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SUMMARY

Mesh optimization procedures are generally a combination of node smoothing and discrete operations
which affect a small number of elements to improve the quality of the overall mesh. These procedures
are useful as a post-processing step in mesh generation procedures and in applications such as fluid
simulations with severely deforming domains. In order to perform high-order mesh optimization, these
ingredients must also be extended to high-order (curved) meshes. In this work, we present a method
to perform local element operations on curved meshes. The mesh operations discussed in this work
are edge/face swaps, edge collapses, and edge splitting (more generally refinement) for triangular and
tetrahedral meshes. These local operations are performed by first identifying the patch of elements
which contain the edge/face being acted on, performing the operation as a “straight-sided one” by
placing the high-order nodes via an isoparametric mapping from the master element, and smoothing
the high-order nodes on the elements in the patch by minimizing a Jacobian-based high-order mesh
distortion measure. Since the initial “straight-sided guess” from the placement of the nodes via
the isoparametric mapping frequently results in invalid elements, the distortion measure must be
regularized which allows for mesh untangling for the optimization to succeed. We present several
examples in 2D and 3D to demonstrate these local operations and how they can be combined with a
high-order node smoothing procedure to maintain mesh quality when faced with severe deformations.
Copyright c© 2023 John Wiley & Sons, Ltd.
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1. INTRODUCTION

High-order methods have received considerable interest in the computational science
community in the last two decades. This is due to their potential to deliver highly accurate
solutions at a comparable cost to traditional low-order methods. In fact, for certain classes of
problems — such as turbulent flow — it is widely believed that high-order methods will be
required for accurate and grid-converged solutions [1]. Much of the great promise of high-order
methods is due their ability to handle complex geometries with unstructured meshes. These
methods require high-order (curved) meshes to ensure the curved geometry is represented
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2 A. SHI AND P.-O PERSSON

with sufficient accuracy to enable the high-order convergence rate of these methods. However,
the existence (or rather, lack thereof) of robust and automated high-order mesh generation
procedures is still one of the main bottlenecks in the widespread adoption of these methods
in the design process. To this end, the high-order community has identified high-order mesh
generation as a topic deserving of considerable research attention and as one of the top pacing
items in high-order method research [2, 3]. One might say curved meshing first distinguished
itself as a distinct research topic within mesh generation in 2015, the first year it had its own
dedicated session at the International Meshing Roundtable [4]. In terms of available software,
Gmsh is a widely used free software with the capability to generate and display curved meshes
for elements of arbitrarily high-order [5]. Up until fairly recently, there were no commercial
high-order mesh generators available before Pointwise released support for this in 2019 [6]. We
refer the reader to the introduction of [7] for a recent survey of the current state of affairs of
high-order meshing research and additional references.

Most straight sided mesh generation procedures proceed in two steps: 1) the initial creation
of a mesh from geometry through a method like advancing front, Delaunay or octree, and 2)
a mesh optimization post-processing step to improve element quality. There is a large body
of literature on these mesh quality improvement procedures. While those works may differ in
their notions of optimality and specific techniques used, they largely agree mesh optimization
via node movement and discrete, localized element operations are the best way to perform
mesh quality improvement. Freitag and Ollivier-Gooch [8] consider various node smoothing
procedures and face and edge swapping operations, and show that each mechanism fails to
significantly improve the mesh quality when used individually but result in very high quality
meshes when combined. They offer a variety of empirical recommendations on how to do so and
demonstrate the effectiveness of their schedules on a variety of tetrahedral mesh geometries.
De Cougny and Shephard [9] combine edge collapses and splitting operations for the purpose
of mesh adaptation. Klinger and Shewchuk [10] consider a richer set of operations in an effort
to take these ideas to an extreme to find the highest quality mesh, assuming that speed is not
the highest priority. We refer the reader to Section 3 of their paper where they survey many of
the commonly (as well as lesser used) discrete mesh operations. These are some of the “classic”
papers in the field for mesh quality improvement for linear meshes, and while the focus of this
paper is on curved meshes, the field of linear mesh quality improvement is still highly active.
Some more recent contributions include, but are certainly not limited to directions like new
discrete operations to reach better local minima [11, 12], and the inclusion of parallelization
[13, 14, 15].

