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Abstract. We establish effective equidistribution theorems, with a
polynomial error rate, for orbits of unipotent subgroups in quotients
of quasi-split, almost simple Linear algebraic groups of absolute rank 2.

As an application, inspired by the results of Eskin, Margulis and
Mozes, we establish quantitative results regarding the distribution of
values of an indefinite ternary quadratic form at integer points, giv-
ing in particular an effective and quantitative proof of the Oppenheim
Conjecture.
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Part 0. Introduction

A landmark result of Margulis is his proof of the Oppenheim Conjecture
by showing that every SO(2, 1) orbit in SL3(R)/SL3(Z) is either periodic
or unbounded (or both — in our terminology an orbit L.x is periodic if it
supports a finite L invariant measure; this implies L.x is closed but does not
preclude it being noncompact). Subsequently, Dani and Margulis showed
that any SO(2, 1)-orbit in SL3(R)/SL3(Z) is either periodic or dense, and
also classified possible orbit closures for a one-parameter unipotent subgroup
of SO(2, 1).

More precise information regarding the behavior of orbits of one-parameter
unipotent subgroups in quotients of real Lie groups was provided by Ratner
in [Rat90, Rat91a, Rat91b]. These remarkable theorems have been highly
influential and have had a plethora of applications, many of them quite
unexpected.

This paper is a step in a program to make Ratner’s equidistribution theo-
rem effective. Previously, the first three authors proved effective equidistri-
bution results for unipotent flows in G = SL2(C) or G = SL2(R) × SL2(R)
and the last named author for G = SL3(R) and ut a singular one-parameter
unipotent group; here we consider the generic one-parameter group in any
quasi-split group of absolute rank 2.

As an application, we give here an effective and quantitative equidistribu-
tion result for the values of an indefinite ternary quadratic form at integer
points in large balls. This gives in particular an effective and quantitative
proof of the Oppenheim Conjecture. An effective proof of the Oppenheim
Conjecture was given by Margulis and the first named author in [LM14],
but the rates we give here (say of the smallest nonzero value of |Q(v)| with
v an integer vector of norm at most T ) are polynomial, which is the right
kind of dependency, vs. a polylogarithmic rate in [LM14].

Moreover, the quantitative equidistribution result for the values of an
indefinite ternary quadratic form is new — no effective or explicit rate was
previously known. Here we follow Eskin, Margulis and Mozes who gave a
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beautiful argument proving a qualitative1 result of this type for all indefinite
quadratic forms of signature (p, q) with p ≥ 3 and subsequently also for
forms of signature (2, 2). The techiniques of Eskin, Margulis and Mozes were
recently extended to forms of signature (2, 1) by Wooyeon Kim in [Kim24].

1. Effective equidistribution

In this section we state the main equidistribution theorems of this paper,
Theorem 1.1 and Theorem 1.2. These theorems will be proved in Part 1 of
the paper.

In §2, we will discuss applications of these equidistribution theorems to
values of quadratic forms, viz. Oppenheim conjecture. Part 2 of the pa-
per, is devoted to the proof of these results using the equidistribution result
Theorem 1.1 as well as an analysis of the cusp excursions for certain or-
bits which is closely related to the works of Eskin Margulis and Mozes in
[EMM98, EMM05] and Wooyen Kim [Kim24].

Throughout Part 1 of the paper, G denotes the connected component of
identity (as a Lie group) of the real points of an R-algebraic group isogenous
to one of the following

SL2(C), SL2(R)× SL2(R), SL3(R), SU(2, 1), Sp4(R), G2(R).

Put differently, G is the finite index subgroup G(R)+ ⊂ G(R) where G is
a semisimple, connected, algebraic R-group which is R-quasi split and has
absolute rank 2, and G(R)+ is the subgroup generated by unipotent one-
parameter subgroups [Mar91, Ch. I]. For G = SL2(C) and SL2(R)×SL2(R),
Theorem 1.1 and Theorem 1.2 where established in [LMW22]; the proof we
give here in particular gives a somewhat more streamlined proof of effective
equidistribution also in these cases, but up to minor cosmetic improvements
in Theorem 1.2 we do not provide any new results in those cases.

Let H denote the image of a principal SL2(R) in G. In particular, H is
a maximal connected subgroup which is locally isomorphic to SL2(R), and
Lie(G) = Lie(H) ⊕ r decomposes as sum of two irreducible representations
of H, see §3.1.

For all t, r ∈ R, let at and ur denote the images of(
et/2 0

0 e−t/2

)
and

(
1 r
0 1

)
.

in H, respectively. Then at and ur are regular one parameter diagonalizable
and unipotent subgroups of G, respectively. With this normalization, if
v ∈ r is a highest weight vector for at, then

Ad(at)v = emtv where dim r = 2m + 1.

1Eskin, Margulis and Mozes called their result a quantitative version of the Oppenheim
conjecture. It is quantitative in the sense that it counts the number of lattice points in a
large ball for which Q(v) is in a given interval, but not quantitative in the sense it does
not say how large the ball has to be before this asymptotical behaviour begins to hold,
and is not effective.
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Let Γ ⊂ G be an arithmetic lattice. By Margulis’ arithmeticity theorem,
any lattice Γ ⊂ G is arithmetic, except possibly when G is isogenous to
SU(2, 1) and SL2(C), orG is isogenous to SL2(R)×SL2(R) and Γ is reducible,
where non-arithmetic lattices exist.

Let X = G/Γ. Let d be the right invariant metric on G which is defined
using the Killing form and the Cartan involution. This metric induces a
metric dX on X, and natural volume forms on X and its submanifolds. Let
mX denote the probability Haar measure on X

1.1. Theorem. For every x0 ∈ X and large enough R (depending explicitly
on x0), for any T ≥ RA1, at least one of the following holds.

(1) For every ϕ ∈ C∞c (X), we have∣∣∣∫ 1

0
ϕ(alog Turx0) dr −

∫
ϕdmX

∣∣∣ ≤ S(ϕ)R−κ1

where S(ϕ) is a certain Sobolev norm.
(2) There exists x ∈ X such that Hx is periodic with vol(Hx) ≤ R, and

dX(x, x0) ≤ RA1(log T )A1T−m

where dim r = 2m + 1.

The constants A1 and κ1 are positive, and depend on X but not on x0.

The strategy for the proof of Theorem 1.1 is similar to the general strategy
developed in [LM23, LMW22]. A significant simplification is achieved here
thanks to the use of higher dimensional energy. This in turn is made possible
by using stronger projection theorems proved by Gan, Guo, Wang [GGW22].

Quantitative and effective versions of the aforementioned rigidity theo-
rems in homogeneous dynamics have been sought after for some time, we
refer to [LM23, LMW22, Yan22] for a more detailed discussion of this prob-
lem and some recent progress.

As it was done in [LMW22], combining Theorem 1.1 and the Dani–
Margulis linearization method [DM91] (cf. also Shah [Sha91]), that allows
to control the amount of time a unipotent trajectory spends near invariant
subvarieties of a homogeneous space, we also obtain an effective equidistri-
bution theorem for long pieces of unipotent orbits (more precisely, we use a
sharp form of the linearization method taken from [LMMS19]).

1.2. Theorem. For every x0 ∈ X and large enough R (depending explicitly
on X), for any T ≥ RA2, at least one of the following holds.

(1) For every ϕ ∈ C∞c (X), we have∣∣∣ 1

T

∫ T

0
ϕ(urx0) dr −

∫
ϕdmX

∣∣∣ ≤ S(ϕ)R−κ2

where S(ϕ) is a certain Sobolev norm.
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(2) There exists x ∈ G/Γ with vol(H.x) ≤ RA2, and for every r ∈ [0, T ]
there exists g(r) ∈ G with ‖g(r)‖ ≤ RA2 so that

dX(usx0, g(r)H.x) ≤ RA2

(
|s− r|
T

)1/A3

for all s ∈ [0, T ].

(3) There is a parabolic subgroup P ⊂ G and some x ∈ G/Γ satisfying that
vol(Ru(P ).x) ≤ RA2, and for every r ∈ [0, T ] there exists g(r) ∈ G with
‖g(r)‖ ≤ RA2 so that

dX(usx0, g(r)Ru(P ).x) ≤ RA2

(
|s− r|
T

)1/A3

for all s ∈ [0, T ].

In particular, X is not compact.

The constants A2, A3, and κ2 are positive and depend on X but not on x0.

Remarks: In options (2) and (3), one can be more explicit about the
properties of the element g(r). For instance in option (2), since usx0 needs
to stay close to g(r)H.x for all s in long intervals around r it follows from
(2) that g(r) is very close to CG(U) (there is of course some play between
what “stay close” and “long interval” means — if one uses a stricter inter-
pretation of what close means, then one must be more lenient on what long
means and vice versa). An analogous statement for G = SL2(R) × SL2(R)
turned out to be useful in the work of Forni, Kanigowski, Radziwi l l studying
equidistribution of orbits at nearly prime times [FKR24]

2. Applications to the Oppenheim conjecture

We now discuss applications of Theorem 1.1 to values of quadratic forms
in the context of the Oppenheim conjecture.

2.1. Theorem. Let Q be an indefinite ternary quadratic form with detQ =
1. For all R large enough, depending on ‖Q‖, and all T ≥ RA4 at least one
of the following holds.

(1) For every s ∈ [−Rκ3 , Rκ3 ], there exists a primitive vector v ∈ Z3 with
0 < ‖v‖ ≤ T so that

|Q(v)− s| ≤ R−κ3

(2) There exists some Q′ ∈ Mat3(R) with ‖Q′‖ ≤ R so that∥∥Q− λQ′∥∥ ≤ RA4(log T )A4T−2 where λ = (detQ′)−1/3.

The constants A4 and κ3 are absolute.

Since algebraic numbers cannot be well approximated by rationals, one
concludes the following corollary from Theorem 2.1.

2.2. Corollary. Let Q be a reduced, indefinite, ternary quadratic form which
is not proportional to an integral form but has algebraic coefficients. Then
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for all T large enough, depending on the degrees and heights of the coeffi-
cients of Q, we have the following: for any

s ∈ [−T κ4 , T κ4 ]

there exists a primitive vector v ∈ Z3 with 0 < ‖v‖ ≤ T so that

|Q(v)− s| ≤ T−κ4 .

The constant κ4 depends on the degrees of the coefficients of Q.

As was mentioned, Theorem 2.1 and Corollary 2.2 are an effective version
of a celebrated theorem of Margulis [Mar89], see also [DM90]. An effective
version, with a polylogarithmic rate, was proved by the first named author
and Margulis [LM14]. The proofs in [Mar89, DM90] and [LM14] rely on
establishing a special case of Raghunathan’s conjecture for unipotent flows
— albeit an effective version in the case of [LM14].

Similarly, our proof of Theorem 2.1 is based on Theorem 1.1. Indeed,
using Theorem 1.1, for G = SL3(R), H = SO(Q)◦, and adapting the ar-
guments developed by Dani and Margulis [DM91] and by Eskin, Margulis,
and Mozes [EMM98, EMM05], and recent advances by W. Kim [Kim24], we
obtain the following theorem.

2.3. Theorem. Let Q be an indefinite ternary quadratic form with detQ =
1, and put

CQ =

∫
L

dσ

‖∇Q‖
where L = {v ∈ R3 : ‖v‖ ≤ 1, Q(v) = 0} and dσ is the area element on L.

Let a < b and A ≥ 103. There are constants T0 and C depending on A
and ‖Q‖, absolute constants N ≥ 1 and 0 < δ0 < 1, and for every 0 < δ ≤ δ0

some κ = κ(δ, A) so that the following holds.
Assume that for T ≥ T0 and all integral forms Q′ with ‖Q′‖ ≤ T δ∥∥Q− λQ′∥∥ ≥ ‖Q′‖−A where λ = (detQ′)−1/3,

then the following is satisfied: If∣∣∣#{v ∈ Z3 : ‖v‖ ≤ T, a ≤ Q(v) ≤ b
}
− CQ(b− a)T

∣∣∣ ≥
+ C(1 + |a|+ |b|)NT 1−κ,

there are at most 4 lines L1, . . . , L4 and at most 4 planes P1, . . . , P4 so that

#
{
v ∈ Z3 : ‖v‖ ≤ T, a ≤ Q(v) ≤ b

}
=

CQ(b− a)T +RT +O
(
(1 + |a|+ |b|)NT 1−κ)

where RT = #{v ∈ (∪iLi)
⋃

(∪iPi) : ‖v‖ ≤ T, a ≤ Q(v) ≤ b}.
More precisely, these exceptional lines and planes satisfy the following:

Li ∩ Z3 = Span{vi} satisfying that

(2.1) ‖vi‖ ≤ T δ and |Q(vi)| ≤ T−2+δ
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for every 1 ≤ i ≤ 4.
Also Pi ∩ Z3 = Span{wi,1, wi,2} satisfying

(2.2) ‖wi,1‖, ‖wi,2‖ ≤ T δ and |Q∗(wi,1 ∧ wi,2)| ≤ T−2+δ

for every 1 ≤ i ≤ 4.

Note that the main term in part (1) captures the asymptotic behavior of
the volume of the solid given by Q(v) = a, Q(v) = b, and ‖v‖ ≤ T . We also
remark that there is a dense family of irrational quadratic forms which are
very well approximated by rational forms so that

#
{
v ∈ Z3 : ‖v‖ ≤ T, a ≤ Q(v) ≤ b

}
� T (log T )1−ε,

see [EMM98, §3.7].

Acknowledgment. We are grateful to the Institute for Advanced Study for
its hospitality on multiple occasions during the completion of this project.
We thank Hong Wang for many valuable discussions on projection theorems.
We also thank Zuo Lin for going over early drafts of the elements of §7 and
providing helpful feedback.

The landmark work of G.A. Margulis on the Oppenheim Conjecture and
more generally in homogeneous dynamics and its applications to number
theory has been a continued source of inspiration for us. In particular, E.L.
and A.M. have had joint works closely related to this paper with Margulis,
and are very grateful for all we have learned from him. His insights feature
in many places in this paper, sometimes implicitly.

Part 1. Polynomially effective equidistribution theorems

In this chapter we prove Theorem 1.1 and Theorem 1.2. As noted ear-
lier, the overall strategy for the proofs aligns with the approach developed
in [LMW22]. A key simplification in the proof of Theorem 1.1 is accom-
plished through the use of higher-dimensional energy, made possible by
stronger projection theorems established by Gan, Guo, and Wang [GGW22].

3. Notation and preliminary results

Let G be a semisimple, connected, R-group with absolute rank 2 which
is R-quasi split. Let G = G(R)+, where G(R)+ is the subgroup generated
by unipotent one-parameter subgroups. In other words G is the connected
component of the identity in the Lie group G(R), see [Mar91, Ch. I].

More explicitly, G is isogenous to one the following groups

SO(3, 1), SL2 × SL2, SL3, SU(2, 1), Sp4, G2.

