
Lecture 4: Debugging and Polynomials

Math 98, Spring 2020

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 1 / 38

Reminders

Instructor: Andrew Shi
Login: !cmfmath98
Password: c@1parallel
Project:

1 Not due, but good practice.

Agenda
1 Debugging

I See detailed agenda on next slide.

2 Polynomials
I Evaluating them, Differentiating them, multiplying them, etc.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 2 / 38

Debugging

1 How to avoid bugs (best programming practices)
I Sections 2.7-2.8 of

http://www.sfu.ca/∼wcs/ForGrads/ensc180spring2016f.pdf

2 Warnings

3 Breakpoints and Step

4 Step in/out

5 Run Options

Will closely follow the MATLAB documentation
https://www.mathworks.com/help/matlab/matlab prog/debugging-
process-and-features.html.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 3 / 38

http://www.sfu.ca/~wcs/ForGrads/ensc180spring2016f.pdf
https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html
https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html

Incremental Development

When you start writing scripts that are more than a few lines, you might
find yourself spending more and more time debugging. The more code you
write before you start debugging, the harder it is to find the problem.

Incremental development is a way of programming that tries to
minimize the pain of debugging.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 4 / 38

Incremental Development: Three Steps
The fundamental steps of incremental debugging are:

1 Always start with a working program. If you have an example from a
book or a program you wrote that is similar to what you are working
on, start with that. Otherwise, start with something you know is
correct, like x = 5. Run the program and confirm that you are
running the program you think you are running. This step is
important, because in most environments there are lots of little things
that can trip you up when you start a new project. Get them out of
the way so you can focus on programming.

2 Make one small, testable change at a time. A “testable” change is
one that displays something on the screen (or has some other effect)
that you can check. Ideally, you should know what the correct answer
is, or be able to check it by performing another computation.

3 Run the program and see if the change worked. If so, go back to Step
2. If not, you will have to do some debugging, but if the change you
made was small, it shouldn’t take long to find the problem.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 5 / 38

Unit Testing

In large software projects, unit testing is the process of testing software
components in isolation before putting them together.

The programs we have seen so far are not big enough to need unit testing,
but the same principle applies when you are working with a new function
or a new language feature for the first time. You should test it in isolation
before you put it into your program.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 6 / 38

Unit Testing: Example

For example, suppose you know that x is the sine of some angle and you
want to find the angle. You find the MATLAB function asin, and you are
pretty sure it computes the inverse sine function. Pretty sure is not good
enough; you want to be very sure.
Since we know sin(0) = 0, we could try:

>> asin(0)

ans = 0

which is correct. We also know that sin of 90◦ is 1, so if we try asin(1)

we expect the answer 90, right?

>> asin(1)

ans = 1.5708

What’s going on here?

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 7 / 38

Unit Testing: Example (Cont)

Oops. We forgot that the trig functions in MATLAB work in radians, not
degrees. So the correct answer is π

2 , which we can confirm by dividing
through by π:

>> asin(1)/pi

ans = 0.5000

With this kind of unit testing, you are not really checking for errors in
MATLAB, you are checking your understanding. If you make an error
because you are confused about how MATLAB works, it might take a long
time to find, because when you look at the code, it looks right.

The worst bugs aren’t in your code; they are in your head

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 8 / 38

Debugging in four acts

Reading: Examine your code, read it back to yourself, and check
that it means what you meant to say.

Running: Experiment by making changes and running different
versions. Often if you display the right thing at the right place in the
program, the problem becomes obvious, but sometimes you have to
spend some time to build scaffolding.

Ruminating: Take some time to think! What kind of error is it:
syntax, runtime, logical? What information can you get from the
error messages, or from the output of the program? What kind of
error could cause the problem you?re seeing? What did you change
last, before the problem appeared?

Retreating: At some point, the best thing to do is back off, undoing
recent changes, until you get back to a program that works, and that
you understand. Then you can starting rebuilding.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 9 / 38

Warnings
Here’s an implementation of fizzbuzz.m from HW1. Do you see the
warnings? (red underlines).

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 10 / 38

Warnings
If I hover over the squiggly red line, it tells me the issue. Red warnings
need to be addressed for the code to run (things like syntax error).