Now the question is how to extend these ideas to curved meshes. Existing work [16, 17,
18, 19] on high-order node smoothing primarily takes the approach of optimization-based
minimization of some energy functional or objective function that quantifies high-order mesh
distortion. The key issues here are the need for mesh distortion metrics for high-order elements
[20, 21] and a procedure for high-order untangling [19, 22, 23]. In principle, some of the
approaches to curved mesh generation such as the solution of a linear/nonlinear elasticity
analogy [24, 25, 26, 27] or a PDE-based approach [28] could also be adapted for the purpose
of high-order mesh smoothing. There is practically no literature on the use of local element
operations for curved meshes. To the best of the authors’ knowledge, the only existing work
on high-order mesh operations [29] considers face and edge swaps for tetrahedral meshes with
second-order (P 2) elements.

It is clear that further developments in these areas will be required to advance the current
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LOCAL ELEMENT OPERATIONS FOR CURVED SIMPLEX MESHES 3

state of curved mesh generation and adaptivity. The difficulty of directly acting on high-order
meshes is one possible explanation for why nearly all curved mesh generation approaches
are of the a priori variety rather than direct methods [30] which proceed in the same two
phases as most straight-sided mesh generators do. In the context of finite element solutions,
solution quality is frequently dictated by the mesh element of the worst quality. Local mesh
operations for curved meshes could be an inexpensive and direct way to deal with this and other
applications such as the repair of deforming high-order domains occurring in time-dependent
fluid simulations.

Node Smoothing Edge Swap

Edge Collapse Edge Splitting

Figure 1: Straight sided mesh operations.

The main goal of this paper is to answer the question, “How we can extend local element
operations for straight-sided meshes (Figure 1) to high-order triangular and tetrahedral
meshes?” One key difference from the low-order case is that there are many valid ways to
perform these operations due to the additional degrees of freedom afforded by the high-order
nodes (Figure 2). So there is now an optimal way to perform these local operations by placing
these additional nodes in a way to minimize a high-order Jacobian-based mesh distortion
measure. In particular, this paper will discuss high-order face and edge swaps, edge collapses
and edge splitting for triangular and tetrahedral meshes. The remainder of this article is
organized as follows. In Section 2, we introduce the high-order Jacobian based distortion
measure and its untangling capabilities. In Section 3, we describe the process of performing
these operations, and discuss some practical details related to their implementation. In Section
4, we present multiple examples illustrating how these operations can be combined with high-
order node smoothing to repair curved meshes that undergo severe deformations. Finally, in
Section 5, we offer concluding remarks and directions for future research.
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4 A. SHI AND P.-O PERSSON

Figure 2: Only one possible flip for straight-sided elements (left), but many possible flips for
high-order elements (right).

2. DISTORTION MEASURE AND UNTANGLING

We describe the construction of the high-order distortion measure used in this work for node
smoothing from a standard linear distortion measure, which is then regularized to allow for
simultaneous smoothing and untangling [31, 32]. We also offer some comments on how this
measure is used in our setting for optimization.

2.1. High-order distortion measure

We introduce the distortion measure for linear elements (2). This measure – known as the
inverse mean-ratio shape measure – was first introduced in [33, 34]. This measure is widely used
in the meshing community as a shape distortion metric due to its many desirable properties
such as the standard invariance to translation, rotation, and scaling, but is also special as
a geometric shape measure that also enjoys many of the desirable properties of an algebraic
mesh quality metric [35]. In particular, this measure is shown to be convex [36] and well-suited
for optimization.

As an aside, we note the metric we are about to introduce is geometric in nature, as are
most metrics in use today, as opposed to being PDE or solution based. In the course of using
mesh generation and adaptation in the numerical solution of PDEs, we point out that using a
metric that is geometric in nature may not perfectly align with the ultimate goal of solving the
PDE since the metric employed was not based on the PDE solution. This is addressed in [37]
where the author discusses the notion of “bridging the gap between a priori quality metrics
and solution-dependent metrics”.