Indeed, G is R-split except when it is isogenous to SO(3, 1) or SU(2, 1), in
which case G is R-quasi split but not split. We assume G ⊂ SLN(R) for
some N which is fixed throughout the paper.
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3.1. The principal SL2(R) in G. There is a homomorphism ρ : SL2(R)→
G with finite central kernel so that

Lie(G) = Lie(H)⊕ r

where H = ρ(SL2(R)) and r is an irreducible representation of H with
dimension 2m + 1 where

• m = 1 if G is isogeneous to SO(3, 1) or SL2 × SL2

• m = 2 if G is isogeneous to SL3 or SU(2, 1)
• m = 3 if G is isogeneous to Sp4

• m = 5 if G is isogeneous to G2

see [And75] and the references therein, in particular, see [And75, Prop. 6].
For all t, r ∈ R, let at, ur, and u−s denote the images of(

et/2 0

0 e−t/2

)
,

(
1 r
0 1

)
, and

(
1 0
s 1

)
in H, respectively. Then at and ur are regular one parameter diagonaliz-
able and unipotent subgroups of G, respectively. Similarly, u−s is a regular
unipotent subgroups of G. We let A = {at}, U = {ur}, and U− = {u−s }.

All regular unipotent one-parameter groups, and hence the corresponding
groups H, are conjugated to each other under Gad(R), the adjoint form of
G, see [And75, Thm. 1].

Note also that with the above normalization, if v ∈ r is a highest weight
vector for at, then Ad(at)v = emtv, recall that dim r = 2m + 1.

For any A-invariant subspace V ⊂ slN(R), let V 0 denote the space of
at-fixed vectors and

V ± = {z ∈ V : limt→∓∞Ad(at)z = 0}.

We assume the embedding G ⊂ SLN(R) is fixed so that g0 ⊕ g+ = g ∩ bN,
the subalgebra of upper triangular matrices in glN.

Lie algebras and norms. Recall that G ⊂ SLN(R). Let | | denote the
usual absolute value on R. Let ‖ ‖ denote the maximum norm MatN(R),
with respect to the standard basis.

We fix a norm on h by taking the maximum norm where the coordinates
are given by fixing unit basis vectors for the lines Lie(U), Lie(U−), and
Lie(A). Since r is Ad(H)-irreducible, each weight space is one dimensional.
Fix a norm on r by taking the max norm with respect to a basis consisting
of unit pure weight (with respect to at) vectors. By taking maximum of
these two norms we get a norm on g, which will also be denoted by ‖ ‖.

Let C1 ≥ 1 be so that

(3.1) ‖hw‖ ≤ C1‖w‖ for all ‖h− I‖ ≤ 2 and all w ∈ g.

For all 0 < δ < 1, we define

(3.2) BHδ := {u−s : |s| ≤ δ} · {at : |t| ≤ δ} · {ur : |r| ≤ δ}
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Define BLδ for δ > 0 and L = U,U− and A similarly, and put

Bs,Hδ = {u−s : |s| ≤ δ} · {at : |t| ≤ δ} = BU
−

δ · BAδ .

Note that for all hi ∈ (BHδ )±1, i = 1, . . . , 5, we have

(3.3) h1 · · ·h5 ∈ BH100δ.

We also define BGδ := BHδ · exp(Br(0, δ)) where Br(0, δ) denotes the ball of
radius δ in r with respect to ‖ ‖.

Given an open subset B ⊂ L, with L any of the above, and δ > 0, put
∂δB = {h ∈ B : BLδ .h 6⊂ B}.

We fix Haar measuresmG onG andmH onH. Let Γ ⊂ G be an arithmetic
lattice, and let mX denote the probability Haar measure on X = G/Γ.

For all x ∈ X, define inj(x) as follows

(3.4) inj(x) = min
{

0.01, sup
{
δ : g 7→ gx is injective on BG10N2δ

}}
.

For every η > 0, let Xη =
{
x ∈ X : inj(x) ≥ η

}
.

Commutation relations. Let us record the following two lemmas.

3.2. Lemma ([LM23], Lemma 2.1). There exist δ0 and C2 depending on m
so that the following holds. Let 0 < δ ≤ δ0, and let w1, w2 ∈ Br(0, δ). There
are h ∈ H and w ∈ r which satisfy

2
3‖w1 − w2‖ ≤ ‖w‖ ≤ 3

2‖w1 − w2‖ and ‖h− I‖ ≤ C2δ‖w‖
so that exp(w1) exp(−w2) = h exp(w). More precisely,

‖w − (w1 − w2)‖ ≤ C2δ‖w1 − w2‖

3.3. Lemma ([LM23], Lemma 2.2). There exists δ0 so that the following
holds for all 0 < δ ≤ δ0. Let x ∈ Xδ and w ∈ Br(0, δ). If there are
h, h′ ∈ BH2δ so that exp(w′)hx = h′ exp(w)x, then

h′ = h and w′ = Ad(h)w.

Moreover, we have ‖w′‖ ≤ 2‖w‖.

The set Eη,t,β. For all η, t, β > 0, set

(3.5) Eη,t,β := Bs,Hβ · at · {ur : r ∈ [0, η]} ⊂ H.

Then mH(Eη,t,β) � ηβ2et where mH denotes our fixed Haar measure on H.
Throughout the paper, the notation Eη,t,β will be used only for η, t, β > 0

which satisfy e−0.01t < β ≤ η2, even if this is not explicitly stated.
For all η, β, τ > 0, put

(3.6) QHη,β,τ =
{
u−s : |s| ≤ βe−τ

}
· {ad : |d| ≤ β} ·

{
ur : |r| ≤ η

}
.

Roughly speaking, QHη,β,τ is a small thickening of the (β, η)-neighborhood of

the identity in AU . We write QHβ,τ for QHβ,β,τ .
The following lemma will also be used in the sequel.
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3.4. Lemma ([LM23], Lemma 2.3). (1) Let τ ≥ 1, and let 0 < η, β < 0.1.
Then ((

QHη/10N2,β/10N2,τ

)±1
)3
⊂ QHη,β,τ .

(2) For all 0 ≤ β, η ≤ 1, t, τ > 0, and all |r| ≤ 2, we have

(3.7)
(
QHη,β2,τ

)±1 · aτurEη′,t,β′ ⊂ aτurEη,t,β,

where η′ = η(1− 10N2e−t) and β′ = β(1− 10N2β).

Linear algebra lemma. Recall that dim r = 2m+ 1, and that r is Ad(H)-
irreducible. We have the following

3.5. Lemma (cf. Lemma A.1, [LMW22]). Let 0 < α ≤ 1/(2m + 1). For all
d > 0 and all 0 6= w ∈ r, we have∫ 1

0
‖adurw‖−α dr ≤ Ce−αmd‖w‖−α

where C is an absolute constant.

4. Avoidance principles in homogeneous spaces

In this section we will collect statements concerning avoidance principles
for unipotent flows and random walks on homogeneous spaces; the reader
will find this section similar to [LMW22, §4] and [LM23, §3]. The proofs are
included in Appendix B for the convenience of the reader.

4.1. Nondivergence results. The results of this subsection are only in-
teresting when Γ is a nonuniform lattice, i.e., when X is not compact.

4.2. Proposition. There exist m0 depending only on m and C3 ≥ 1 depend-
ing on X with the following property. Let 0 < δ, ε < 1, and let I ⊂ [−10, 10]
be an interval with |I| ≥ δ. For all x ∈ X, we have∣∣{r ∈ I : asurx 6∈ Xε

}∣∣ < C3ε
1/m0 |I|,

so long as s ≥ m0| log(δ inj(x))|+ C3.

Proof. There exist m′, depending on m, and a function ω : X → [2,∞) so
that for all x ∈ X

inj(x) ≥ ω(x)−m
′
,

moreover, for all x ∈ X and all s ≥ m′| log δ|+B′0∫
I
ω(asurx) dr ≤ e−?sω(x) +B0,

where B′0 and B0 depends on X. See Proposition B.3 and references there.
The claim in the proposition follows from these statements and Cheby-

shev’s inequality. �
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4.3. Inheritance of the Diophantine property. The following propo-
sition improves the somewhat weak Diophantine property that failure of
part (2) in Theorem 1.1 provides to a Diophantine property in terms of
volume of periodic orbits involved. This proposition can be compared with
the main theorem in [LMMS19], and will be applied as the first step in the
proof of Theorem 1.1.

4.4. Proposition. There exist D0, depending on m, and C4, s0, depending
on X, so that the following holds. Let R,S ≥ 1. Suppose x0 ∈ X is so that

dX(x0, x) ≥ (logS)D0S−m

for all x with vol(Hx) ≤ R. Then for all

s ≥ max
{

logS,m0| log(inj(x0))|
}

+ s0

and all 0 < η ≤ 1, we have∣∣∣{r ∈ [0, 1] :
inj(asurx0) ≤ η or there is x with

vol(Hx) ≤ R s.t. dX(asurx0, x) ≤ 1
C4RD0

}∣∣∣≤ C4(η1/m0 +R−1).

The proof of Proposition 4.4 is postponed to §B.1.

4.5. Closing Lemma. Let 0 < η �X 1 and β = η2. For every τ ≥ 0, put

(4.1) Eτ = E1,τ,β = Bs,Hβ · aτ · {ur : r ∈ [0, 1]} ⊂ H.

where Bs,Hβ = {u−s : |s| ≤ β} · {ad : |d| ≤ β}, see (3.5).

If y ∈ X is so that the map h 7→ hy is injective over Eτ , then µEτ .y denotes
the pushforward of the normalized Haar measure on Eτ to Eτ .y ⊂ X.

Let τ ≥ 0 and y ∈ X. For every z ∈ Eτ .y, put

I(z) :=
{
w ∈ r : ‖w‖ < inj(z) and exp(w)z ∈ Eτ .y

}
;

this is a finite subset of r since Eτ is bounded — we will define IE(z) for
more general sets E in the bootstrap phase below.

Let 0 < α ≤ 1. Define the function f : Eτ .y → [1,∞) as follows

f(z) =

{∑
06=w∈I(z) ‖w‖−α if I(z) 6= {0}

inj(z)−α otherwise
.

4.6. Proposition. There exist m1 depending on m and D1 depending on X
which satisfy the following. Let D ≥ D1 and x1 ∈ X. Then for all large
enough t (depending on inj(x1)) at least one of the following holds.

(1) There is a subset J(x1) ⊂ [0, 1] with |[0, 1] \ J(x1)| �X η1/(2m0) such
that for all r ∈ J(x1) we have the following
(a) am1turx1 ∈ Xη.
(b) h 7→ h.am1turx1 is injective over Et.
(c) For all z ∈ Et.am1turx1, we have

f(z) ≤ eDt.
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(2) There is x ∈ X such that Hx is periodic with

vol(Hx) ≤ eD1t and dX(x, x1) ≤ e(−D+D1)t.

The proof of Proposition 4.6 is postponed to §B.7.

5. Mixing property and equidistribution

Let us recall the following quantitative decay of correlations for the am-
bient space X: There exists 0 < κ0 ≤ 1 so that

(5.1)
∣∣∣∫ ϕ(gx)ψ(x) dmX −

∫
ϕdmX

∫
ψ dmX

∣∣∣� S(ϕ)S(ψ)e−κ0d(e,g)

for all ϕ,ψ ∈ C∞c (X)+C·1, where mX is the G-invariant probability measure
on X and d is the right G-invariant metric on G defined on p. 4. See, e.g.,
[KM96, §2.4] and references there for (5.1).

Here S(·) is a certain Sobolev norm on C∞c (X)+C ·1 which is assumed to
dominate ‖·‖∞ and the Lipschitz norm ‖·‖Lip. Moreover, S(g.f)� ‖g‖?S(f)
where the implied constants depend only on m.

5.1. Proposition. There exists κ5 � κ0 so that the following holds. Let
Λ ≥ 1, and let ν be a probability measure on BG

1 with

(5.2)
dν

dmG
(g) ≤ Λ for all g ∈ supp ν.

Let `1, `2 > 0 and 0 < η < 1 satisfy the following

κ5`2 ≥ max{`1, | log η|}.

Then for all x ∈ Xη and all ϕ ∈ C∞c (X), we have∫ 1

0

∫
G
ϕ(a`1ura`2gx) dν(g) dr =

∫
ϕdmX +O

(
S(ϕ)(η + Λ1/2e−κ5`1)

)
.

Proof. Put B = BG
1 and assume, as we may, that

∫
ϕdmX = 0.

Applying Fubini’s theorem and Cauchy-Schwarz inequality, we have∣∣∣∫ 1

0

∫
B
ϕ(a`1ura`2gx) dν(g) dr

∣∣∣2 ≤ ∫
B

(∫ 1

0
ϕ(a`1ura`2gx) dr

)2
dν(g)

Expanding the inner integral in the right side of the above and using (5.2),
we conclude that

(5.3)
∣∣∣∫ 1

0

∫
B
ϕ(a`1ura`2gx) dν(g) dr

∣∣∣2 ≤
Λ

∫
B

∫ 1

0

∫ 1

0
ϕ(a`1ur1a`2gx)ϕ(a`1ur2a`2gx) dr1 dr2 dmG(g).

For all r1, r2 ∈ [0, 1], let

Φr1,r2(z) = ϕ(a`1ur1z)ϕ(a`1ur2z).
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Then S(Φr1,r2)� eM`1S(ϕ)2 for some M depending only on the dimension.

Moreover, if |r1 − r2| ≥ e−`1/2, then (5.1) implies that∣∣∣∫ Φr1,r2 dmX

∣∣∣ =
∣∣∣ϕ(a`1ur1z)ϕ(a`1ur2z) dmX

∣∣∣� S(ϕ)2e−κ`1

where κ = ?κ0. We will assume κ ≤ 1/2.
We now estimate the second integral in (5.3). Applying Fubini’s theorem,

Λ

∫
B

∫ 1

0

∫ 1

0
ϕ(a`1ur1a`2gx)ϕ(a`1ur2a`2gx) dr1 dr2 dmG(g) =

Λ

∫ 1

0

∫ 1

0

∫
B
ϕ(a`1ur1a`2gx)ϕ(a`1ur2a`2gx) dmG(g) dr1 dr2

Let Ξ = {(r1, r2) ∈ [0, 1]2 : |r1 − r2| ≥ e−`1/2} and Ξ′ = [0, 1]2 \ Ξ. Let now
(r1, r2) ∈ Ξ, and recall that x ∈ Xη. Increasing M if necessary and using
a partition of unity, there exist a collection {ψi} ⊂ C∞c (X) satisfying that
S(ψi) ≤ η−M ,

∑∫
ψi dmX = 1, and

1

m(B)

∫
B
Φr1,r2(a`2gy) dmG(g) =∑

i

∫
Φr1,r2(a`2z)ψi(z) dmX(z) +O(η‖Φr1,r2‖∞)

In view of this and (5.1), thus

(5.4)
1

m(B)

∫
B
Φr1,r2(a`2gy) dmG(g) =∫

Φr1,r2 dmX +O
(
‖ϕ‖2∞η + S(Φr1,r2)η−Me−κ0`2)

)
Using the above observations regarding the Sobolev norm and the integral
of Φr1,r2 , (5.4) implies that if (r1, r2) ∈ Ξ, then

1

m(B)

∫
B

Φr1,r2(a`2gy) dmG(g) = O
(
S(ϕ)2(η + e−κ`1 + η−MeM`1e−κ0`2)

)
This, |Ξ′| � e−`1/2, and (5.3) imply that if `2 > M max{`1/κ0, | log η|}, then∣∣∣∫ 1

0

∫
B
ϕ(a`1ura`2gy) dν(g) dr

∣∣∣ = O
(
S(ϕ)(η + Λ1/2e−κ`1)

)
.

