of this edge collapse procedure and
corresponding solution transfer are described in Section 5.2 of [36].

Fig. 4: Demonstration of edge collapse algorithm: the element identified in the
original mesh (left) is collapsed along the highlighted edge to produce the new mesh
(right) with the original elements shown in dashed lines for reference.

5 Numerical experiments

In this section, we demonstrate the implicit shock tracking method for a number of
nonlinear conservation laws. For the unsteady problems, we apply implicit shock
tracking in the space-time and method of lines settings, and compare the two ap-
proaches.

5.1 1D time-dependent, inviscid Burgers’ equation

Weconsider the time-dependent, inviscidBurgers’ equation in one spatial dimensions
that governs nonlinear advection of a scalar quantity through the one-dimensional
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spatial domain Ω = [−1, 1]

∂

∂t
U(x, t) +

∂

∂x

(
1
2

U(x, t)2
)
= 0 for x ∈ Ω, t ∈ [0,T]

U(−1, t) = 0 for t ∈ [0,T]
U(x, 0) = Ū(x) for x ∈ Ω

(28)

whereU : Ω×[0,T] → R is the conserved quantity implicitly defined as the solution
of (28), T = 1 is the final time, Ū : Ω→ R is the initial condition, defined as

Ū : x 7→ 2(x + 1)2(1 − H(x)), (29)

and H : R→ {0, 1} is the Heaviside function.

5.1.1 Space-time approach

First, we consider a space-time formulation of (28) that takes the form of a steady
conservation law (Eqn. (1) without the time derivative term) over the space-time
domain Ω̄ B Ω × [0,T] with flux function F : R→ R1×2, defined as

F : W 7→
[ 1

2W2 W
]
. (30)

The implicit tracking procedure is initialized from a structuredmesh of 64 space-time
simplex elements; the polynomial degree of the solution (p) andmesh (q) are varied in
p = q ∈ {1, 2, 3}. Even though the initial mesh is far from tracking the discontinuity
(some faces are nearly orthogonal to the discontinuity, rather than parallel to it), our
method tracks a faceted approximation (p = q = 1) to the discontinuity in only 40
iterations, requiring 7 element collapses (Figure 5). The mesh and solution for the
high-order elements (p = q > 1) are initialized from the p = q = 1 tracking mesh
and solution. These high-order approximations provide high-quality approximations
of the discontinuous space-time solution on the coarse mesh (Figure 6).

5.1.2 Method of lines approach

Next, we consider (28) in a method of lines setting where we apply the DG discretiza-
tion in space (Section 2.2), DIRK discretization in time (Section 2.3) and solve a
steady implicit tracking problem at each time step (Section 3.2). That is, instead of
solving a tracking problem over the two-dimensional space-time domain Ω̄ (all of
space and time coupled), we solve a sequence of one-dimensional tracking problems,
each one corresponding to an instant in time. This approach only requires a mesh of
the reference domainΩ0 = [−1, 1], which we construct such that an element interface
lies at the initial shock location (x = 0), i.e., the shock in the initial condition is
tracked. The shock tracking solution is computed using a DG discretization on this
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Fig. 5: Space-time solution of one-dimensional, inviscid Burgers’ equation using
the tracking method at various iterations throughout the solution procedure using a
p = q = 1 basis for the solution and mesh.

mesh with 20 elements of degree p = 3, q = 1 and a DIRK3 temporal discretization
with 20 time steps (Figure 7).

5.2 2D time-dependent, inviscid Burgers’ equation

Next, we consider the time-dependent, inviscid Burgers’ equation in two spatial
dimensions that governs nonlinear advection of a scalar quantity through the two-
dimensional spatial domain Ω = [−1, 1]2

∂

∂t
U(x, t) +

∂

∂xj

(
1
2

U(x, t)2βj

)
= 0 for x ∈ Ω, t ∈ [0,T]

U(x, t) = 0 for x ∈ ∂Ω, t ∈ [0,T]
U(x, 0) = Ū(x) for x ∈ Ω

(31)

whereU : Ω×[0,T] → R is the conserved quantity implicitly defined as the solution
of (31), β = (1, 0) is the flow direction, T = 2 is the final time, Ū : Ω → R is the
initial condition, defined as
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Fig. 6: Space-time solution of one-dimensional, inviscid Burgers’ equation using the
implicit tracking method with a p = q = 1 (top), p = q = 2 (middle), and p = q = 3
(bottom) basis for the solution and mesh with (left) and without (right) element
boundaries.
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Fig. 7: Method of lines solution of the one-dimensional, inviscid Burgers’ equation
with p = 4, q = 1. Initial condition Ū(x) ( ) and tracking solution at times
t = 0.05, 0.35, 0.65, 0.95 ( ).
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Ū : (x1, x2) 7→

{
(0.5 − 2(x2

2 − 0.25))
(

4
3 (x1 + 0.75)

)
x ∈ Ω�

0 elsewhere,
(32)

where Ω� B [−0.75, 0] × [−0.5, 0.5]. The initial condition is constructed such that
the initially straight shock curves over time, which is tracked by the high-order mesh.
The shock tracking solution is computed using a DG discretization on a mesh with
128 simplex elements of degree p = q = 2 and a DIRK3 temporal discretization with
40 time steps (Figure 8). Themesh smoothing procedure described in Section 4.1.2 is
important to maintain high-quality elements as the shock moves across the domain.

