
Lecture 5: Iteration and Recursion, Plotting

Math 98, Spring 2020

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 1 / 25

Reminders and Agenda

Login: !cmfmath98
Password: c@1parallel

Reminders
I This week is the final class.

Agenda
I Iteration and Recursion
I Plotting

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 2 / 25

Iteration: Motivations

Many tasks in life are boring or tedious because they require doing the
same basic actions over and over again – iterating – in slightly different
contexts.

So let’s get the computer to do this!

for loops and while loops.

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 3 / 25

Iteration: for loops and while loops

A statement to repeat a section of code a specified number of times.

for countVariable = 1 : numberOfIterations

% do something here

% this part will run

% (numberOfIterations) times

end

A statement to repeat a section of code until some condition is satisfied.

while [EXPRESSION is true]

% repeat this part until

% (EXPRESSION) is false

% be sure to modify (EXPRESSION) in this loop

end

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 4 / 25

Fixed Point Iteration: Example

Let’s say we’re interested in this fixed iteration

ϕ(x) =
√

1 + x x0 = 3

After 10 iterations.

>> x = 3;

x = sqrt(1+x)

x =

2

.........

x = sqrt(1+x)

x =

1.618064196086926

x = sqrt(1+x)

x =

1.618043323303466

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 5 / 25

Fixed Point Iteration: For Loop

I claim this converges to φ = 1+
√
5

2 ≈ 1.618033988749895. This is the
golden ratio, one of the most famous numbers in mathematics.

I probably should have done the above calculation with a for loop.

>> x = 3;

for k = 1:10

x = sqrt(1+x);

end

x

x =

1.618043323303466

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 6 / 25

Fixed Point Iteration: While Loop

Let’s do this with a while loop until it “converges”, until the computer
can’t tell the difference anymore.

>> x = 3;

while x~= sqrt(1+x)

x = sqrt(1+x)

end

x =

1.618033988749895

>> x == (1+sqrt(5))/2

ans =

logical

1

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 7 / 25

Infinite Loops

Careful with infinite loops!

>> N = 0;

while N > -1

N = N + 1;

end

Put maximum iteration limits and breaks in your loops to guard for this.

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 8 / 25

Exercise: nested sqrt.m

Write a function

function [a] = nested sqrt(n)

that takes an integer n and returns the nth term in the following sequence:

a1 = 1, a2 =
√

1 + 2, a3 =

√
1 + 2

√
1 + 3, a4 =

√
1 + 2

√
1 + 3

√
1 + 4, ...

Guess the limiting value of the sequence a = limn→∞ an and make a plot
of ln(|an − a|) vs. n. Also plot the line y = 3− (ln 2)n.
What sequence βn would you guess is appropriate for an − a = O(βn)?

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 9 / 25

Factorial as an Iteration

How do we compute the factorial of a number?

n! =

{
1 n == 0

n × (n − 1)! n > 0

A for loop will do nicely.

function nfac = myFactorial(n)

nfac = 1;

for i = 1:n

nfac = nfac * i;

end

end

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 10 / 25

Factorial as a Recursion

How do we compute the factorial of a number?

n! =

{
1 n == 0

n × (n − 1)! n > 0

We can also take advantage of the recursive definition, and define our
function recursively:

function nfac = myFactorial(n)

if n == 0

nfac = 1;

else

nfac = n*myFactorial(n-1);

end

end

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 11 / 25

Exercise: Fibonacci Numbers

Define the Fibonacci numbers as

f (n) =

0 n == 0

1 n == 1

f (n − 1) + f (n − 2) n >= 2

Write a recursive function to compute f (n), then write a non-recursive
function (for loop) to do the same. The non-recursive function should
compute all numbers f (0), f (1), . . . , f (n).

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 12 / 25

Fibonacci Numbers: Compute Times

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 13 / 25

Fibonacci Numbers: Compute Times

The problem: our recursive definition did lots of unnecessary computation
by not using previously computed values.

>> fiboRec(4)

Computing f(4)

Computing f(2)

Computing f(0)

Computing f(1)

Computing f(3)

Computing f(1)

Computing f(2)

Computing f(0)

Computing f(1)

ans =

3

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 14 / 25

Recursion: qsort.m

How do we sort a list of numbers v?
There are many ways, but quickSort offers a simple recursive
implementation.