The proposition thus holds with κ5 = min{κ, κ0
2M }. �

In applying Proposition 5.1, we consider measures supported on r with a
finitary dimension close to 2m+ 1. The following lemma, based on standard
arguments, establishes the connection to Proposition 5.1.



14 E. LINDENSTRAUSS, A. MOHAMMADI, Z. WANG, AND L. YANG

5.2. Lemma. Let 0 < δ0 < 1. Let `1, `2 > 0 with κ5`2 ≥ max{`1, | log η|}
and 4m`2 ≤ | log δ0|, and let % ≤ %0, where 0 < %0 ≤ 1 depends only on the
dimension. Let µ be a probability measure on Br(0, %) satisfying

(5.5) µ(B(w, δ)) ≤ Υδ2m+1 for all w ∈ r and all δ ≥ δ0.

Then for all ϕ ∈ C∞c (X) and all x ∈ Xη∫ 1

0

∫ 1

0

∫
ϕ(a`1ur1a`2ur2 exp(w)x) dµ(w) dr2 dr1 =∫

ϕdmX +O
(
S(ϕ)(%? + η + Υ1/2%−3/2e−κ5`1)

)
Proof. We provide the details of the straightforward proof for the conve-
nience of the reader.

As it was mentioned before, we will use Proposition 5.1 to prove the
lemma. To that end we begin by convolving µ with a smooth kernel. Let

(5.6) µ̂ = Φ̂ ∗ µ,

where Φ̂(w) = δ−2m−1
0 Φ(δ−1

0 w) for a radially symmetric nonnegative smooth
function Φ on r — recall that dim r = 2m + 1.

Then, standard computations imply that

(5.7) µ̂(Br(w, δ))� Υδ2m+1 for all w ∈ r and all 0 < δ ≤ 1.

Moreover, since em(`1+`2)δ0 ≤ e−`1 , we have

(5.8)

∫ 1

0

∫ 1

0

∫
ϕ
(
a`1ur1a`2ur2 exp(w)x) dµ(w) dr2 dr1 =∫ 1

0

∫ 1

0

∫
ϕ(a`1ur1a`2ur2 exp(w)x) dµ̂(w) dr2 dr1 +O(S(ϕ)e−`1)

In consequence, we now investigate the integral in the second line of (5.8).
The following observation guarantees that we may replace the integral in the
second line of (5.8) by a %-thickening of it along H. Let BH = BH

% . Then

(5.9)

∫ 1

0

∫ 1

0

∫
ϕ
(
a`1ur1a`2ur2 exp(w)x) dµ̂(w) dr2 dr1 = O

(
S(ϕ)%?

)
+

1
mH(BH)

∫ 1

0

∫ 1

0

∫
BH

∫
ϕ
(
a`1ur1a`2ur2h exp(w)x) dµ̂(w) dhdr2 dr1

To see (5.9), recall that for all h ∈ BH , ur2h = u−s aqur where |s|, |q| � % and
dr = (1 +O(%)) dr2. Furthermore, a`2u

−
s aq = u−

e−`2s
aqa`2 . Thus

a`1ur1a`2ur2h = a`1ur1g
′′aqa`2ur = g′aqa`1ue−qr1a`2ur,

where ‖g′ − I‖, ‖g′′ − I‖ � e−`1−`2 . This, together with |e−q − 1| � % and
the Folner properties of dr1 and dr2, implies the claim in (5.9).

In view of (5.9), we will work with the integral on the second line of (5.9).
Recall that g = h ⊕ r. Assuming %0 is small enough, every g ∈ BG

10%0
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can be uniquely written as g = h exp(w) ∈ H exp(r), moreover, the map
g 7→ (h,w) is a diffeomorphism onto its image. Recall that % ≤ %0 and put
dν = 1

mH(BH)
dhd(exp µ̂). Then (5.7) and mH(BH) � %3 imply that

(5.10) ν(BG
δ (g))� Υ%−3δdimG for all g ∈ G and all 0 < δ ≤ 1.

Therefore, d(urνu−r)
dmG

� Υ for all r ∈ [0, 1]. Applying Proposition 5.1, with

ur2νu−r2 and ur2x for all r0 ∈ [0, 1], thus,∫ 1

0

∫ 1

0

∫
G
ϕ
(
a`1ur1a`2ur2gx) dν(g) dr2 dr1 =∫

ϕdmX +Oc
(
S(ϕ)(η + Υ1/2%−3/2e−κ5`1)

)
.

This, (5.9), and (5.8) complete the proof. �

6. Modified energy and projection theorems

We begin by defining a modified (and localized) α-dimensional energy for
finite subsets of Rd. Fix a norm ‖ ‖ on Rd (below we will apply this with
d = 5, 7, 11). Let Θ ⊂ BRd(0, 1) be a finite set.

For 0 ≤ δ < 1 and 0 < α < d, define G(α)
Θ,δ : Θ→ (0,∞) as follows:

G(α)
Θ,δ(w) =

∑
w′∈Θ\{w}

max(‖w − w′‖, δ)−α.

When δ = 0, we often write G(α)
Θ (w) for G(α)

Θ,0(w).
This notation will also be used for finite subsets of r, which is an 2m+ 1-

dimensional Ad(H)-irreducible representation, see §3.
The following projection theorem plays a crucial role in our argument.

6.1. Theorem. Let 0 < α < 2m+1, there exists $ > 0 so that the following
holds. Specifically, the theorem holds with $ as in (6.2), see also (6.3).

Let 0 < c < 10−4α, and ` > 0. Let Θ ⊂ Br(0, 1), and assume that #Θ is
large (depending on c). Assume further that

(6.1) G(α)
Θ,δ(w) ≤ Υ for every w ∈ Θ,

for some 0 < δ < 1.
There exists a subset J ⊂ [0, 1] with

|[0, 1] \ J | ≤ Lc| log δ|e−?c2`,

so that the following holds. Let r ∈ J , then there exists Θr ⊂ Θ with

#(Θ \Θr) ≤ Lc| log δ|e−?c2` · (#Θ)

such that for all w ∈ Θr, the following is satisfied

G(α)
Θ(w),δ′(Ad(a`ur)w) ≤ Lce

−$`δ−cΥ
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where δ′ = em` max(δ, (#Θ)−1/α), Lc is a constant depending on c, and

Θ(w) = {Ad(a`ur)w
′ : w′ ∈ Θr, ‖w − w′‖ ≤ e−m`}.

Before proceeding with the proof of this theorem, we explicate the value
of $ for which we will prove the theorem. Let 0 < α < 2m + 1, and define

(6.2) $ =


αm−

∑dαe−1
i=1 i 0 < α ≤ 2m− 1

max
(
m(1− 2m + α),m(1 + 2m− α)− 1

)
2m− 1 < α ≤ 2m

m(1 + 2m− α) 2m ≤ α ≤ 2m + 1

Note that for any 0 < κ̂ < 1
10m , and any 0 < α ≤ 2m + 1− κ̂, we have

(6.3) $ ≥ min{αm, κ̂m}.
Indeed, if 0 < α ≤ 1, then $ = αm. Let us now assume d − 1 < α ≤ d for
some 2 ≤ d ≤ 2m− 1, then

$ = αm− d(d−1)
2 ≥ (d−1)(2m−d)

2 ≥ 1
2 .

Now consider 2m− 1 < α ≤ 2m. Indeed

$ ≥ m(1 + 2m− α)− 1 ≥ 5
3m− 1 if 2m− 1 ≤ α ≤ 2m− 2

3

$ ≥ m(1− 2m + α) ≥ m
3 if 2m− 2

3 ≤ α ≤ 2m

The claim in (6.3) follows.

The proof of Theorem 6.1 relies primarily on a result by Gan, Guo, and
Wang [GGW22, Thm. 2.1]. More specifically, the following lemma forms the
crux of the proof of Theorem 6.1. The proof of this lemma, in turn, depends
on Theorem C.2 which is [GGW22, Thm. 2.1] tailored to our application.

6.2. Lemma. Let 0 < α < 2m + 1, 0 < b1 ≤ 1 and ` > 0. Let ρ be the
uniform measure on a finite set Θ ⊂ Br(0, 1) satisfying the following

(6.4) ρ(Br(w, b)) ≤ Υbα for all w and all b ≥ b1
Let 0 < c < 10−4. For every 1 ≥ b ≥ em`b1, there exists a subset J`,b ⊂ [0, 1]

with |[0, 1] \ J`,b| ≤ C ′ce
−?c2` so that the following holds. Let r ∈ J`,b, then

there exists a subset Θ`,b,r ⊂ Θ with

ρ(Θ \Θ`,b,r) ≤ C ′ce−?c
2`

such that for all w ∈ Θ`,b,r we have

ρ
(
{w′ ∈ Θ`,b,r : ‖Ad(a`ur)w −Ad(a`ur)w

′‖ ≤ b}
)
≤ C ′cΥe−$`bα−c

where $ is as in (6.2).

Proof. We first establish the claim for 0 < α ≤ 2m− 1, and also obtain one
of the bounds in the definition $ = max

(
m(1− 2m+α),m(1 + 2m−α)− 1

)
for 2m− 1 < α ≤ 2m, namely m(1− 2m + α).

To that end, let k = dαe and write

$′ = αm−
∑k−1

i=1 i.
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For every 1 ≤ d ≤ 2m+1, let rd denote the space spanned by vectors with
weight m, . . . ,m − d + 1. Let πd : r → rd denote the orthogonal projection.
Apply Theorem C.2 with b′ = e−m`b ≥ b1 and c/2. Then for every r ∈ Jb′
and all w ∈ Θb′,r, we have

(6.5) ρ
(
{w′ ∈ Θ : ‖πk(Ad(ur)w))− πk(Ad(ur)w

′)‖ ≤ b′}
)
≤ CcΥ(b′)α−

c
2 .

Let P ⊂ rk denote the box b′ × e`b′ · · · × e(k−1)`b′ centered at the origin,
where the directions correspond to the weight spaces for at in decreasing

order. Then P + πk(Ad(a`ur)w) can be covered with � e
∑k−1
i=1 i` many

boxes of size b′. Thus (6.5), applied with 2b′, implies that

(6.6)
πk(ρ|Θ`,b,r)(P + πk(Ad(a`ur)w)) ≤ (CcΥ(2b′)α−

c
2 ) · e

∑k−1
i=1 i`

≤ 2αCcΥe
−$′`bα−c.

Note also that

{w′ ∈ Θb′,r : ‖Ad(a`ur)w)−Ad(a`ur)w
′‖ ≤ b} ⊂

{w′ ∈ Θb′,r : ‖πk(Ad(a`ur)w))− πk(Ad(a`ur)w
′)‖ ≤ b} ⊂ P`,r,w.

This and (6.6) show that

(6.7) ρ|Θ`,b,r
(
{w′ ∈ r : ‖Ad(a`ur)w)−Ad(a`ur)w

′‖ ≤ b}
)
≤

2αCcΥe
−$′`bα−c

which establishes the claim when 0 < α ≤ 2m− 1, as well as when 2m− 1 <
α ≤ 2m for $′ = m(1− 2m + α) (when this is positive).

We now turn to the case when 2m− 1 < α ≤ 2m + 1. For a vector v ∈ r
and 1 ≤ i ≤ 2m + 1, let vi denote the component of v in the weight space
m− i+ 1. Then for every w ∈ Θ and all b, we have

(6.8) {w′ ∈ Θ : ‖Ad(a`ur)w)−Ad(a`ur)w
′‖ ≤ b} =

{w′ ∈ Θ : ∀i, |(Ad(ur)w)i − (Ad(ur)w
′)i| ≤ e(−m+i−1)`b}.

Put b′ = em`b, and let P ⊂ r be the box

e−2m`b′ × e(−2m+1)` × · · · × e−`b′ × b′

centered at the origin, i.e., i-th weight space has size e−m−ib′. In view
of (6.8), we will estimate the measure of sets of the form P + w for w ∈ Θ.

To that end, cover Θ with half-open disjoint boxes {Bq : q ∈ Q} of size
b′. For all Bq, let ρq = 1

ρ(Bq)
ρ|Bq , and let ρ̃q denote the image of ρq under

z 7→ 1
b′ (z − zq), where zq is the center of Bq. Then for all δ ≥ b1/b′,

(6.9)
ρ̃q(Br(v, δ)) = 1

ρ(Bq)
ρ(Bq ∩Br(v + zq, b

′δ))

≤ Υ
ρ(Bq)

(b′δ)α = Υeαm`bα

ρ(Bq)
δα

In particular, if b ≥ em`b1, then e−2m` ≥ b1
b′ , thus (6.9) holds for δ ≥ e−2m`.
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Let us first assume 2m − 1 < α ≤ 2m. Put P ′ = 1
b′P . Then using

Theorem C.2, with k = 2m − 1 and ρ̃q for all q ∈ Q, there exists a subset

Jq ⊂ [0, 1] with |[0, 1] \ Jq| � e−?c
2` and for every r ∈ Jq a subset Θq,r ⊂

Θ ∩Bq with with ρq(Θ \Θq,r)� e−?c
2` so that for all v ∈ r,

ρ̃q|Θq,r(Ad(u−r)P
′ + v) ≤ Cc

Υeαm`bα

ρ(Bq)
e(−

∑2m
i=2 i+c)`

≤ Cc
Υ

ρ(Bq)
e(αm−

∑2m
i=2 i)`bα−c

= Cc
Υ

ρ(Bq)
e−(m(2m+1−α)−1)`bα−c.

Equip Q × [0, 1] with σ × Leb where σ(q) = ρ(Bq). By Fubini’s theorem,

there is J ⊂ [0, 1] with |[0, 1]\J | � e−?c
2`, and for all r ∈ J a subset Qr ⊂ Q

satisfying that
∑

q 6∈Qr ρ(Bq)� e−?c
2` so that r ∈ Jq for all q ∈ Qr.

For every r ∈ J , let Θ`,b,r = ∪q∈QrΘq,r. Since P + Ad(ur)w is contained
in O(1) many Bq’s, the above and the definition of ρ̃q imply that

ρ|Θ`,b,r(Ad(u−r)P + w)� CcΥe
−(m(2m+1−α)−1)`bα−c.