Consider a linear element EI having the desired shape and size (the ideal element) and a
corresponding element in physical space EP . From these we can define a unique affine mapping
φE : EI → EP . It is frequently convenient to introduce the notion of the master element EM

and define two additional mappings φI , φM (Figure 3a) that map from the master element to
the ideal and physical element, respectively. We can define φE in terms of the these mappings
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LOCAL ELEMENT OPERATIONS FOR CURVED SIMPLEX MESHES 5

Figure 3: Mappings between the master, ideal and physical elements: (a) linear case (left) and
(b) high-order case (right).

as follows

φE : EI
φ−1
I−−→ EM

φP−−→ EP . (1)

The element shape distortion metric η is defined as

η(DφE) =
||DφE ||2F
d|σ|2/d

(2)

where d is the spatial dimension, || · ||F is the Frobenius norm, and σ = det(DφE). Note that
for linear elements, since φE is affine, its Jacobian DφE is constant. This distortion measure
quantifies the deviation of the shape of the physical element EP with respect to the ideal
element EI . This distortion measure is 1 for the ideal element and tends to infinity as the
physical element degenerates. It is often convenient to define a corresponding quality measure
q as

q =
1

η
∈ [0, 1]. (3)

For high-order elements, we can no longer apply (2) directly because the mapping φE is no
longer affine, so DφE is no longer constant. Roca et al. describes an extension of the linear
distortion measure to high order triangular [20] and tetrahedral [21] elements. The idea is that
since the linear measure quantifies the local deviation between the ideal and physical elements,
we can obtain a high-order element-wise distortion η̂ measure by integrating the linear measure
on the physical high order element

η̂(DφE) =

(
1

|t|

∫
t

ηr(DφE) dx

)1/r

(4)

where |t| is the area of the physical element and r = 2 in this work. Explicit expressions for
the isoparametric mappings for the high-order case (Figure 3b) in terms of shape functions
are given in [20].

2.2. Regularization and untangling

The distortion measure η needs to be modified to eliminate the singularity so an optimization
procedure can recover from an invalid initial configuration. We use the regularization procedure
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6 A. SHI AND P.-O PERSSON

introduced independently by [31, 32] around the same time, but follow the notation [32] which
replaces σ in the denominator of (2) by

σδ(σ) =
1

2

(
σ +

√
σ2 + 4δ2

)
(5)

where δ is a positive element-wise parameter. This regularized Jacobian σδ(σ) is a
monotonically increasing function of σ such that σδ(0) = δ, which tends to 0 when σ tends
to −∞, which allows us to overcome the vertical asymptote at σ = 0 in the original measure.
This parameter δ is only set for a non-zero value if there exists an invalid element in the mesh
under consideration, otherwise it is set to zero for a mesh with all valid elements. Using the
regularized Jacobian, we can now modify (2) to obtain a linear distortion measure capable of
simultaneous smoothing and untangling

ηδ(DφE) =
||DφE ||2F
d|σδ|2/d

(6)

and use this to define a high-order regularized measure η̂δ analogous to (4). Figures 5 and 6
of [19] provide a useful illustration of how this regularized distortion metric compares to the
original for a simple example.

What remains is the issue of how to pick this positive elementwise regularization parameter
δ. We certainly require the original (η̂) and regularized (η̂δ) distortion measures to have nearby
minima, so δ needs to be sufficiently small. On the other hand, δ has to be large enough to
ensure that 4δ2 is significant compared to σ2 in the expression for σδ. When this idea was
originally introduced in [32], this parameter was chosen in a fairly ad hoc manner by testing
a few values for a given initial tangled mesh. In [19], a heuristic was developed to choose a
constant value of δ for each element. Their setting deals with high-order mesh generation by
curving the boundaries of a well-shaped straight-sided mesh and minimizing the regularized
distortion metric. For them, in the mapping φE , each physical element EP in the curved mesh
has the ideal element EI as the corresponding element in the original straight-sided mesh.
They propose to choose this parameter δ solely based off information from the straight-sided
ideal element. Defining σ∗ = − detφI and imposing