Fig. 8: Method of lines solution of two-dimensional, inviscid Burgers’ equation with
p = q = 2. Initial condition Ū(x) (left) and solution at T = 2 (right)

0 0.25 0.5 0.75 1

5.3 Euler equations

The Euler equations govern the flow of an inviscid, compressible fluid through a
domain Ω ⊂ Rd

∂

∂t
ρ(x, t) +

∂

∂xj

(
ρ(x, t)vj(x, t)

)
= 0

∂

∂t
(ρ(x, t)vi(x, t)) +

∂

∂xj

(
ρ(x, t)vi(x, t)vj(x, t) + P(x, t)δi j

)
= 0

∂

∂t
(ρ(x, t)E(x, t)) +

∂

∂xj

(
[ρ(x, t)E(x, t) + P(x, t)] vj(x, t)

)
= 0

(33)
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for all x ∈ Ω, t ∈ [0,T], i = 1, . . . , d and summation is implied over the repeated index
j = 1, . . . , d, where ρ : Ω×(0,T) → R+ is the density of the fluid, vi : Ω×(0,T) → R
for i = 1, . . . , d is the velocity of the fluid in the xi direction, and E : Ω×(0,T) → R>0
is the total energy of the fluid, implicitly defined as the solution of (33). For a
calorically ideal fluid, the pressure of the fluid, P : Ω × (0,T) → R>0, is related to
the energy via the ideal gas law

P = (γ − 1)
(
ρE −

ρvivi
2

)
, (34)

where γ ∈ R>0 is the ratio of specific heats. By combining the density, momentum,
and energy into a vector of conservative variables U : Ω× [0,T] → Rd+2, defined as

U : (x, t) 7→


ρ(x, t)
ρ(x, t)v(x, t)
ρ(x, t)E(x, t)

 (35)

the Euler equations are a conservation law of the form (1). Now, we investigate
the shock tracking framework on three benchmark examples governed by these
equations: Sod’s shock tube (a Riemann problem), the Shu-Osher problem, and
supersonic flow over a NACA0012 airfoil.

5.3.1 Sod’s shock tube

Sod’s shock tube is a Riemann problem for the Euler equations that models an
idealized shock tube where the membrane separating a high pressure region from a
low pressure one is instantaneously removed. This is a commonly used validation
problem since it has an analytical solution and features a shock wave, a rarefaction
wave, and contact discontinuity. The flow domain is Ω = [0, 1], the final time is
T = 0.2, the initial condition is given in terms of the density, velocity, and pressure
as

ρ(x, 0) =

{
1 x < 0.5
0.125 x ≥ 0.5

, v(x, 0) = 0, P(x, 0) =

{
1 x < 0.5
0.1 x ≥ 0.5,

(36)

and the density, velocity, and pressure are prescribed at x = 0 and the velocity is
prescribed at x = 1 (values can be read from the initial condition). The solution of
this problem contains three waves (shock, contact, rarefaction) that emanate from
x = 0.5 and move at different speeds, which is a generalized triple point in space-
time. The method of lines approach cannot handle this case because a single node
lies at (x, t) = (0.5, 0), which cannot track all three waves at time t > 0. Thus, we use
the space-time implicit shock tracking approach to solve this problem. The method is
initialized with an unstructured mesh of the space-time domain Ω̄ = [0, 1] × [0, 0.2]
consisting of 173 simplex elements (p = 3, q = 1) with additional refinement near
(0.5, 0) to resolve the geometric complexity of the triple point for a total of 5190
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spatiotemporal degrees of freedom. The DG solution is initialized with the p = 0
solution on the reference mesh. The final space-time tracking solution is shown in
Figure 9 where all features (head and tail of rarefaction, shock, and contact) are
tracked. A total of 47 element collapses are required, mostly near the triple point
to obtain elements that do not cross between the five distinct regions (left state,
rarefaction, between rarefaction and contact, between contact and shock, and right
state); the final mesh contains 126 elements (3780 degrees of freedom). Despite the
reduction in the number of degrees of freedom, the solution at the final timeT agrees
well with the exact solution (Figure 10) because the cubic basis functions do not
cross discontinuities or kinks.