In view of (6.8), this and (6.7) establish the claim when 2m− 1 < α ≤ 2m.
The proof in the case 2m ≤ α ≤ 2m + 1 is similar. Indeed, applying

Theorem C.2, with k = 2m and {ρ̃q : q ∈ Q}, we obtain J ⊂ [0, 1], for all
r ∈ J the subset Qr ⊂ Q and for each q ∈ Qr, the set Θq,r as above so that

ρ̃q|Θq,r(P ′ + Ad(ur)v) ≤ Cc
Υeαm`bα

ρ(Bq)
e(−

∑2m
i=1 i+c)`

≤ Cc
Υ

ρ(Bq)
e(αm−

∑2m
i=1 i)`bα−c

= Cc
Υ

ρ(Bq)
e−m(2m+1−α)`bα−c,

for all v ∈ r. Put Θ`,b,r = ∪q∈QrΘq,r. Then

ρ|Θ`,b,r(P + Ad(ur)w)� CcΥe
−m(2m+1−α)`bα−c

which, thanks to (6.8), gives the claim when 2m ≤ α < 2m + 1. �

6.3. Proof of Theorem 6.1. Recall the definition of $ from (6.2).
Let us write Ῡ = Υ

#Θ . To simplify the notation, Ad(a`ur)(w) will be

denoted by ξ`,r(w) in the proof.
Let ρ denote the uniform measure on Θ. By (6.1),

(6.10) ρ
(
B(w, b) ∩Θ

)
≤ 2Ῡbα for all b ≥ max(δ, (#Θ)−

1
α ) =: b1

Thus, Theorem C.2 and Lemma 6.2 are applicable with ρ and b ≥ b1.
Let k1 = −dlog b1e and k2 = m`. Apply Lemma 6.2 with c/2 and b = e−k

for all k2 ≤ k ≤ k1. Let J =
⋂k1
k=k2

J`,e−k where J`,b is as in Lemma 6.2.
Then that lemma implies that

|[0, 1] \ J | �c

k1∑
k2

e−?c
2` �c | log δ|e−?c2`.
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For every r ∈ [0, 1], let

(6.11) Θr =

k1−m`⋂
k=k2

Θ`,e−k,r

where Θ`,e−k,r is given by Lemma 6.2. Applying that lemma, thus, we have

ρ(Θ \Θr)�c | log δ|e−?c2`.

Define J and for every r ∈ J , Θr as above for this case. For every w ∈ Θr

and every k < k1 −m`, let

Θ(w, k) = {w′ ∈ Θr : e−k−1 < ‖ξ`,r(w)− ξ`,r(w′)‖ ≤ e−k};
define Θ(w, k1 − m`) similarly but without imposing a lower bound. Then
by Lemma 6.2, for all k ≤ k1 −m` we have

(6.12) ρ(Θ(w, k)) ≤ C ′cῩδ−c/2e−$`e−αk.
Put k′1 = k1 −m`. From the above we conclude

G(α)
Θ(w),δ′(w) =

∑
w′∈Θ(w)

max(‖ξ`,r(w)− ξ`,r(w′)‖, δ′)−α

≤ ρ(Θ(w, k′1)) · ek′1α +

k′1−1∑
k=k2

∑
Θ(w,k)

‖ξ`,r(w)− ξ`,r(w′)‖−α

�c

k′1∑
k2

Ῡδ−
c
2 e−$`e−αkeαk · (#Θ)

�c | log δ|e−$`δ−
c
2 Υ�c e

−$`δ−cΥ,

where we used (6.12) in the third line, Ῡ = Υ
#Θ and k1 ≤ | log δ| in the

second to last inequality, and | log δ|δ−c/2 ≤ δ−c in the last inequality.
The proof is complete. �

6.4. Linear algebra lemma and the energy. In this section, we detail
how Lemma 3.5 can be employed to improve the initial estimate provided
by Proposition 4.6. While the formulation of Lemma 6.5 below bears simi-
larities to Theorem 6.1 albeit with small α, a key observation is that, unlike
that theorem, this step avoids any loss of scales.

In the proof of Proposition 8.1, we will use Lemma 6.5 to refine the initial
estimate provided by Proposition 4.6, achieving a positive initial dimension.
Subsequently, Theorem 6.1 will be applied to further improve this dimension,
bringing it close to full dimension.

6.5. Lemma. Let 0 < α ≤ 1
2m+1 and ` > 0. Let Θ ⊂ Br(0, 1) be a finite set

satisfying that

(6.13) G(α)
Θ (w) ≤ Υ for every w ∈ Θ,

for some Υ ≥ 1.
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There exists a subset J ⊂ [0, 1] with |[0, 1] \ J | ≤ Lαe
−?α`, so that the

following holds. Let r ∈ J , then there exists a subset Θr ⊂ Θ with

#(Θ \Θr) ≤ Lαe
−?α` · (#Θ)

such that for all w ∈ Θr we have

G(α)
Ad(a`ur)Θ

(Ad(a`ur)w) ≤ Lαe
− 3α

4
`Υ

where Lα is a constant depending on α.

Proof. Recall from Lemma 3.5 that for all 0 6= v ∈ r, we have∫ 1

0
‖a`urv‖−α dr ≤ Cαe−α`‖v‖−α

where Cα depends on α. This and the definition of G(α)
Θ imply that∫ 1

0
G(α)

Ad(a`ur)Θ
(Ad(a`ur)w) dr =

∫ 1

0

∑
w 6=w′

‖Ad(a`ur)(w − w′)‖−α dr

≤ Cαe−α`
∑
w 6=w′

‖w − w′‖−α

= Cαe
−α`G(α)

Θ (w) ≤ Cαe−α`Υ,

for all w ∈ Θ.
Applying Chebyshev’s inequality, we conclude that if for w ∈ Θ we put

J(w) =
{
r ∈ [0, 1] : G(α)

Ad(a`ur)Θ
(Ad(a`ur)w) > Cαe

−3α`/4Υ
}
,

then |J(w)| ≤ e−α`/4. Let

Ξ =
{

(w, r) ∈ Θ× [0, 1] : G(α)
Ad(a`ur)Θ

(Ad(a`ur)w) ≤ Cαe−3α`/4Υ
}

= {(w, r) : w ∈ Θ, r ∈ [0, 1] \ J(w)}.

The above discussion implies that ρ×Leb (Ξ) > 1 − O(e−α`/4), where ρ
denotes the uniform measure on Θ. This and Fubini’s theorem imply that
there exists J ⊂ [0, 1] with |[0, 1] \ J | � e−?α`, so that for every r ∈ J

ρ({w : (w, r) ∈ Ξ}) > 1−O(e−?α`).

For every r ∈ J , let

(6.14) Θr = {w : (w, r) ∈ Ξ}

The claim in the lemma thus follows with J and Θr as above. �
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7. Margulis functions and projection theorems

Let us put

E = {u−s : |s| ≤ β} · {ad : |d| ≤ β} · {ur : |r| ≤ η},

see (3.5). Let F ⊂ Br(0, β) be a finite set. Let y ∈ Xη be so that (h,w) 7→
h exp(w)y is injective over E× F and

(7.1) E = E.{exp(w)y : w ∈ F} ⊂ Xη

For every (h, z) ∈ H × E , define

(7.2) IE(h, z) :=
{
w ∈ r : ‖w‖ < inj(hz), exp(w)hz ∈ hE

}
.

Note that IE(h, z) contains 0 for all z ∈ E , moreover, since E is bounded,
IE(h, z) is a finite set for all (h, z) ∈ H × E .

Fix some 0 < α ≤ 2m+1. For every 0 ≤ δ < 1, define a modified Margulis

function f
(α)
E,δ : H × E → [1,∞) as follows.

f
(α)
E,δ (h, z) =

∑
06=w∈IE(h,z)

max(‖w‖, δ)−α

In this paper, we will primarily use the above objects with h = e. Hence,

and in order to simplify the notation, we denote IE(e, z) and f
(α)
E,δ (e, z) by

IE(z) and f
(α)
E,δ (z), respectively.

The modified Margulis function and the modified energy discussed in §6
are closely related. Specifically, the following lemma [LMW22, Lemma 9.2]
establishes, in a general sense, that bounding one of these quantities im-
plies a bound on the other, with the exception of potential edge effects.
When r is a Lie subalgebra, this connection becomes more straightforward.
However, in the general case, understanding the relationship between I(z)
and I(exp(w)z) demands further elaboration; see [LMW22, Lemma 9.2] for
details.

7.1. Lemma. Let the notation be as above, and assume that

f
(α)
E,δ (z) ≤ Υ for all z ∈ E.

Then for every z ∈
(
E \ ∂5β2E

)
.{exp(w)y : w ∈ F} and all w ∈ IE(z),

G(α)
IE(z),δ(w)� Υ,

where G is defined as in §6.

An iterative dimension improvement lemma. The following lemma
outlines a general iterative process for improving the dimension under suit-
able projection theorems. Readers may compare it to [LMW22, Lemmas 9.1
and 10.7] and [LM23, Lemma 7.10]. In the next section, we apply Lemma 7.2
to establish Proposition 8.1, a central component of our argument.
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Let 0 < ε < 10−10 be a small parameter, and t > 0 a large parameter.
We also fix some 0 < ε′ < 10−6ε, and put

` = εt
10m , β = e−ε

′t, and η2 = β.

Throughout this section, we fix a large parameter d0. The results of this
section will be applied with d0 = 3t + 3dfn`, where dfn is the number of
steps we need to apply Lemma 7.2 in the proof of Proposition 8.1, and is
explicated in the next section.

Recall that F ⊂ Br(0, β), and

E = E.{exp(w)y : w ∈ F} ⊂ Xη.

We assume E is equipped with an admissible measure µE , see §D.3.

7.2. Lemma. Let 1
2m+1 ≤ α < 2m+ 1, and define $ as in (6.2) ($ is some

explicit function of α that goes to zero as α → 2m + 1). Let Υ ≤ eDt for
some D > 0, and assume that

f
(α)
E,δ (z) ≤ Υ for all z ∈ E

where δ = 0 if α = 1
2m+1 and e−Dt ≤ δ < 1 otherwise.

The following holds so long as t is large enough, depending on X, D, and
2m + 1− α, see (7.6). There exists a collection {Ei : 1 ≤ i ≤ N} of sets

Ei = E.{exp(w)yi : w ∈ Fi} ⊂ Xη

where for every 1 ≤ i ≤ N , Fi ⊂ Br(0, β) with

β4m+6 · (#F ) ≤ #Fi ≤ β4m+4#F,

and for every i, an admissible measure µEi, so that both of the following hold

(1) For all 1 ≤ i ≤ N and all z ∈ E.{exp(w)yi : w ∈ Fi},

(7.3) f
(α)
Ei,δ′(z) ≤ e

−$
2
` ·Υ + eεt · (#Fi)

where δ′ = 0 if α = 1
2m+1 and δ′ = em` max(δ, (#F )−

1
α ) otherwise.

(2) For all 0 < d ≤ d0 − `, all |s| ≤ 2, and every ϕ ∈ C∞c (X), we have∫ 1

0

∫
ϕ(adusa`urz) dµE(z)dr =

∑
i

ci

∫
ϕ(adusz) dµEi(z) +O(Lip(ϕ)βκ6)

where 0 ≤ ci ≤ 1 and
∑

i ci = 1−O(βκ6), Lip(ϕ) is the Lipschitz norm
of ϕ, and κ6 and the implied constants depend on X.

The proof of Lemma 7.2 relies on Lemma 6.5 (for α = 1/(2m + 1)) and
Theorem 6.1 (for α > 1/(2m + 1)) and will be completed in several steps.
The basic idea is straightforward: By applying these results to the sets IE(z)
for all z ∈ E and a few applications of Fubini’s theorem, we obtain a large
subset L ⊂ [0, 1] and for each r ∈ L a large subset E(r) ⊂ E where the upper
bound on the modified Margulis function improves under the application of
a`ur. We then trim and smear a`urE(r) using the results in [LMW22, §6–8],
see also §D.3, to establish the lemma. The details follow.
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Proof of Lemma 7.2. Let us write

E′ = E \ ∂5β2E and E ′ = E′.{exp(w)y : w ∈ F}.

Recall from Lemma 7.1 that our condition

f
(α)
E,δ (z̄) ≤ Υ

implies that for every z̄ ∈ E ′ and all v ∈ IE(z̄), we have G(α)
IE(z̄),δ(v)� Υ.

Let z̄ ∈ E ′, we will estimate

G(α)
Ad(a`ur)I,δ′

(Ad(a`ur)v)

for a certain subset I ⊂ IE(z̄) which will be explicated below.
First let us assume α = 1

2m+1 , then $ = α and δ′ = 0. In this case,

Lemma 6.5 applied with Θ = IE(z̄) implies that there is θ > 0 (depending
on m) so that for all large enough ` the following holds. Denote by Jz̄ the
set J ⊂ [0, 1] in Lemma 6.5, and for all r ∈ Jz̄, let Iz̄,r be the set Θr in
Lemma 6.5 applied with Θ = IE(z̄), see (6.14). Then

(7.4) #(IE(z̄) \ Iz̄,r) ≤ e−θ` · (#IE(z̄)),

and for every v ∈ Iz̄,r, we have

(7.5)
G(α)

Ad(a`ur)I
int
z̄,r(v),δ′

(Ad(a`ur)v) ≤ G(α)
Ad(a`ur)IE(z̄)(Ad(a`ur)v)

� e−3α`/4Υ

where I int
z̄,r(v) = {v′ ∈ IE(z̄) : ‖v − v′‖ ≤ e−m`} and we used $ = α and

δ′ = 0 in the case at hand.
We now turn to the case α > 1

2m+1 . The goal is to establish a similar
estimate, albeit using Theorem 6.1 in this case. To that end, first let c be
small enough so that ecDt < e$`/4.

(7.6) e−$`δ−cΥ ≤ e−3$`/4Υ,

where we used δ ≥ e−Dt. Now apply Theorem 6.1 with Θ = IE(z̄) and this
c. There is θ > 0 so that for all large enough ` the following holds. Denote
by Jz̄ the set J ⊂ [0, 1] in Theorem 6.1, and for all r ∈ Jz̄, let Iz̄,r ⊂ IE(z̄)
be the set Θr in Theorem 6.1 applied with Θ = IE(z̄), see (6.11). Then

(7.7) #(IE(z̄) \ Iz̄,r) ≤ e−θc
2` · (#IE(z̄)),

and for every v ∈ Iz̄,r, we have

(7.8) GAd(a`ur)I
int
z̄,r(v),δ′(Ad(a`ur)v)� e−3$`/4Υ

where δ′ = em` max(δ, (#F )−1/α),

I int
z̄,r(v) = {v′ ∈ Iz̄,r : ‖v − v′‖ ≤ e−m`},

and we used (7.6).
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The set LµE . Equip E × [0, 1] with σ := µE × Leb, where Leb denotes the
normalized Lebesgue measure on [0, 1]. Extend the definition of Iz̄,r to all
r ∈ [0, 1] by letting Iz̄,r = ∅ if r 6∈ Jz̄, and put

(7.9) Z =
{

(z̄, r) ∈ Ê × [0, 1] : #(IE(z̄) \ Iz̄,r) ≤ e−θc
2` · (#IE(z̄))

}
,

where Ê = Ê.{exp(w)y : w ∈ F} and Ê = E \ ∂200β2E.

Then, using (7.4) if α = 1
2m+1 or (7.7) when α > 1

2m+1 , we have that

{(z̄, r) : r ∈ Jz̄} ⊂ Z for all z̄ ∈ Ê .