σδ(σ
∗) =

1

2

(
σ∗ +

√
(σ∗)2 + 4δ2

)
= τ > 0 (7)

for some given tolerance τ implies

δ(σ∗) =
1

2

√
(2τ + |σ∗|)2 − (σ∗)2 =

√
τ2 + τ |σ∗|. (8)

They argue that τ should be small compared to σ and select τ = α|σ∗|, giving the final value
for δ as

δ(σ∗) = |σ∗|
√
α2 + α.

The value α = 10−3 is observed to work well in practice and accomplish the tradeoff required
on the value of δ (Figure 4). Our setting deals with high-order mesh smoothing, so we choose
the ideal element EI to always be the equilateral triangle/tetrahedron. For the unregularized
distortion measure, the actual size of EI is irrelevant since the measure is invariant to scaling.
This is no longer true for the regularized distortion measure. So in order to maintain the
assumption from their setting that each EI and EP are roughly of the same size, we need to
scale the ideal element to have the same volume as each corresponding physical element and
choose δ accordingly.
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LOCAL ELEMENT OPERATIONS FOR CURVED SIMPLEX MESHES 7

Figure 4: Representation of σδ(σ) (reproduced from [19]).

2.3. Optimization

We need to aggregate the distortion measures for individual elements into a single quantity for
a group of elements for optimization purposes. What we really want is to optimize for the worst
element, since the distortion of the worst element in a mesh is often what drives the solution
quality in the context of numerical simulation. But since minimizing the maximum distortion
is difficult optimization-wise, we consider the normalized sum of squares of the elementwise
distortion of each element ei in a group of elements M

η̂agg(M) =
1

|M |
∑
ei∈M

η̂δ(Dφei)
2 (9)

where η̂δ is the regularized high-order distortion measure obtained by combining (4) and (6)

η̂δ(DφE) =

(
1

|t|

∫
t

ηrδ(DφE) dx

)1/r

. (10)

For smoothing over the entire mesh, we largely follow the localized approach given in
Appendix A of [19], which considers a “Gauss-Seidel” like method which iteratively updates
each node by a Newton step with backtracking line search until either the objective function
or the amount of node movement satisfies some stopping criteria. Instead of looping over
nodes, we loop over patches (Figure 5), which seems to help mitigate some of the “back and
forth” the optimization procedure can empirically observed to become stuck in, which is also
observed in [18] for a different high-order mesh smoothing procedure. We note this solver
offers no guarantees for especially tangled or pathological meshes due to the issues with the
regularization method which many authors have pointed out fails quite often in practice such
as if the boundary of the mesh is also tangled [38], or the possible failure of the high-order
Gauss quadrature rule to detect inversion at the corners of our high-order elements.
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8 A. SHI AND P.-O PERSSON

Figure 5: Patch-based high-order mesh smoothing.

3. ELEMENT OPERATIONS

We describe how to perform the local element operations of edge/face swaps, edge collapses,
and edge splitting for curved, simplex elements in 2D and 3D. The operations roughly proceed
by freezing the boundary of the patch of affected elements, performing the operation as a
“straight-sided one”, and then simultaneously untangling and smoothing the result. We note
some practical issues along with differences in the high-order setting.

3.1. Edge/face swaps

Once a group of elements is identified to perform edge/face swaps on, we first perform the
straight-sided initial guess. This is done by freezing the boundary, discarding all the interior
nodes and replacing them in the flipped configuration by the straight-sided information. This
initial flip is extremely prone to tangling even when starting out with fairly well-shaped
elements, which is more severe for the 3D case. By the high-order distortion measure (4), many
high-order elements which seem valid by visual inspection with all interior nodes contained
within the boundary may very well be invalid. Finally, we apply the simultaneous untangling
and smoothing procedure described in the previous section to arrive at the curved flip (Figures
6 and 7). We decide to accept the resulting flip if it results in a lower aggregate distortion η̂agg
from the original configuration. The normalization by the number of elements in the group
in the definition is to allow comparison of the original and flipped configuration, since in 3D
there are many topological changes which in general may alter the number of elements.