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 11 / 38

Warnings
You can hover over the line on the right and it will give you the same
warning (with line number)

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 12 / 38

Warnings
The orange warnings aren’t fatal, and usually indicate some inefficiency in
your implementation. But you should still try to address them.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 13 / 38

Warnings

Here’s some random code I found on the internet that someone posted to
get help on. Note that there are no warnings in the code (green box).

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 14 / 38

Warnings

But when you run it, all these warnings comes out. This warning in
particular shows up when you try to invert a matrix that is nearly singular.
Note all the NaNs he got in his results.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 15 / 38

Breakpoints
I fixed my fatal error but not the other one (because I’m lazy) and I run
fizzbuzz code. The output looks wrong! (remember buzz means divisible
by 5).

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 16 / 38

Breakpoints

If I click one of the lines on the left it will create this red dot. This dot is
called a breakpoint. I can easily remove it by clicking on it again.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 17 / 38

Breakpoints

If I run my code again, it will stop the first time I hit the line with a
breakpoint. The green arrow tells me where I am now.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 18 / 38

Breakpoints

I can hover over variables to see what their current value is right now at
the breakpoint.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 19 / 38

Breakpoints

I can hover over variables to see what their current value is right now at
the breakpoint.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 20 / 38

Breakpoints
We are now in debug mode. We could always exit by hitting that red
button “Quit Debugging”. Note that K that isn’t usually there in the
command window.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 21 / 38

Breakpoints
If you want to go another line further, hit step.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 22 / 38

Breakpoints
If you want to go another line further, hit step. Note that we just executed
line 11 so something displayed in the command window. (Question: why
did we skip from line 11 to 14?)

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 23 / 38

Breakpoints

We are at the end of the loop. This is the last point inum = 1.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 24 / 38

Breakpoints

And now inum = 2.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 25 / 38

Breakpoints
If you hit continue, you will keep running until the next breakpoint.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 26 / 38

Breakpoints
If you hit continue, you will keep running until the next breakpoint.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 27 / 38

Breakpoints
If you hit continue, you will keep running until the next breakpoint.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 28 / 38

Step In/Out
I’ve written a script that calls a function fun1.m. I think something bad is
going on in there so I put a breakpoint there and run.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 29 / 38

Step In/Out
But if I just step like before it runs function fun1.m and I have no insight
as to what happened inside.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 30 / 38

Step In/Out
What I really want to do is Step In, so now I’m inside the function call.
Note it passed in the value x from outside as the value for blah that
fun1.m takes.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 31 / 38

Step In/Out
In here I can keep stepping just like before....

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 32 / 38

Step In/Out
If I want to leave the function I can click Step Out. Note that a value
hasn’t been assigned to y yet, so I didn’t finish running fun1, I just left it.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 33 / 38

Run Options
There are three Run Options you can choose, and your code will pause at
the line one of these designated events occurs.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 34 / 38

Print Statements

Another widely used technique is to put print statements in your code so
you can monitor certain variables.

Debugging can take some time to get used to and can be very frustrating.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 35 / 38

Polynomials

Many of the main algorithms in Math 128a involve replacing a general
function f (x) with an approximating polynomial P(x).
In MATLAB, if you want to define a polynomial (more generally a
function) and evaluate it, we use anonymous function handles.

>> f = @(x) x^2 + 2*x + 4; f(2)

ans = 12

We can also represent a polynomial with a vector.

>> p = [1, 2, 4]; polyval(p, 2)

ans = 12

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 36 / 38

Polynomials

Can you figure out how to differentiate a polynomial?

>> p = [1, 2, 4]; diffp = SOMEFUNCTION(p)

ans = 2 2

How about multiplying two polynomials together?

>> p1 = [1, 3]; p2 = [1, 1]; p1p2prod = SOMEFUNCTION(p1, p2)

ans = 1 4 3

How do you fit a polynomial of degree n to n + 1 points?

>> pts = [1, 2; 3, 3; 4, 5];

.....

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 37 / 38

Exercise: polycrazy.m

Write a function:

[max] = polycrazy(f, n, [a, b])

that does the following:

Takes in a function handle f and evaluates it at n equispaced points
on the interval [a, b].

Fits a degree n − 1 polynomial interpolant to those n points.

Returns the maximum value of that interpolant on the interval.

Math 98, Spring 2020 Lecture 4: Debugging and Polynomials 38 / 38