Recall moreover that µE(E \ Ê)� β. We conclude that

σ(E × [0, 1] \ Z)� β + e−?c
2` � e−?c

2`,

where we assumed c ≤ κ. This and Fubini’s theorem imply that there is a

subset L = LµE ⊂ [0, 1] with |[0, 1] \ L| � e−?c
2` so that

(7.10) µE
(
E \ Zr

)
� e−?c

2` for all r ∈ L,

where Zr = {z̄ ∈ Ê : (z̄, r) ∈ Z}.

Decomposing a`urµE as a convex combination. Fix a maximal e−3d0

separated subset L of L, and d and s as in the statement of Lemma 7.2.
Applying Lemma D.4, see also [LMW22, Lemma 8.9], for every r ∈ L we
can write

(7.11)

∫
ϕ(adusa`urz) dµE(z) =∑

i

c′i,r

∫
ϕ(adusz) dµE ′i,r(z) +O(β? Lip(ϕ)),

where the E ′i,rs are sets of the form

E ′i,r = E.{exp(w)yi,r : w ∈ F ′i,r} ⊂ Xη

with F ′i,r ⊂ Br(0, β) that satisfies

β4m+5 · (#F ) ≤ F ′i,r ≤ β4m+4 · (#F ).

We will now further divide the sets E ′i,r.
Let B denote the cubes of size 2−n with 2−n ≥ e(−2m−1)` > 2−n−1 which

are obtained by scaling some fixed partition of r into unit size cubes by 2−n.
Applying Lemma D.1, with the collection of cubes B, we can write F ′i,r =

F ′′i,r t
(
tς F̂ ′i,r,ς

)
where the union is disjoint,

#F ′′i,r � β1/2(#F ′i,r),

and both of the following hold for all ς

a. #F̂ ′i,r,ς ≥ β0.6 · (#F ′i,r), and
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b. There exists wi,ς ∈ r so that if C1 6= C′1 ∈ B intersect F̂ ′i,r,ς + wi,ς non-

trivially, the distance between C1 ∩ (F̂ ′i,r,ς + wi,ς) and C′1 ∩ (F̂ ′i,r,ς + wi,ς)

is � e(−2m−1)`β.

Replacing µE ′i,r by
∑
ci,r,ςµE ′i,r,ς , where

E ′i,r,ς = E.{exp(w)yi,r : w ∈ F ′i,r,ς} for all ς,

we have that∫
ϕ(adusa`urz) dµE(z) =

∑
i,ς

c′i,r,ς

∫
ϕ(adusz) dµE ′i,r,ς (z) +O(β? Lip(ϕ)).

By reindexing, may assume that b. above holds already for F ′i,r. In other

words, we may assume that there exists a disjoint collection B′i of cubes of

size 2−n ≥ e(−2m−1)`β ≥ 2−n−1 which cover Br(0, β) so that if C1 6= C′1 ∈ B′i
intersect F̂ ′i,r non-trivially, then

(7.12) the distance between C1 ∩ F̂ ′i,r and C′1 ∩ F̂ ′i,r is � e(−2m−1)`β.

After this additional refinement, we have

β4m+6 · (#F ) ≤ F ′i,r ≤ β4m+4 · (#F ).

Incremental improvements using Zr. Let r ∈ L, and let z̄ ∈ Zr,
see (7.10). Fix w̄ ∈ Iz̄,r; by definition of Iz̄,r we have that z = exp(w̄)z̄ ∈ Ê .
We will estimate ∑

v∈Iint
z

max(‖a`urv‖, δ′)−α,

where I int
z is explicated in (7.17).

For any small w ∈ r, we have

(7.13) exp(w)z = exp(w) exp(w̄)z̄ = h exp(vw)z̄

with h ∈ H, vw ∈ r, ‖h− I‖ � β‖w‖ and

(7.14) ‖vw − (w + w̄)‖ � ‖w̄‖‖w‖,

see Lemma 3.2. On the other hand, if z ∈ Ê and w ∈ IE(z), we have

exp(w)z = exp(w)h exp(wz)y = hhz exp(wz,w)y

for some wz, wz,w ∈ F , h ∈ Ê, and hz ∈ H with ‖hz − I‖ � β‖w‖.
Thus (7.13) implies that

exp(vw)z̄ = h−1 exp(w)z = h−1hhz exp(wz,w)y ∈ E .

That is, vw ∈ IE(z̄). Hence, w 7→ vw is one-to-one from IE(z) into IE(z̄).
Moreover, since e−m`‖v‖ � ‖a`urv‖ � em`‖v‖ for all v ∈ r, we conclude

from (7.13) and (7.14) that if ‖w̄‖ ≤ e(−2m−1)`, then

(7.15) 1
2‖a`ur(vw − w̄)‖ ≤ ‖a`urw‖ ≤ 2‖a`ur(vw − w̄)‖.
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Recall that z̄ ∈ Zr, thus using (7.5) if α = 1
2m+1 and (7.8) if α > 1

2m+1 ,
we conclude that for every v ∈ Iz̄,r,

(7.16)
∑

v 6=v′∈Iint
z̄,r(v)

max(‖a`ur(v − v′)‖, δ′)−α � e−3$`/4Υ

where I int
z̄,r(v) = {v′ ∈ Iz̄,r : ‖v − v′‖ ≤ e−m`}.

Let us now put

(7.17) I int
z =

{
w ∈ IE(z) : ‖w‖ ≤ e(−m−1)`, vw ∈ Iz̄,r

}
.

Note that for any w ∈ I int
z , we have ‖w̄ − vw‖ � β‖w‖, hence vw ∈ I int

z̄,r(w̄).
Thus, (7.15) and (7.16) (applied with v = w̄) imply that

(7.18)
∑

06=w∈Iint
z

max(‖a`urw‖, δ′)−α

≤ 22m+1
∑

w̄ 6=v′∈Iint
z̄,r(w̄)

max(‖a`ur(w̄ − v′)‖, δ′)−α � e−3$`/4Υ.

The set E(r). Recall that B denotes the cubes of size 2−n with 2−n ≥
e(−2m−1)` > 2−n−1 which are obtained by scaling some fixed partition of r
into unit size cubes by 2−n. Let C ⊂ B denote the collection of those cubes
C ∈ B with the following property: there exists wC ∈ F ∩ C satisfying that

µwC

{
z̄ ∈ Ê exp(wC)y ∩ Zr :

#Iz̄,r∩B
#IE(z̄)∩B ≥ (1−O(e−?c

2`)
}
≥(

1−O(e−?c
2`)
)
µwC

(Ê exp(wC)y)

where B = Br(0, e
(−2m−1)`) and µwC

is the restriction of the measure µÊ to

Ê exp(wC)y, see D.3. For every C ∈ C, fix one such wC, and let

Zr(wC) =
{
z̄ ∈ Ê exp(wC)y ∩ Zr :

#Iz̄,r∩B
#IE(z̄)∩B ≥ (1−O(e−?c

2`)
}
.

Fix a covering {Ph′j}j of Ê with multiplicity bounded by an absolute
constant, where

P =
{
u−s : |s| ≤ 10β2

}
· {aτ : |τ | ≤ 10β2} · {ur : |r| ≤ 10e−`η};

cf. e.g. [LM23, Lemma 7.9]. Note that by our choice of constants, β2 is much
larger than e−`η.

For every C ∈ C, let JC denote the collection of j so that Ph′j exp(wC) ∩
Zr(wC) 6= ∅. For any j ∈ JC, fix some h′j ∈ P so that

z̄C,j := h′jh
′
j exp(wC) ∈ Zr(wC).

With this notation, set IC,j = Iz̄C,j ,r ∩Br(0, e
(−2m−1)`), and let

EC,j(r) = {h exp(w̄)z̄C,j : h ∈ P, w̄ ∈ IC,j} ∩ Ê .
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Define E(r) :=
⋃

C∈C
⋃
JC E

C,j(r); this covering has multiplicity ≤ K, where

K is absolute. It follows from (7.9), (7.10), and the above definitions that

(7.19) µE(E \ E(r))� e−?c
2`.

Trimming E ′i,r using E(r). Recall from part (2) in Lemma D.4 the follow-

ing property of F ′i,r

QH` . exp(w)yi,r ⊂ a`urE for all w ∈ F ′i,r,

where QH` =
{
u−s : |s| ≤ β2e−`

}
· {aτ : |τ | ≤ β2} · {ur : |r| ≤ η}.

For all i, all C1 ∈ B′i, C2 ∈ C, and all j ∈ JC2 , let

F ′i,C1
(z̄C2,j) =

{
w ∈ C1 : ∃w̄ ∈ IC2,j , a`ur exp(w̄)z̄C2,j ∈ QH` . exp(w)yi,r

}
,

roughly speaking, this set captured points in F ′i,r ∩ C1 which may be traced

back to IC2,j = Iz̄C2,j
,r ∩Br(0, e

(−2m−1)`).
For every i, let

Bi :=
{
C1 ∈ B′i : max

C2,j
#F ′i,C1

(z̄C2,j) ≥ (1− 10−6) · (#F ′i,r ∩ C1)
}
,

and put Ir =
{
i :
⋃

C1∈Bi(C1 ∩ F ′i,r) ≥ β1/2 ·#(F ′i,r)
}

.

For every i ∈ Ir and all C1 ∈ Bi, choose z̄i,C1 ∈ Ê exp(wC2,j)y) ∩ Zr so
that #F ′i,C1

(z̄i,C1) realizes the above maximum. Put

(7.20) Fi,r =
⋃

C1∈Bi F
′
i,C1

(z̄i,C1) and Ei,r = E.{exp(w)yi,r : w ∈ Fi,r}.

For every i ∈ Ir, let µi,r denote the restriction of µE ′i,r to Ei,r normalized to

be a probability measure.

7.3. Lemma. With the above notation, we have

f
(α)
Ei,r,δ′(z) ≤ e

−$`/2Υ + eεt · (#Fi,r)

for all i ∈ Ir and all z ∈ Ei,r.
Moreover, we have

(7.21)

∫
ϕ(adusz) d(a`urµE)(z) =∑

Ir

ci,r

∫
ϕ(adusz) dµEi,r(z) +O(β? Lip(ϕ)).

We postpone the proof of Lemma 7.3 to after the completion of the proof
of Lemma 7.2; a task which we now undertake.
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Conclusion of the proof of Lemma 7.2. First recall that∫ ∫ 1

0
ϕ(adusa`urz) dr dµE(z) =

∫∫
ϕ(ad+`ur+se−`z) dr dµE(z).

Since |[0, 1] \ LµE | � e−?c
2` = β? and L ⊂ LµE is a maximal e−3d0

separated subset, we have∫∫
ϕ(ad+`ur+se−`z) dr dµE(z) =∑

r∈L

∫
ϕ(ad+`ur+se−`z) dµE(z) +O

(
β? Lip(ϕ)

)
=

∑
r∈L

∫
ϕ(adusa`urz) dµE(z) +O

(
β? Lip(ϕ)

)
.

Combining these and the second assertion in Lemma 7.3, we conclude that∫∫
ϕ(adusa`urz) dr dµE =

∑
I
ci,r

∫
ϕ(adusz) dµEi,r(z) +O(β? Lip(ϕ));

moreover, by the first claim in Lemma 7.3, we have

fEi,r,δ′(z) ≤ e
−$`/2Υ + eεt · (#Fi,r).

Finally, since β4m+5 · (#F ) ≤ #F ′i,r ≤ #F and #Fi,r ≥ β1/2 · (#F ′i,r),

β4m+6 · (#F ) ≤ #Fi,r ≤ β4m+4 · (#F ).

The proof of Lemma 7.2 is complete. �

Proof of Lemma 7.3. We begin by establishing the first claim in the lemma.
Fix some i, and denote Fi,r, yi,r, and Ei,r by Fnw, ynw, and Enw, respectively.

First note that

(7.22) f
(α)
Enw,δ′

(z) ≤
∑

06=w∈Iint
Enw

(z)

max(‖w‖, δ′)−α + eεt · (#Fnw)

where I int
Enw

(z) = {w ∈ IEnw(z) : ‖w‖ ≤ e(−2m−2)`}.
We also recall the definition of Fnw and Enw from (7.20). In particular, for

every C1 ∈ Bi, there exists C2 ∈ C and z̄ = z̄C2,j so that for all w ∈ Fnw∩C1,

there is some w̄ ∈ IC2,j = Iz̄,r ∩Br(0, e
(−2m−1)`) with

a`ur exp(w̄)z̄ ∈ QH` . exp(w)ynw.

For k = 1, 2, let zk = a`ur exp(w̄k)z̄, and write

zk = hk exp(wk)ynw,

where wk ∈ Fnw and hk ∈ QH` . Then we have

(7.23)

z2 = h2 exp(w2)ynw = h2 exp(w2) exp(−w1)h−1
1 z1

= h2h
−1
1 exp(Ad(h1)w2) exp(−Ad(h1)w1)z1

= h2h
−1
1 ĥ exp(ŵ)z1
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where ĥ ∈ H and ŵ ∈ r, moreover, by Lemma 3.2, we have

‖ĥ− I‖ ≤ C2β‖ŵ‖ and(7.24a)

1
2‖Ad(h1)(w2 − w1)‖ ≤ ‖ŵ‖ ≤ 2‖Ad(h1)(w2 − w1)‖.(7.24b)

Now let v ∈ IEnw(z1). Then there exist wv ∈ Fnw and h′v ∈ E so that

exp(v)z1 = h′v exp(wv)ynw.

Moreover, if ‖v‖ ≤ e(−2m−2)`, then by (7.12) wv ∈ C1, thus there exist
w̄v ∈ Iz̄,r and hv ∈ QH` so that

a`ur exp(w̄v)z̄ = hv exp(wv)ynw.

Altogether, if ‖v‖ ≤ e(−2m−2)`, then

(7.25) a`ur exp(w̄v)z̄ = hv exp(v)z1

where hv = hvh
′−1
v ∈ BH1.1η.

Applying (7.23) with w2 = wv, we get that

(7.26) a`ur exp(w̄v)z̄ = hvh
−1
1 ĥv exp(ŵv)z1

where ĥv and ŵv satisfy (7.24a) and (7.24b), and h1, hv ∈ QH` .

Recall now that (ĥ, ŵ) 7→ ĥ exp(ŵ)z1 is injective over BH10η × Br(0, 10η).

Thus, we conclude from (7.26) and (7.25) that

(7.27) ŵv = v.

Since ‖v‖ ≤ e(−2m−2)`, (7.24a) and (7.27) imply that

‖ĥv − I‖ ≤ C2β‖v‖ ≤ e(−2m−2)`β ≤ β2e−`;

recall that β ≥ e−` and m ≥ 2. Moreover, h1, hv ∈ QH` . Therefore,

ĥ−1
v h1h

−1
v a`ur exp(w̄v)z̄ ∈ a`urE ,

see (3.7). This, (7.26), and (7.27) yield

exp(v)a`ur exp(w̄1)z̄ = exp(v)z1

= ĥ−1h1h
−1
v a`ur exp(w̄v)z̄ ∈ a`urE .