3.2. Edge Collapses

Once an edge is identified to collapse, we first do the straight-sided initial guess. This is done
by identifying the patch of elements that contains either endpoint of the edge being collapsed,
freezing its boundary, discarding all the interior nodes, and replacing them by the straight-sided
edge collapse to the midpoint of the original curved edge. Then we apply the simultaneous
untangling and smoothing procedure to arrive the final curved collapse (Figures 8 and 9). If
the edge identified for collapse is on the boundary of the domain, information will inevitably be
lost but can be mitigated in the high-order case by performing projection based interpolation
on the patch boundary by standard techniques encountered in hp-FEM methods [39].
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LOCAL ELEMENT OPERATIONS FOR CURVED SIMPLEX MESHES 9

Figure 6: Edge flips in 2D: original elements (left), initial straight-sided flip (middle), curved
flip (right).

Figure 7: Face swaps in 3D: original elements (left), initial straight-sided swap (middle), curved
swap (right).

Figure 8: Edge collapses in 2D: original elements (left), initial straight-sided collapse (middle),
curved collapse (right).

Figure 9: Edge collapses in 3D: original elements (left), initial straight-sided collapse (middle),
curved collapse (right).
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10 A. SHI AND P.-O PERSSON

3.3. Edge Splitting

Depending on the setting, the edges to be split could either be directly identified or implied
by choosing elements. Either way, once an element is identified to be split and the straight
sided guess is performed according to one of the templates in 2D (Figure 10) or 3D (Figure
11), its neighbors must also be split by a straight-sided guess with the corresponding template
to prevent hanging nodes. Then, we apply simultaneous untangling and smoothing on this
group of elements to arrive at the final curved split (Figures 12 and 13). There are many more
possible subdivision templates in 3D depending on the number of marked edges (Figure 11 of
[9]), and that for any of these templates to determine how to split the edge(s), the amount of
“smoothing” required after the edge splits applied to the straight sided guess can differ quite
greatly and alter the overall efficiency of the method, but this is outside of the scope of this
work.

4. NUMERICAL EXPERIMENTS

We demonstrate how local element operations for curved meshes can be combined with high-
order mesh smoothing to maintain element quality and sizing for high-order meshes subject
to severe deformations in both 2D and 3D. All the meshes used for the numerical experiments
are generated by Gmsh [5] and are of polynomial degree four.

All the results have been obtained on a MacBook Pro with one dual-core Intel Core i7 CPU
(Apple Inc., Cupertino, California, US), with a clock frequency of 3.0 GHz, and total memory
of 16 GBytes. As a proof of concept, this code has been fully developed in MATLAB without
using any additional toolbox. The code is not optimized, not parallel, and not compiled and
the results are provided as an illustration of this concept.

4.1. Rotation

We first demonstrate how node smoothing combined with edge flips can maintain element
quality under rotation. The 2D mesh is a circle-in-square mesh of 116 elements, where the
circle is centered at the origin with radius 0.5 inside the square [−1, 1]2 (Figure 14 left). The
analogous 3D mesh is a sphere-in-cube mesh of 3395 elements, where the sphere is centered at
the origin with radius 0.5 inside the cube [−1, 1]3 (Figure 15 left). At each step, we rotate the
nodes on the circle/sphere, perform high-order node smoothing while keeping the nodes on the
circle/sphere fixed, apply curved flips according to Algorithm 1, and smooth again. Algorithm
1 constructs a priority queue of elements with higher distortion than a floating threshold value
and considers all topologically possible flips for each element, accepting the one (if any) that
results in the greatest improvement. It performs sweeps over all the elements with a reset
floating threshold for each sweep until no further improvement is possible.