1 Pick an element x ∈ v to be the pivot element. (say, the first one).

2 Divide the rest of the list in two: those smaller than x and those
larger than x .

3 output = [quickSort(Smaller), x, quickSort(Larger)]

A few questions we need to answer when working out the details:

What are the base cases that we need to handle?

What if some numbers are the same size as x?

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 15 / 25

plot

Say we want a visual comparison of cos(x) with its Taylor series
approximations. We can start out with

>> xs = -5:5;

>> plot(xs,cos(xs))

This doesn’t look great because Matlab only plotted the 11 points
[−5,−4, . . . , 4, 5] and then used linear interpolation. Try making the
divisons finer to get a smoother curve:

>> xs = -5:0.01:5;

>> plot(xs,cos(xs))

MATLAB only knows how to plot straight lines!

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 16 / 25

plot

One way to plot multiple lines together is to use hold on.

>> hold on

>> f = @(x)(1-x.^2/2);

>> plot(xs,f(xs));

>> g = @(x)(1-x.^2/2 + x.^4/24);

>> plot(xs,g(xs));

Not bad, but we probably want to zoom in a little farther.

>> ylim([-1.1, 1.1]);

>> xlim([-pi, pi]);

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 17 / 25

plot

Finally, we add a title, labels, and a legend.

>> xlabel(‘x’);

>> ylabel(‘f(x)’);

>> legend(‘cos(x)’,‘P2(x)’,‘P4(x)’,‘location’,‘northwest’);

>> title(‘Taylor Approximations to cos(x)’, ‘FontSize’,14);

A few other commands can alter the line width, color, and style. We can
use cla (Clear Axis) to reset the axes or clf (Clear Figure) to clear the
entire figure.

>> plot(xs, cos(xs), ‘k’); hold on

>> plot(xs, f(xs), ‘r--’);

>> plot(xs, g(xs), ‘b-.’,‘LineWidth’,1);

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 18 / 25

plot: cosinePlotting.m
The final product, after resetting the limits and labels:

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 19 / 25

plot: miscellany

If you want multiple figures open at once, figure creates a new
figure.

close closes the current figure.

loglog(xs,ys) plots on a log-log scale.

semilogx(xs,ys) and semilogy(xs,ys) make linear-logarithmic
plots.

scatter(xs,ys) makes a scatter plot instead of a line plot.

subplot(m,n,p) is for putting multiple plots in a single figure. Adds
a plot to the p-th position an m × n grid (counting across each row).

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 20 / 25

Exercise: heart2.m

Plot the parametric curve given by the relations

x = 16 sin3(θ)

y = 13 cos(θ)− 5 cos(2θ)− 2 cos(3θ)− cos(4θ)

as θ ranges from 0 to 2π. (Remember linspace?)

What do the commands axis equal and axis tight do?

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 21 / 25

3-D plots

plot3(x,y,z) plots lines in 3-D space.
Example: A helix.

>> t = 0:(pi/50):10*pi;

>> plot3(sin(t),cos(t),t);

surf(X,Y,Z) and mesh(X,Y,Z) make a solid surface and a mesh,
respectively, in 3-D.

There are a number of ways to control the camera position.
view(AZ,EL) controls the rotation around the z-axis and the vertical
elevation. view(3) is the default 3-D view and view(2) =
view(0,90) gives a direct overhead view.

Another option is the pair of commands campos and camtarget,
setting the “camera” position and target.

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 22 / 25

Exercise: sinCosPlot.m

Make a 3-D plot of the function f (x , y) = 2 sin(x) cos(y) on the interval
[0, 2π]× [0, 2π].

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 23 / 25

Scatterplots
Instead of plot or plot3, try scatter and scatter3.

>> x = -5:0.1:5;

subplot(1, 2, 1)

plot(x, sin(x))

subplot(1, 2, 2)

scatter(x, sin(x))

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 24 / 25

Example: Interpolation Movie

See the ”Additional Info” under the Schedule on the course webpage for
prompt.

Math 98, Spring 2020 Lecture 5: Iteration and Recursion, Plotting 25 / 25