Recall also that w̄v ∈ Iz̄,r, and note that that since ‖v‖ ≤ e(−2m−2), we have

‖Ad((a`ur)
−1)v‖ ≤ e(−m−1)`. Altogether, we conclude that

(7.28) Ad((a`ur)
−1)v ∈ I int

exp(w̄1)z̄,

see (7.17). Let

I int
Enw

(z1) = {v ∈ IEnw(z1) : ‖v‖ ≤ e(−2m−2)`}
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Since ‖w̄1‖ ≤ e(−2m−1)`, we conclude from (7.28) and (7.18), applied with
exp(w̄1)z̄ =: ẑ, that

(7.29)

f
(α)
Enw,δ′

(z1) ≤
∑

06=v∈Iint
Enw

(z1)

max(‖v‖, δ′)−α + eεt · (#Fnw)

≤
∑

06=w∈Iint
ẑ

max(‖a`urw‖, δ′)−α + eεt · (#Fnw)

≤ Ce−3$`/4Υ + eεt · (#Fnw),

where C depends on X, see also (7.22) for the first inequality.
Let now z = h exp(w)ynw ∈ Enw be arbitrary. Then there exists some

z1 = a`ur exp(w̄1)z̄ so that z1 = h exp(w)ynw, and we have

f
(α)
Enw,δ′

(z) ≤ 2f
(α)
Enw,δ′

(z1).

This and (7.29) complete the proof of the first claim, assuming ` is large

enough so that 2Ce−3$`/4 ≤ e−$`/2.
The second claim in the lemma follows from (7.19) and (7.11) as we now

explicate. Fix some i, and suppose that C1 6∈ Bi. Then for all C2 ∈ C and
all j ∈ JC2 , we have

#{w ∈ C1 ∩ F ′i,r : exp(w)yi,r 6∈ (QH` )−1.a`ur exp(IC2,j)z̄C2,j

}
≥ 10−6 · (#(C1 ∩ F ′i,r)).

Note now that (a`ur)
−1(QH` )−1.a`ur ⊂ P and

mH((a`ur)
−1(QH` )−1.a`ur � mH(P).

Moreover, note that the multiplicity of the covering {Ej,Cr } is ≤ K. We thus
conclude that the contribution of each C1 6∈ Bi to µE(E \ Er) is

� (#(C1 ∩ F ′i,r))mH(P).

Therefore, the total number of w ∈
⋃
i F
′
i,r that we have omitted is �

β?(#
⋃
i F
′
i,r), which implies the claim. �

8. The main proposition

We begin by fixing several parameters that will remain constant through-
out this section. Roughly speaking, κ is a small parameter representing the
incremental improvements in dimension. These improvements are achieved
by inductively applying Lemma 7.2 with various choices of α. The constants
d· indicate the number of times the lemma is applied for a fixed α, while
pfn represents the number of times α is adjusted in increments of κ. See the
discussion proceeding the statement of the theorem for more details.

Let 0 < κ < 1 be a small parameter — in our application, we will let
κ = ( κ5

40m)2, see Proposition 5.1 and Lemma 5.2. Set

pfn := d 4m2+4m
κ(2m+1)e − 10,
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and let κfn = 99
100 × (3

4)pfn and ε = κ · κfn.
Let t > 0 be a large parameter, and let D ≥ D1, see Proposition 4.6. Let

d0 = d (10D−9)(4m2+2m)
ε e,

d1 = d 495
200εe and dp+1 = d3

4dpe for 0 < p < pfn

Set dfn =
∑pfn

p=0 dp, and let

ε′ = 10−6m−1d−2
fn , β = e−ε

′t, and η2 = β.

Put ` = εt
10m . Let νd denote the probability measure on H defined by∫

ϕdνd =

∫ 1

0
ϕ(adur) dr,

for any ϕ ∈ Cc(H), and put

µt,`,n = ν` ∗ · · · ∗ ν` ∗ νt

where ν` appears n ≥ 0 times in the above expression.
The following proposition, whose proof is based on Lemma 7.2, is a crucial

tool in our argument.

8.1. Proposition. Let x1 ∈ X, and assume that Proposition 4.6(2) does
not hold for x1 with parameters D ≥ D1 and t > 0. Let r1 ∈ I(x1) and put
x2 = am1tur1x1, see Proposition 4.6(1).

There exists a collection Ξ = {Ei : 1 ≤ i ≤ N} of sets

Ei = E.{exp(w)yi : w ∈ Fi} ⊂ Xη

satisfying that for all 1 ≤ i ≤ N , we have Fi ⊂ Br(0, β) and

e0.98t ≤ #Fi ≤ et

so that both of the following hold

(1) For all 1 ≤ i ≤ N and all z ∈ (E \ ∂10βE).{exp(w)yi : w ∈ Fi},

(8.1) f
(2m+1−20κ)
Ei,δ (z) ≤ e2εt · (#Fi) where δ = e−κfnt.

(2) For all τ ≤ `dfn, all |s| ≤ 2, and for every ϕ ∈ C∞c (X),∫
ϕ(aτushx2) dµt,`,dfn

(h) =
∑
i

ci

∫
ϕ(aτusz) dµEi(z) +O(Lip(ϕ)βκ7)

where

• 0 ≤ ci ≤ 1 and
∑

i ci = 1−O(βκ7),
• µEi is an admissible measure on Ei with parameter depending only on D

and X, see §D.3,
• Lip(ϕ) is the Lipschitz norm of ϕ, and
• κ7 and the implied constants depend on X.
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The reader may compare this proposition to [LMW22, Prop. 10.1]. Indeed
in [LMW22, Prop. 10.1], we established similar bound concerning modified
Margulis functions, but for α < 1 (in the setting considered in [LMW22],

dim r+ = 1) and localized to balls of size e−
√
εt. Requiring this localized

estimate, albeit for smaller α, was responsible for different stopping times
— in [LMW22, Prop. 10.1] we could not specify the stopping time, only
guarantee that there will be at least one good stopping time n in an interval
of length O(1/

√
ε). This resulted in a less transparent endgame analysis.

The estimate established in (8.1) concerns α dimensional energy for α very
close to 2m+ 1 = dim r. This is made possible thanks to stronger projection
theorems, see Theorem 6.1.

Proof of Proposition 8.1. The proof of Proposition 8.1 relies on Lemma
7.2. Indeed with Lemma 7.2 in place, the general strategy is straightforward:
Let us put ρ = τ + t + dfn`. Using results in [LMW22, §6–8] and the fact
that x2 satisfies conditions in part (1) of Proposition 4.6, we can write∫

ϕ(aρ−tushx2) dµt,`,0(h) =
∑
i

ci

∫
ϕ(aτusz) dµEi(z) +O(Lip(ϕ)β?)

where the decomposition is similar to the one claimed in the proposition,
but with β4m+5et ≤ #Fi ≤ et, and where we only have the initial estimate

f
(α)
Ei,0(z) ≤ eDt for all 0 < α ≤ 1.

Then we apply Lemma 7.2 with α0 = 1
2m+1 (hence $ = α0 and δ′ = 0)

for d0 = d (10D−9)(4m2+2m)
ε e many steps. For every |s| ≤ 2, thus∫

ϕ(aρ−t−d0`ushx2) dµt,`,d1(h) =
∑
i

ci

∫
ϕ(aτ ′usz) dµE ′i(z) +O(Lip(ϕ)β?)

where the decomposition is as in the proposition, but now we have e0.99t ≤
#F ′i ≤ et for all i, and the improved estimate

f
(α0)
E ′i ,0

(z) ≤ 2eεt · (#F ′i ).

In the next phase, we improve the above estimate for f (α0) inductively to
obtain similar estimate for αp = α0 + pκ for all 0 ≤ p < pfn: Assume

f
(αp)
Ei,δp(z) ≤ 2eεt · (#Fi),

where δ1 = e−0.99t and δp+1 = δ
3/4
p for all p ≥ 1. We conclude that

f
(αp+1)
Ei,δp (z) ≤ 2eεt · δ−κp · (#Fi)

We now apply Lemma 7.2 with α = αp+1 for dp+1 many steps. Since α0 ≤
αp+1 ≤ 2m+1−10κm we have $ ≥ 9κm, and each application of Lemma 7.2

improves the bound on f by e−4κm` while the scale δ is replaced by δ′ = em`δ.
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Applying this, pfn − 1 many times, we conclude that∫
ϕ(aτushx2) dµt,`,dfn

(h) =
∑
i

ci

∫
ϕ(aτusz) dµEi(z) +O(Lip(ϕ)β?)

where the decomposition is as in the proposition, and

f
(αpfn )

Ei,δpfn
(z) ≤ 2eεt · (#Fi),

and the proposition follows.
Let us now turn to the more detailed argument.

Smearing and Folner property. The following equality which is a simple
consequence of commutation relations, will be used throughout the proof

(8.2) at1ur1at2ur2 = at1+t2ur2+e−t2r1

Let λ denote the uniform measure on Bs,H
β+100β2 , where as before for all

δ > 0, we put

Bs,Hδ = {u−s : |s| ≤ δ} · {aτ : |τ | ≤ δ}
In view of [LMW22, Lemma 7.4], for all x ∈ X and all ϕ ∈ C∞c (X),

(8.3)

∫
ϕ(hx) d(νt1+t2)(h) =

∫
ϕ(hx) d(λ ∗ νt2 ∗ λ ∗ νt1)(h) +O(β Lip(ϕ))

so long as e−ti ≤ β2.

Closing lemma and initial separation. Recall that x2 = am1tur1x1

where r1 ∈ I(x1). In particular, the map h 7→ hx2 is injective over Bs,Hβ · at ·
U1, see part (1) in Proposition 4.6. Put

ρ = τ + dfn`+ t = τ +
∑pfn

0 dp`+ t.

Recall also that µt,`,dfn
= ν

(dfn)
` ∗νt. An inductive application of (8.2) implies

that for any h0 ∈ supp(νdfn
` ) and any |s| ≤ 2, there exists |s′| ≤ 2 so that

aτush0 = aρ−tus′ . Thus

(8.4)

∫
ϕ(aτushx2) dµt,`,dfn

(h) =

∫ ∫ 1

0
ϕ(aτush0aturx2) dν

(dfn)
` (h0) dr

=

∫ ∫ 1

0
ϕ(aρ−tus′aturx2) dν

(dfn)
` (h0) dr

Now applying [LMW22, Lemma 8.4], see also Lemma D.4, with x2 we get
the following: for every ϕ ∈ C∞c (X), and all |s′| ≤ 2,

(8.5)
∣∣∣∫ 1

0
ϕ(aρ−tus′aturx2) dr −

∑
i

ci

∫
ϕ(aρ−tus′z) dµEi(z)

∣∣∣� Lip(ϕ)β?

where
∑
ci = 1−O(β?) and the implied constants depend only on X.
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Combining (8.4) and (8.5), and using aτush0 = aρ−tus′ , we have

(8.6)

∫
ϕ(aτushx2) dµt,`,dfn

(h) =∑
i

ci

∫
ϕ(aτushz) dµEi(z) dν

(dfn)
` (h) +O(Lip(ϕ)β?)

Moreover, Ei = E.{exp(w)yi : w ∈ Fi} where yi ∈ Xη and Ei ⊂ Xη. Since
dim r = 2m + 1, [LMW22, Lemma 8.1 and 8.2], see also Lemma D.2 and
recall that m = 1 in [LMW22], we have

(8.7) β4m+7et ≤ #Fi ≤ et

— in the references above, the upper bound β−3et is asserted, further sub-
dividing Fi, we may replace that by et as it is claimed here.

Furthermore, in view of the definition of Ei, see [LMW22, Lemma 8.4],
and the fact that x2 satisfies properties in part (1) of Proposition 4.6,

(8.8) f
(α)
Ei,0(z) ≤ eDt for all 0 < α ≤ 1

for all i and all z ∈ Ei.

Applying Lemma 7.2 with α = 1
2m+1 . The following lemma will be used

to carry out the second phase in the above outline. Before stating the lemma,
let us recall that ` = εt

10m , and

d0 = d (10D−9)(4m2+2m)
ε e.

Also recall that we set ε′ = 10−6m−1d−2
fn , β = e−ε

′t, and η2 = β.

8.2. Lemma. Fix some Ei as in (8.6) and some 0 ≤ k ≤ d0. For every
ϕ ∈ Cc(X) and all |s| ≤ 2 we have∫

ϕ(aτushz) dµEi(z) dν
(dfn)
` (h) =∑

j

cij

∫ ∫
ϕ(aτushz) dµEij (z) dν

(dfn−k)
` (h) +O(Lip(ϕ)β?)

and all the following hold

(1) 0 ≤ cij ≤ 1 and
∑
cij = 1 +O(β?).

(2) Eij = E.{exp(w)yij : w ∈ Fij} ⊂ Xη and

β(4k+4)m+6k+7et ≤ #Fij ≤ et for all j.

(3) Let α0 = 1
2m+1 . For all j and all z ∈ Eij

f
(α0)
Eij ,0(z) ≤ eDt−

kα0
2
` + eεt · (#Fij).
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Proof. We prove the lemma using induction on k. The base case, k = 0,
follows from (8.8) applied with α = α0. That is

(8.9) f
(α0)
Ei,0 (z) ≤ eDt for all z ∈ Ei.

Assume now the statement for some 0 ≤ k < d0:∫
ϕ(aτushz) dµEi(z) dν

(dfn)
` (h) =∑

j

cij

∫ ∫
ϕ(aτushz) dµEij (s) dν

(dfn−k)
` (h) +O(Lip(ϕ)β?)

and properties (1), (2), and (3) above hold.
To obtain desired assertions for k + 1, first note that (8.3) implies

(8.10)

∫ ∫
ϕ(aτushz) dµEij (s) dν

(dfn−k)
` (h) =∫ ∫ 1

0

∫
ϕ(aτusha`urz) dµEijdr dν

(dfn−k−1)
` (h) +O(β? Lip(ϕ))

Note again that for every h ∈ supp(ν
(dfn−k−1)
` ) we have

aτush = aτ+(dfn−k−1)`us′ , for some |s′| ≤ 2.

Thus, for all |s| ≤ 2 and all h ∈ supp(ν
(dfn−k−1)
` ), we apply Lemma 7.2 with

E = Eij for α = α0 and d = (dfn − k − 1)` and s′ as above, and conclude

(8.11)

∫ 1

0

∫
ϕ(aτusha`urz) dµEij (z) dr =∑

ς

c′ς

∫
ϕ(aτushz) dµE ′ς (z) +O(Lip(ϕ)β?),

where 0 ≤ c′ς ≤ 1,
∑
c′ς = 1 +O(β?), and both of the following hold

• For all ς, F ′ς ⊂ Br(0, β) and E ′ς = E.{exp(w)y′ς : w ∈ F ′ς} ⊂ Xη, moreover

(8.12) β4m+6 · (#Fij) ≤ #F ′ς ≤ #Fij .

• For all ς and all z ∈ E.{exp(w)yi : w ∈ F ′ς}, we have

f
(α0)
E ′ς ,0

(z) ≤ e−α0`/2 ·
(
e(Dt− kα0

2
`) + eεt · (#Fij)

)
+ eεt · (#F ′ς)

where we used δ0 = 0 and $ = α0 when α = α0.