Rotation cannot exceed much more than a quarter turn with only node smoothing (Figures
14 and 15 middle). A straight sided mesh cannot rotate this far with smoothing alone; the
presence of high order nodes grant us the flexibility to maintain valid (albeit highly stretched)
elements for more severe deformations. It is well known in the straight-sided case that such
greedy flip algorithms like the one used here converge to an optimal triangulation (in the
sense of Delaunay) in the 2D case, but offers no such guarantees in higher dimensions [40].
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LOCAL ELEMENT OPERATIONS FOR CURVED SIMPLEX MESHES 11

Figure 10: Element subdivision templates in 2D: 1→ 2 (left) and 1→ 4 (right).

Figure 11: Element subdivision templates in 3D: 1 → 2 (left), 1 → 4 (middle), and 1 → 8
(right).

Figure 12: Edge splitting in 2D: original elements (left), initial straight-sided split (middle),
curved split (right).

Figure 13: Edge splitting in 3D: original elements (left), initial straight-sided split (middle),
curved split (right).
Copyright c© 2023 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2023; XX:1–20
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12 A. SHI AND P.-O PERSSON

2D rotation can continue indefinitely, and we can reasonably attain a good aggregate quality
under rotation for the 3D case, but some poorly shaped elements emerge as evidenced by the
growing maximum element distortion (Table I); this issue is no doubt magnified by our use of
very coarse meshes. We also report the aggregate mesh quality (9), and the numerical results
also illustrate a fundamental issue of mesh smoothing discussed at the beginning of Section 2.3.
It turns out even if the aggregate distortion of the mesh is very low, this can obscure the fact
that there are elements of very low quality present as well. This can also be remedied with more
sophisticated mesh cleanup procedures featuring more specialized element operations such as
compound operations [41] and sliver exudation [42], but such issues are not the focus of this
work. Also note that here we do not nodes on the boundary or the circle/sphere. Allowing
these nodes to slide on the fixed boundaries while smoothing the entire mesh would certainly
be an improvement to the procedure.

4.2. Coarsening

Though this example does not deal with mesh deformation, we demonstrate how curved
collapses can be combined with high-order node smoothing to coarsen a mesh (Figure 16).
We begin with a rather fine 2D mesh with 690 elements of the square [−1, 1]× [−1, 1] with a
circular hole at the origin with radius 0.5 (Figure 16, top left). We apply multiple passes of
curved edge collapses to coarsen the mesh until convergence according to a chosen uniform size
function (Algorithm 2). In this case we choose the ideal edge length L0 = 0.1 as a parameter
far enough from the original edge length just to illustrate the procedure to induce collapses.
We also coarsen elements on the interior boundary with projection by interpolation in the L2

error minimizing sense to maintain an accurate representation of the circular boundary with
fewer elements.

4.3. Translation

We demonstrate the combination of all three curved element operations with mesh smoothing
to maintain both element quality and uniform sizing. The 2D mesh is a circle-in-rectangle mesh
of 314 elements, where the circle is centered at (−1, 0) and has radius 0.5 inside the rectangle
[−2, 2]× [−1, 1]. The analogous 3D mesh is a sphere-in-prism mesh of 3395 elements, where the
sphere is centered at (−1, 0, 0) with radius 0.5 inside the prism [−2, 2]×[−1, 1]×[−1, 1]. At each
step, we translate the nodes on the circle/sphere, perform high-order node smoothing while
keeping the nodes on the circle/sphere fixed, apply all three types of local mesh operations
according to Algorithm 4, and smooth again. Algorithm 4 applies sweeps of splits (Algorithm
3) and collapses (Algorithm 2) until convergence, and then applies sweeps of flips (Algorithm
1) until convergence. In terms of the parameters for both Algorithms 2 and 3, the ideal edge
length is set to be L0 = avg(L), where L is the list of computed original edge lengths. This
choice is made simply because after the translation, we want the final mesh to resemble our
original mesh, which was roughly uniform and with the same element sizes. As an aside,
one could imagine introducing anisotropy to the mesh through these local element operations
through a specified size function which would specify the ideal lengths L0 at any point in
space, but this is beyond the scope of the work.