0
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0

0.1

0.2

t

0 0.25 0.5 0.75 1
0

0.1

0.2

x

t

0.125 0.344 0.563 0.781 1.000

Fig. 9: Space-time solution of Sod’s shock tube (density) using implicit shock track-
ing using a p = 3 DG discretization (centerwith element boundaries, bottomwithout
element boundaries), initialized from an unstructured mesh without knowledge of
the discontinuity surfaces and a p = 0 DG solution (top).
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Fig. 10: Slice of space-time implicit shock tracking solution ( ) at time T = 0.2
relative to the exact solution ( ).

5.3.2 Shu-Osher problem

The Shu-Osher problem [28] is a one-dimensional idealization of shock-turbulence
interaction where a Mach 3 shock moves into a field with a small sinusoidal density
disturbance. The flow domain is Ω = [−4.5, 4.5], the final time is T = 1.1, the initial
condition is given in terms of the density, velocity, and pressure as

ρ(x, 0) =

{
3.857143 x < −4
1 + 0.2 sin(5x) x ≥ −4

v1(x, 0) =

{
2.629369 x < −4
0 x ≥ −4

P(x, 0) =

{
10.3333 x < −4
1 x ≥ −4,

(37)

and the density, velocity, and pressure are prescribed at x = −4.5 and the velocity
is prescribed at x = 4.5 (values can be read from the initial condition). The final
time is chosen such that waves trailing behind the primary shock do not steepen into
shock waves; shock formation will be the subject of future work. The shock tracking
solution is computed using a DG discretization on a mesh with 288 elements of
degree p = 4, q = 1, and a DIRK3 temporal discretization with 110 time steps
(Figure 11) along with a reference solution computed using a fifth-order WENO
method with 200 elements and temporal integration via RK4 with 110 timesteps
[28]. The shock tracking solution actually overshoots the reference solution at the
formation of the trailing waves, which suggests the reference solution is being overly
dissipated by the WENO scheme (left inset). The shock is perfectly represented by
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the aligned mesh in the shock tracking solution compared to the reference (right
inset).

Fig. 11: Density at T = 1.1 of Shu-Osher problem for the the reference ( ) and
shock tracking ( ) solutions.

Unlike Sod’s shock tube, the Shu-Osher problem is well-suited for the method of
lines approach because there is no space-time triple point, e.g., from multiple waves
emanating from a point or intersecting discontinuities. In this case, the method
of lines approach is preferred because computations are only required on a d-
dimensional mesh as opposed to a (d + 1)-dimensional space-time mesh (all time
coupled), which is more practical for large problems.

5.3.3 Supersonic flow over airfoil

Finally, we apply the implicit tracking method to solve for supersonic flow over a
NACA0012 airfoil (Figure 12), which is governed by the 2D steady, compressible
Euler equations (see [36] for a complete description of the problem). This is a
difficult problem because there are two distinct shocks that must be resolved: a bow
shock ahead of the leading edge and an oblique shock off the tail. To demonstrate
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the implicit shock tracking method, we use a coarse mesh consisting of 160 simplex
elements with a second-order (p = q = 1) and third-order (p = q = 2) solution and
mesh discretization; the initial mesh is generated without knowledge of the shock
location (Figure 12, left). In both cases, the tracking procedure tracks the shocks
given the resolution in the finite element space, despite the initial mesh and solution
being far from aligned with the shock. The second-order approximation is somewhat
underresolved as seen by the faceted shock approximation and solution near the
airfoil; however, the third-order solution is well-resolved: the high-order elements
curve to the shock and the flow solution is well-resolved throughout the domain.
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Fig. 12: Solution (Mach) of Euler equations over the NACA0012 airfoil (M∞ = 1.5)
using the implicit tracking method with a p = q = 1 (center) and p = q = 2
(right) basis for the solution and mesh with (top) and without (bottom) element
boundaries. The implicit tracking procedure is initialized from a mesh generated
without knowledge of the shock surface and a p = 0 DG solution (left).
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6 Conclusion

This work provides an overview of the implicit shock tracking method developed
in [34, 36, 27] for steady and unsteady conservation laws with discontinuous so-
lutions. For unsteady problems, both space-time and method of lines discretization
approaches are considered. The key ingredient of the method is an optimization for-
mulation that imposes the standard DG discretization as a constraint and minimizes
the magnitude of the DG residual corresponding to an enriched test space (and a
mesh quality term). The optimization variables are taken to be the DG solution and
nodal coordinates, which are computed simultaneously using a sequential quadratic
programming method. In the method of lines setting, the tracking procedure is ap-
plied at each stage of the high-order DIRK temporal discretization.We demonstrated
the implicit shock tracking procedure using a number of standard steady and un-
steady flow problems; in all cases, the method is capable of tracking discontinuities
and providing high-quality flow approximations using coarse, high-order meshes.
For unsteady problems, the method of lines approach is more practical, particularly
as the size and difficulty of the problem increases; however, it is limited in that it
cannot handle colliding shocks (triple points in space-time) without complex mesh
operations and solution reinitialization. In these cases, the space-time approach is
preferred due to its generality of tracking discontinuities in space-time, which natu-
rally handles triple points.
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