Using (2) in the inductive hypothesis (8.12), we have

β(4(k+1)+4)m+6(k+1)+7et = β4m+6β(4k+4)m+6k+7et

≤ β4m+6 · (#Fij) ≤ #F ′ς ≤ #Fij ≤ et.

Moreover, recall that ε′ = 10−6m−1d−2
fin and β = e−ε

′t. Thus e−α0`/2β−4m−7 ≤
1, and using (8.20) and #Fij ≤ et, we conclude

e−α0`/2(eεt · (#Fij)) ≤ e−α0`/2β−4m−6eεt · (#F ′ς) ≤ eεt · (#F ′ς),
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Thus one obtains

e−α0`/2 ·
(
e(Dt− kα0

2
`) + eεt ·(#Fij)

)
≤ e−α0`/2eDt−

kα0
2
` + eεt ·(#F ′ς)

≤ eDt−
(k+1)α0

2
` + eεt ·(#F ′ς).

Therefore, integrating (8.11) over h ∈ supp(ν
(dfn−k−1)
` ), the proof of the

inductive step and of the lemma is complete. �

Lemma 8.2 and initial dimension. Recall now that ε is small, ` = εt
10m ,

d0 = d (10D−9)(4m2+2m)
ε e, ε′ = 10−6m−1d−2

fn , and β = e−ε
′t. Thus

e0.99t ≤ β(4d1+4)m+6d1+7et ≤ #Fij ≤ et, and

eDt−
d0α0

2
` ≤ e0.9t, where α0 = 1

2m+1 .

Applying Lemma 8.2 with k = d0, hence, we conclude

(8.13)

∫
ϕ(aτushz) dµEi(z) dν

(dfn)
` (h) =∑

j

cij

∫ ∫
ϕ(aτushz) dµEij (z) dν

(d1)
` (h) +O(Lip(ϕ)β?)

where Ei is any set appearing in (8.6), and all the following are satisfied

(D-1) 0 ≤ cij ≤ 1 and
∑
cij = 1 +O(β?).

(D-2) Eij = E.{exp(w)yij : w ∈ Fij} ⊂ Xη and

e0.99t ≤ #Fij ≤ et for all j.

(D-3) For all j and all z ∈ Eij

(8.14) f
(α0)
Eij ,δ(z) ≤ 2eεt · (#Fij).

Lemma 7.2 and incremental dimension improvement. Recall that

pfn = d 4m2+4m
κ(2m+1)e − 10 and ` = εt

10m . We let δ1 = e−0.99t and let d1 = 495
200ε .

For all 0 < p ≤ pfn, let

δp+1 = δ3/4
p and dp+1 = 3

4dp.

Also, for all 0 < p ≤ pfn, and all 0 < k ≤ dp, let

δp,0 = δp and δp,k = em`δp,k−1;

note that δp,dp = δp+1, and

(8.15) δ−κp e−4mκdp` ≤ 1

Finally, we let αp = α0 + pκ, for every 0 ≤ p ≤ pfn, and let $p be $
defined as in (6.2) with α = αp. In particular,

(8.16) $p ≥ 9mκ for all 0 < p ≤ pfn.

The following lemma, which is an analogue of Lemma 8.2, will be used to
inductively improve the dimension from 1

2m+1 to 2m + 1− 10mκ.
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8.3. Lemma. Fix some Ei as in (8.6). Let 0 < p < pfn and let 0 ≤ k ≤ dp+1.
For every ϕ ∈ Cc(X) and all |s| ≤ 2, we have∫

ϕ(aτushz) dµEi(z) dν
(dfn)
` (h) =∑

j

cij

∫ ∫
ϕ(aτushz) dµEij (z) dν

(d′(p)−k)
` (h) +O(Lip(ϕ)β?)

where d′(p) = dfn − d0 − d(p), d(p) =
∑p−1

q=1 dq for p > 1, and d(1) = 0.
Moreover, all the following hold

(1) 0 ≤ cij ≤ 1 and
∑
cij = 1 +O(β?).

(2) Eij = E.{exp(w)yij : w ∈ Fij} ⊂ Xη and

β(4m+6)(d(p)+k)e0.99t ≤ #Fij ≤ et for all j.

(3) For all j and all z ∈ Eij, we have

f
(αp)
Eij ,δp,k(z) ≤ 2eεt · (δ−κp e−4mκk` + 1) · (#Fij)

Proof. The proof is similar to the proof of Lemma 8.2, and is completed by
induction on p and k. Indeed the case p = 1 and k = 0 follows from (8.13)
and properties (D-1), (D-2), (D-3). Indeed, the assertions in (1) and (2) in
this lemma (D-1) and (D-2) are the same. To see (3) in the lemma follows
from (D-3), note that (8.14) implies

f
(α0)
Eij ,0(z) ≤ 2eεt · (#Fij)

Recall that α1 = α0 + κ and δ1 = δ1,0 = e−0.99t. Thus

(8.17)
f

(α1)
Eij ,δ1,0(z) ≤ δ−κ1

∑
max(‖w‖, δ1)−α0

≤ 2eεt · δ−κ1 · (#Fij)

as it is claimed in part (3) for p = 1 and k = 0.
Fix some p and assume now the statement for some 0 ≤ k < dp+1:∫
ϕ(aτushz) dµEi(z) dν

(dfn)
` (h) =∑

j

cij

∫ ∫
ϕ(aτushz) dµEij (z) dν

(d′(p)−k)
` (h) +O(Lip(ϕ)β?)

and properties (1), (2), and (3) above hold.
To obtain desired assertions for k + 1, first note that (8.3) implies

(8.18)

∫ ∫
ϕ(aτushz) dµEij (s) dν

(d′(p)−k)
` (h) =∫ ∫ 1

0

∫
ϕ(aτusha`urz) dµEijdr dν

(d′(p)−k−1)
` (h) +O(β? Lip(ϕ))
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For every h ∈ supp
(
ν

(d′(p)−k)
`

)
we have

aτush = aτ+(d′(p)−k−1)`us′ , for some |s′| ≤ 2.

Thus, for all |s| ≤ 2 and h ∈ supp
(
ν

(d′(p)−k−1)
`

)
, Lemma 7.2 applied with

E = Eij for α = αp and d = (d′(p)− k − 1)` and s′ as above, gives

(8.19)

∫ 1

0

∫
ϕ(aτusha`urz) dµEij (z) dr =∑

ς

c′ς

∫
ϕ(aτushz) dµE ′ς (z) +O(Lip(ϕ)β?),

where 0 ≤ c′ς ≤ 1,
∑
c′ς = 1 +O(β?), and both of the following hold

• For all ς, F ′ς ⊂ Br(0, β) and E ′ς = E.{exp(w)y′ς : w ∈ F ′ς} ⊂ Xη, moreover

(8.20) β4m+6 · (#Fij) ≤ #F ′ς ≤ #Fij .

• For all ς and all z ∈ E.{exp(w)yi : w ∈ F ′ς}, we have

f
(αp)
E ′ς ,δp,k+1

(z) ≤ e−$p`/2 ·
(
2eεt · (δ−κp e−4mκk` + 1) · (#Fij)

)
+ eεt · (#F ′ς)

where, δp,k+1 = em`δp,k.

Using (2) in the inductive hypothesis (8.20), we have

β(4m+6)(d(p)+k+1)e0.99t = β4m+6β(4m+6)(d(p)+k)e0.99t

≤ β4m+6 · (#Fij) ≤ #F ′ς ≤ #Fij ≤ et.

Moreover, recall from (8.16) that α′p > 9mκ, also recall that β = e−ε
′t where

ε′ = 10−6m−1d−2
fin . Using (8.20), thus

e−$p`/2 ·
(
2eεt · (δ−κp e−4mκk` + 1) · (#Fij)

)
≤ e−$p`/2

(
2eεt · (δ−κp e−4mκk` + 1) · β−4m−6 · (#F ′ς)

)
≤ δ−κp e−4mκ(k+1)` · (#F ′ς)

This and the above estimates imply that

f
(αp)
E ′ς ,δp,k+1

(z) ≤ (δ−κp e−4mκ(k+1)` + eεt) · (#F ′ς)

where, δp,k+1 = em`δp,k.

Therefore, integrating (8.19) over h ∈ supp(ν
(d′(p)−k−1)
` ), the proof of the

inductive step.
After dp steps, thus, one obtains

f
(αp)
E ′ς ,δp,dp

(z) ≤ (δ−κp e−4mκdp` + eεt) · (#F ′ς).

Since δp,dp = δp+1 and δ−κp e−4mκdp` ≤ 1, see (8.15), we conclude that

(8.21) f
(αp)
E ′ς ,δp+1

(z) ≤ 2eεt · (#F ′ς).
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Using αp+1 = αp + κ, the above yields,

f
(αp+1)
E ′ς ,δp+1

(z) ≤ 2eεt · δ−κp+1 · (#F
′
ς).

Therefore, we may repeat the above for 0 ≤ k < dp+1.
This completes the proof. �

Conclusion of the proof of Proposition 8.1. Recall that

κfn = 99
100 × (3

4)pfn and ε = κ · κfn.

Also note that it follows from δp,dp = δ
3/4
p = δp+1 and δ1 = e−0.99t that

δpfn,dpfn
= δ3/4

pfn
= e−κfnt

Applying Lemma 8.2 with αpfn
and k = dpfn

, hence, we conclude

(8.22)

∫
ϕ(aτushz) dµEi(z) dν

(dfn)
` (h) =∑

j

cij

∫ ∫
ϕ(aτushz) dµEij (z) +O(Lip(ϕ)β?)

where Ei is any set appearing in (8.6), and all the following are satisfied

(1) 0 ≤ cij ≤ 1 and
∑
cij = 1 +O(β?).

(2) Eij = E.{exp(w)yij : w ∈ Fij} ⊂ Xη and

e0.98t ≤ #Fij ≤ et for all j,

where we used e0.98t ≤ β(4m+6)d(pfn)e0.99t ≤ #Fij ≤ et.
(3) For all j and all z ∈ Eij

f
(2m+1−20κ)
Eij ,δ (z) ≤ 2eεt · (#Fij) where δ = e−κfnt,

see (8.21) and note that αpfn
≥ 2m + 1− 20κ

In view of (1), (2), and (3), Proposition 8.1 follows from (8.22) and (8.6). �

9. From large dimension to equidistribution

The main result of this section is Proposition 9.1 which will be used in
the final step of our proof of Theorem 1.1.

Let 0 < κ5 ≤ 1 be the constant given by Proposition 5.1 — this constant
is closely related to the spectral gap (or mixing rate) in G/Γ, c.f. (5.1).

Throughout this section, let κ = ( κ5
40m)2 and pfn = d 4m2+4m

κ(2m+1)e − 10. Let

κfn = 99
100 × (3

4)pfn and ε = κ · κfn

We also recall that β = e−ε
′t and η2 = β where 0 < ε′ < 10−6ε4. Let

α = 2m + 1− 20κ.
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9.1. Proposition. The following holds for all large enough t. Let F ⊂
Br(0, β) be a finite set with #F ≥ e0.9t. Let

E = E.{exp(w)y : w ∈ F} ⊂ Xη

be equipped with an admissible measure µE , see §D.3. Assume further that
the following is satisfied: For all z = h exp(w)y with h ∈ E \ ∂10βE,

(9.1) f
(α)
E,δ0(e, z) ≤ 2eεt · (#F ) where δ0 = e−κfnt.

Let τ be a parameter in the range κfnt
8m ≤ τ ≤

κfnt
4m . Then∣∣∣ ∫ 1

0

∫
ϕ(aτurz) dµE(z) dr −

∫
ϕdmX

∣∣∣� S(ϕ)β?

for all ϕ ∈ C∞c (X).

Proof. The proof of Proposition 9.1, which will be completed in a few steps,
is based on Lemma 5.2, and in turn on Proposition 5.1.

Folner property. Let τ be as in the statement, and write τ = `1+`2 where

(9.2) `2 = τ/(1 + κ5) and `1 = κ5`2;

In particular, 4m`2 ≤ 4mτ ≤ κfnt = | log δ0| and `2 ≥ τ/2 ≥ | log η|/κ5,
where the parameter η is fixed above, see Lemma 5.2 for these choices.

For any ϕ ∈ C∞c (X), we have

(9.3)

∫ 1

0

∫
ϕ(aτurz) dµE(z) dr =∫ 1

0

∫ 1

0

∫
ϕ(a`1ur1a`2ur2z) dµE(z) dr2 dr1 +O(e−`2 Lip(ϕ))

where the implied constant depends on X.
In view of (9.3), the proof of Proposition 9.1 is reduced to investigating

the following ∫ 1

0

∫ 1

0

∫
ϕ(a`1ur1a`2ur2z) dµE(z) dr2 dr1.

9.2. Conditional measures of µE . Recall that E = E.{exp(w)y : w ∈ F}.
Fix some v ∈ F and let z = exp(v)y. Then

(9.4)
h exp(w)y = h exp(w) exp(−v) exp(v)y

= hhw exp(vw)z

where ‖hw − I‖ � β2 and 1
2‖w − v‖ ≤ ‖vw‖ ≤ 2‖w − v‖, see Lemma 3.2.

For our application here, it will be more convenient to recenter E from y
to z. To that end, note that w 7→ vw, see (9.4), is a one-to-one map. Let

Fv = {vw : w ∈ F}, and let Ê = E \ ∂20βE. Set

Ê := Ê.{exp(w)z : w ∈ Fv}.
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Then by (9.4) and since ‖hw − I‖ � β2, we have Ê ⊂ E ; moreover,

µ̄E(E \ Ê)� β.

Thus it suffices to show the claim in the lemma with µ̄E replaced by

µ̂ :=
1

µ̄E(Ê)
µ̄E |Ê .

For later reference, let us also record that ‖hw− I‖ � β2 and (9.4) imply
that indeed

(9.5) Ê ⊂ E ′ := E′.{exp(w)y : w ∈ F}

where E′ = E \ ∂10βE. In particular, (9.1) holds for all z ∈ Ê .
Recall that µ̂ is the probability measure proportional to

∑
w µ̂w where

dµ̂w = ρ̂w dmH and ρ̂w � 1. As it was mentioned earlier the proof of
Proposition 9.1 relies on Proposition 5.1. To set the stage for the latter to be
applicable, we will use Fubini’s theorem to change the order of disintegration
of µ̂ as follows. Let z ∈ Ê , then

z = h exp(v)z = exp(Ad(h)v)hz ∈ Ê .

Moreover, Ad(h)v ∈ Br(0, 8η̄b). Since η̄/2 ≤ inj(z′) ≤ 2η̄ for every z′ ∈ E ,
we conclude that

Ad(h)v ∈ IE(hz).
Let π : Ê → E.z denote the projection z′ = h exp(w)z 7→ hz. Using Fubini’s
theorem, we have

µ̂ =

∫
µ̂h dπ∗µ̂(h.z),

where µ̂h denotes the conditional measure of µ̂ for the factor map π.
Note that µ̂h is supported on IE(hz). In view of the above discussion, dπ∗µ̂

is proportional to ρ̂dmH restricted to the support of π∗µ̂ where 1� ρ̂� 1,
moreover, for every w ∈ supp(µ̂h),

(9.6) µ̂h(w) � (#F )−1

where the implied constant depends on X.
Now, using Fubini’s theorem, we have∫ 1

0

∫ 1

0

∫
ϕ(a`1ur1a`2ur2z) dµ̂(z) dr2 dr1 =∫
Ê.z

∫ 1

0

∫ 1

0

∫
ϕ(a`1ur1a`2ur2 exp(w)hz) dµ̂h(w) dr2 dr1 dπ∗µ̂(h.z).