Translation cannot make it more than halfway across the prism with only node smoothing
(Figures 17 and 18). With the addition of flips, we can make it across the entire domain,
but this results in elements of highly variable size. This can be remedied with the addition of
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Figure 14: 2D rotation with flips: original mesh (left), quarter turn with smoothing only
(middle), quarter turn with smoothing and flips (right).

Figure 15: 3D rotation with flips: original mesh (left), quarter turn with smoothing only
(middle), quarter turn with smoothing and flips (right).

Table I: Mesh Distortion of Figures 14 and 15

2D 3D
max agg max agg

Original mesh 1.167 1.141 2.499 1.669
Smoothing only 7.876 5.327 15.531 8.490

With flips 1.197 1.179 4.086 1.826

collapses and splitting to maintain a uniform size, which allows us to practically maintain the
original element sizes and qualities after translation across the entire domain (Table II).

5. CONCLUSION AND FUTURE WORK

We extend the local element operations of edge flips, edge collapses and edge splitting to the
case of curved meshes. Our numerical examples demonstrate how these local operations can
be combined with node smoothing to successfully perform mesh adaptation directly on curved
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14 A. SHI AND P.-O PERSSON

Figure 16: 2D coarsening with collapses: original mesh (top left), one sweep of collapses (top
right), five sweeps of collapses (bottom left), final mesh (bottom right).

meshes to maintain high element quality and desired sizing. Curved meshes can naturally deal
with more severe deformations than straight sided ones on much coarser meshes due to the
higher number of degrees of freedom, and mesh adaptation can be applied to take advantage
of this fact to deal with more severe deformations. These operations are more expensive to
perform in the curved setting; for straight-sided meshes they amount to a simple permutation
of the existing data and require no node smoothing. However, in the big picture this is a
small price to pay, since in any practical setting these local operations deal with a relatively
small number of elements when used as an alternative to a far more costly procedure such as
remeshing.

We see two avenues of future work to fully unlock the utility of these operations towards
mesh adaptation for curved meshes. More efficient mesh optimization procedures combining
these ingredients need to be developed; in this work, we use fairly naive and greedy algorithms
which are straightforward, but far from optimal. As noted in [5], mesh optimization procedures
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LOCAL ELEMENT OPERATIONS FOR CURVED SIMPLEX MESHES 15

Figure 17: 2D translation: original mesh (top left), smoothing only (top right), smoothing with
flips (bottom left), smoothing with flips, collapses, and splitting (bottom right).

currently are based on “black magic: even if the ingredients required to construct a mesh
optimization procedure are well known ... there is no known best recipe, i.e., no known optimal
way of combining these.” In the 15 years since this statement was made, there have certainly
been many improvements in the “ingredients”, but there doesn’t seem to have much work
focused solely on the “recipes”. The large body of existing work on these mesh optimization
procedures is mainly concerned with achieving the best possible mesh quality without much
concern for speed. This is a significant limitation in the curved setting, since node smoothing
is the main bottleneck in these procedures and is much more expensive in the high-order case.
As Klinger and Shewchuk note in [10], mesh optimization procedures have been shown to
attain results as good as those from any mesh generation procedure, and “if the barrier of
speed can be overcome, the need to write separate programs for mesh generation and mesh
improvement might someday disappear.” This is particularly relevant for the issue of high-
order mesh generation, since the limited number of procedures currently in use are nearly all
of the a priori variety rather than direct methods. Surely, this is in no small part due to our
limited ability to currently perform mesh adaptation directly on curved meshes.

The real challenge in the high-order setting is the ability to perform smoothing quickly
and untangling robustly. It is worth emphasizing just how much of the cost comes from the
smoothing procedure. In this work we prescribe the mesh motion, which must be followed by a
smoothing of the entire mesh, a pass of local mesh operations, and and then another smoothing
of the entire mesh. The two contributions to the cost of each local mesh operation is a simple
permutation of indices in the mesh data structure for the straight sided guess followed by
smoothing. Since the cost of the former is practically negligible, virtually all of the cost comes
from the mesh smoothing procedure, made even more expensive in a high-order mesh. While
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Figure 18: 3D translation: original mesh (top left), smoothing only (top right), smoothing with
flips (bottom left), smoothing with flips, collapses, and splitting (bottom right).

Table II: Mesh Distortion of Figures 17 and 18

2D 3D
max agg max agg

Original mesh 1.1821 1.0473 2.2466 1.7481
Smoothing only 2.8378 2.3771 7.3829 3.8409

With flips 2.0643 1.2075 3.8427 2.1742
Flips, collapses, and splitting 1.1821 1.0498 3.0003 1.9666

the approach for untangling considered in this work of the regularization of a mesh distortion
metric has the advantage that it is relatively simple, it is very dependent on a heuristically
chosen parameter and many authors have pointed out that it fails quite often in practice for
various reasons, such as if the boundary of the mesh is also tangled or if the inversion primarily
occurs at the corners of the elements [19, 38]. Another limitation of these optimization-based
approaches is that they are largely based on the special choice or modification of some objective
function and lack specialized solvers. A promising idea is the extension of some of the ideas in
[28, 43, 44] towards a fully unstructured, high-order Winslow-based smoothing and untangling
procedure. Winslow-based methods have been shown to be very robust in practice and do
not require the choice of any empirical parameters. Each iteration of these methods essentially
requires an elliptic solve, for which there exists highly robust and efficient solvers (i.e. multigrid)
and would make a huge difference in efficiency for the high-order setting.

From here, we can revisit the vast amount of literature on mesh optimization procedures
almost exclusively for the straight-sided case to better understand the differences and
limitations in the curved setting, which we know very little about. Further developments in
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this area would also remove one of the constraints on the use of high-order elements for the
so called arbitrary Lagrangian-Eulerian (ALE) simulation framework for moving meshes with
large deformations [45].

Data Availability Statement: Research data are not shared.
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APPENDIX

Algorithm 1: Application of Curved Flips

if dim = 2D then tmin = 1.5
else if dim = 3D then tmin = 2
Input curved mesh M with elements {ei}
Set distortion threshold T = min(tmin,min(D)), D(i) = distortion of ei
Create priority queue P = {(ej , D(j)),∀j D(j) > T descending}
while true do

for i in P do
if dim = 2D then consider all possible 2→ 2 flips with ei
else if dim = 3D then consider all possible 2→ 3, 3→ 2, 4→ 4 flips with ei
if best of topologically possible flips improves η̂agg then

Update the mesh M
Remove all involved elements from the queue P and renumber

end

end
if no flips done in sweep then

return M
end
Recompute {ei}, T and P

end

Algorithm 2: Application of Collapses

Set ideal edge length as parameter L0

Input curved mesh M with edges {Ej}
Compute list of edge lengths L
Create priority queue P = {(Ek, L(Ek)),∀k L0

L(Ek)
> 1.5 descending}

while true do
for i in P do

Perform curved collapse on edge ei and update the mesh M
Remove all edges in collapsed patch from P and renumber

end
if no collapses done in sweep then

return M
end
Recompute {Ej}, L and P

end
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Algorithm 3: Application of Splitting

Set ideal edge length as parameter L0

Input curved mesh M with edges {Ej}
Compute list of edge lengths L
Create priority queue P = {(Ek, L(Ek)),∀k L0

L(Ek)
> 1.5 descending}

while true do
for i in P do

Identify elements K containing edge Ei
for j in K do

Identify all edges of element ej in queue P to choose template
Perform curved split on element ej and update the mesh M
Remove all edges in collapsed patch from P and renumber

end

end
if no splits done in sweep then

return M
end
Recompute {Ej}, L and P

end

Algorithm 4: Application of all operations: flips, coarsening, and splitting

Input curved mesh M with elements {ei} and edges {Ej}
Perform sweeps of splits (Algorithm 3)
Perform sweeps of collapses (Algorithm 2)
Perform smoothing of the entire mesh M
Perform sweeps of flips (Algorithm 1)
Perform smoothing of the entire mesh M
return M
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