Fix some h ∈ Ê = E \ ∂20bE. The proof of the proposition is thus reduced
to investigating the following

(9.7)

∫ 1

0

∫ 1

0

∫
ϕ(a`1ur1a`2ur2 exp(w)hz) dµ̂h(w) dr2 dr1.
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Discretized dimension of µ̂h and Lemma 5.2. Set

F h := supp(µ̂h) = {Ad(h)w : w ∈ F}.
Note that (9.5) implies

exp(Ad(h)w)hz = h exp(w)z ∈ Êi ⊂ E ′

Moreover, (9.1) and Lemma 7.1 imply that for every w ∈ F h,

G(α)

F h,δ
(w)� 2eεt · (#F ),

where G is defined as in §6. This and (9.6) yield

(9.8) µ̂h(B(w, δ))� 2eεtδα for all δ ≥ δ0

where the implied constant depends only on X.
Therefore, Lemma 5.2 applies with µ = µ̂h, % = β, δ0 = e−κfnt,

Υ = 2δ−20κ
0 eεt = 2e20κκfnteεt,

and `1 and `2 as above, see (9.2). By the conclusion of that lemma, thus,

(9.9)

∫ 1

0

∫ 1

0

∫
ϕ(a`1ur1a`2ur2 exp(w)hz) dµ̂h(w) dr2 dr1 =∫

ϕdmX +O
(
S(ϕ)(β? + η + Υ1/2β−3/2e−κ5`1)

)
Recall now that τ ≥ κfnt

8m and `1 = κ5`2 = κ5τ
1+κ5

. Therefore, `1 ≥ κfnκ5t
10m , and

Υ1/2β−3/2e−κ5`1 ≤ e10κfnκteεte−
κfnκ5

2

10m
t ≤ e−

κfnκ5
2

20m
t,

where in the second to last inequality we used 2eεt/2β−3/2 ≤ eεt, and in last
inequality, we used κ = ( κ5

40m)2 and ε = κ · κfn.
In view of (9.9), thus, the proof of Proposition 9.1 is complete. �

10. Proof of Theorem 1.1

The proof will be completed in some steps and is based on various propo-
sitions which were discussed so far.

Fixing the parameters. Let 0 < κ5 ≤ 1 be the constant given by Propo-

sition 5.1. Let κ = ( κ5
40m)2 and pfn = d 4m2+4m

κ(2m+1)e − 10. Put

(10.1) κfn = 99
100 × (3

4)pfn and ε = κ · κfn

Let D = D0D1 + 2D1 where D0 is as in Proposition 4.4 and D1 is as in
Proposition 4.6; we will always assume D1, D0 ≥ 10m. We will show the
claim holds with

(10.2) A1 = 2D0(2m + 1) + m0 + m1 + 4,

where m0 is as in Proposition 4.2 and m1 is as in Proposition 4.6.
Let us also assume (as we may) that

(10.3) R ≥ max{(10C3)3 inj(x0)−m0 , eC3 , es0 , C4},
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see Proposition 4.2 and Proposition 4.4.
Let T ≥ RA1 , and suppose that Theorem 1.1(2) does not hold. That is,

for every x ∈ X with Hx periodic and vol(Hx) ≤ R,

(10.4) dX(x, x0) > RA1(log T )A1T−m ≥ (logS)D0S−m

where S := R−A1T .

Folner property and random walks. We put dfn =
∑pfn

p=0 dp, where

d0 = d (10D−9)(4m2+2m)
ε e,

d1 = d 495
200εe and dp+1 = d3

4dpe for 0 < p < pfn

Let t = 1
D1

logR, and let ` = εt
10m . Then

(10.5) dfn` ≤ ( (10D−9)(2m+1)
5 + 99

100m)t+ εt

We now write log T = t3 + t2 + t1 + t0 where

(10.6) t1 = m1t, t2 = t+ dfn`, and t3 = κfn
8m t

The choice of t2 is motivated by Proposition 8.1, the choices of t1 and t3 are
motivated by Proposition 4.6 and Proposition 9.1, respectively. Thus

t0 = log T − (t1 + t2 + t3)

≥ log T − (m1 + 1 + ( (10D−9)(2m+1)
5 + 99

100m) + ε+ κfn
8m )t

≥ log T − m1+2D(2m+1)+2
D1

logR

we used (10.6) and (10.5) in the second line, and used t = 1
D1

logR in the

third line. Using this and (10.2), we conclude that

(10.7)
t0 ≥ log T −A1 logR+ (m0 + 2) logR

≥ logS + m0| log inj(x0)|+ 2 logR.

we used R ≥ inj(x0)−m0 and logS = log T −A1 logR in the last inequality.
Since aρ1uraρ2 = aρ1+ρ2ue−ρ2r, for any ϕ ∈ C∞c (X), we have

(10.8)

∫ 1

0
ϕ(alog Turx0) dr = O(‖ϕ‖∞e−t) +∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
ϕ(at3ur3at2ur2at1ur1at0ur0x0) dr3 dr2 dr1 dr0

where the implied constant is absolute and we used t0, t1, t2 ≥ t.

Finally, recall that 0 < ε′ < 10−6ε4 and we put β = e−ε
′t and η2 = β.
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Improving the Diophantine condition. Apply Proposition 4.4 with S =
R−A1T , then for all

s ≥ max{logS,m0| log inj(x0)|}+ s0,

we have the following

(10.9)
∣∣∣{r ∈ [0, 1] :

asurx0 6∈ Xη or ∃x with vol(Hx) ≤ R
so that dX(x, asurx0) ≤ R−D0−1

}∣∣∣� η1/m0 ,

where we also used η1/m0 ≥ R−1 and R ≥ C4.
Let J0 ⊂ [0, 1] be the set of those r0 ∈ [0, 1] so that at0ur0x0 ∈ Xη and

dX(x, at0ur0x0) > R−D0−1 = e−D1(D0+1)t

for all x with vol(Hx) ≤ R = eD1t. Then since by (10.7) and (10.3) we have

t0 ≥ logS + m0| log inj(x0)|+ 2 logR ≥ max(logS,m0| log inj(x0)|) + s0,

the assertion in (10.9) implies that |[0, 1] \ J0| � η1/m0 . In consequence,

(10.10)

∫ 1

0
ϕ(alog Turx0) dr = O(‖ϕ‖∞η1/m0) +∫

J0

∫ 1

0

∫ 1

0

∫ 1

0
ϕ(at3ur3at2ur2at1ur1x(r0)) dr3 dr2 dr1 dr0

where x(r0) = at0ur0x0 and the implied constant depends on X.

Applying the closing lemma. For every r0 ∈ J0, we now apply Propo-
sition 4.6 with x(r0), D = D0D1 + 2D1 and the parameter t. For any such
r0, we have

dX(x, x(r0)) > e−D1(D0+1)t = e(−D+D1)t

for all x with vol(Hx) ≤ eD1t. Thus Proposition 4.6(1) holds. Let

J1(r0) = I(x(r0)) = I(at0ur0x0)

Then

(10.11)

∫ 1

0
ϕ(alog Turx0) dr = O(‖ϕ‖∞η

1
2m0 ) +∫

J0

∫
J1(r0)

∫ 1

0

∫ 1

0
ϕ(at3ur3at2ur2x(r0, r1)) dr3 dr2 dr1 dr0

where x(r0, r1) = at1ur1at0ur0x0 and the implied constant is absolute.
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Improving the dimension phase. Fix some r0 ∈ J0, and let r1 ∈ J(r0).
Put x1 = x(r0, r1). Recall that

µt,`,dfn
= ν` ∗ · · · ∗ ν` ∗ νt

where ν` appears dfn times in the above expression. Then

(10.12)

∫ 1

0

∫ 1

0
ϕ(at3ur3at2ur2x1) dr3 dr2 =∫ ∫ 1

0
ϕ(at3ur3hx1) dr3 dµt,`,dfn

(h) +O(Lip(ϕ)e−`),

where we used t2 = dfn` and (8.2), see also [LMW22, Lemma 7.4].
We now apply Proposition 8.1 with x1 and τ = t3 and s = r3. Then

(10.13)

∫
ϕ(at3ur3hx1) dµt,`,dfn

(h) =∑
i

ci

∫
ϕ(at3ur3z) dµEi(z) +O(Lip(ϕ)β?)

where 0 ≤ ci ≤ 1 and
∑

i ci = 1− O(β?) and the implied constants depend
on X. Moreover, for all i we have

Ei = E.{exp(w)yi : w ∈ Fi} ⊂ Xη

with Fi ⊂ Br(0, β), e0.98t ≤ #Fi ≤ et, and

(10.14) f
(α)
Ei,δ(z) ≤ e

2εt · (#Fi) where δ = e−κfnt and α = 2m + 1− 20κ

for all z ∈ (E \ ∂10βE).{exp(w)yi : w ∈ Fi}.

From large dimension to equidistribution. We now apply Proposi-
tion 9.1 with Ei (see (10.14) and recall that t3 = κfnt

8m ). Hence,

(10.15)
∣∣∣ ∫ 1

0

∫
ϕ(at3ur3z) dµEi(z) dr3 −

∫
ϕdmX

∣∣∣� S(ϕ)β?

where the implied constant depends on X.
Recall now that β = R−?. Thus, (10.15), (10.13), (10.12), (10.11), (10.10),

and (10.8), imply∣∣∣ ∫ 1

0
ϕ(alog Turx0) dr −

∫
ϕdmX

∣∣∣� S(ϕ)R−?,

where the implied constant depends on X. The proof is complete. �

11. Proof of Theorem 1.2

In this section, we use an argument analogous to [LMW22, §16] to estab-
lish Theorem 1.2. As in [LMW22, §16] and previously noted, the proof relies
on Theorem 1.1 and linearization techniques of Dani and Margulis, albeit
in their quantitative form, which were developed in [LMMS19].
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11.1. Lemma (cf. [LMW22], Lemma 16.1). There exist A5, A6, and C5

(depending on X) so that the following holds. Let S,M > 0, and 0 < η < 1/2
satisfy

S ≥MA5 and M ≥ C5η
−A5 .

Let x1 ∈ Xη, and suppose there exists Exc ⊂ {r ∈ [−S, S] : urx1 ∈ Xη} with

|Exc| > C5η
1/A6S

so that for every r ∈ Exc, there exists yr ∈ X with

vol(H.yr) ≤M and d(urx1, yr) ≤M−A5 .

Then one of the following holds

(1) There exists x ∈ G/Γ with vol(H.x) ≤ MA5, and for every r ∈ [−S, S]
there exists g ∈ G with ‖g‖ ≤MA5 so that

dX(usx1, gH.x) ≤MA5

(
|s− r|
S

)1/A6

for all s ∈ [−S, S].

(2) There is a parabolic subgroup P ⊂ G and some x ∈ G/Γ satisfying that
vol(Ru(P ).x) ≤MA5, and for every r ∈ [−S, S] there exists g ∈ G with
‖g‖ ≤MA5 so that

dX(usx1, gRu(P ).x) ≤MA5

(
|s− r|
S

)1/A6

for all s ∈ [−S, S].

In particular, X is not compact.

Arithmetic groups. Recall that G = G(R) where G is an absolutely
almost simple R-group, and H = H(R)◦ where H ' SL2 or PGL2 is an R-
subgroup of G and the connected component is considered as a Lie group.

Since Γ is an arithmetic lattice, there exists a semisimple simply connected
Q-almost simple Q-group G̃ ⊂ SLD, for some D, and an epimorphism

ρ : G̃(R)→ G(R) = G

of R-groups with compact kernel so that Γ is commensurable with ρ(G̃(Z)).

Moreover, since G̃ is simply connected, we can identify G̃(R) with G × G′
where G′ = ker(ρ) is compact.

We are allowed to choose the parameter M in the lemma to be large
depending on Γ, therefore, by passing to a finite index subgroup, we will
assume that Γ ⊂ Γ̃ := ρ(G̃(Z)), where G̃(Z) = G̃(R) ∩ SLD(Z).

Thus, every γ ∈ Γ lifts uniquely to (γ, σ(γ)) ∈ Γ̃, where σ is (a collection
of) Galois automorphisms. For every g ∈ G, put

ĝ = (g, 1) ∈ G×G′.

If g ∈ G is so that HgΓ is periodic, let ∆g = Γ ∩ g−1Hg and let ∆̃g =

ρ−1(∆g)∩ Γ̃. Let H̃g be the Zariski closure of ∆̃g. Then H̃g is a semisimple

Q-subgroup, and the restriction of ρ to H̃g surjects onto g−1Hg.
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Let H̃g = H̃g(R)◦, as a Lie group, then

ĝ−1ĤĝΓ̃ = H̃gΓ̃

Lie algebras and the adjoint representation. Recall that Lie(G) = g
and Lie(H) = h, which are considered as R-vector spaces. Let vH be a unit
vector on the line ∧3h. Then

NG(H) = {g ∈ G : gvH = vH}
which contains H as a subgroup of finite index.

Let g̃ = Lie(G̃(R)) and g̃Z := g̃ ∩ slN (Z). Then g̃ has a natural Q-

structure, and g̃Z is a G̃(Z)-stable lattice in g̃.
Assuming H has periodic orbits in X = G/Γ, we fix g1, . . . , gk so that

vol(HgiΓ) � 1 (the implied constant and k depend on Γ) and that every

H̃g is conjugate to some H̃i = H̃gi in G̃. Let

vi ∈ ∧dim H̃i(Lie(H̃i)) ⊂ ∧dim H̃i g̃

be a primitive integral vector. Then NG̃(H̃i) = {g ∈ G̃ : gvi = vi}, and

H̃i ⊂ NG̃(H̃i) has finite index. For all i,

vi = ci ·
(
(g−1
i vH) ∧ v′i

)
where v′i ∈ ∧Lie(G′) and |ci| � 1.

More generally, if L ⊂ G̃ is a Q-subgroup, we let vL be a primitive
integral vector on the line ∧dimLLie(L) ⊂ ∧dimLg̃ where L = L(R)◦. Recall
from [LMMS19] the definition of the height of L

(11.1) ht(L) = ‖vL‖.

Fix a right invariant metric on G̃ defined using the killing form and the
maximal compact subgroup K̃ = K × G′; this metric induces the right
invariant metric on G which we fixed on p. 4.

11.2. Lemma. Let HgΓ be a periodic orbit, and let H̃g be as above. Both
of the following properties hold:

ht(H̃g)
? � vol(H̃gΓ̃/Γ̃)� ht(H̃g)

?

‖g‖−?vol(HgΓ)� vol(H̃gΓ̃/Γ̃)� ‖g‖?vol(HgΓ)

Proof. We refer the reader to [LMW22, Lemma 16.2] and references there
for the proof of this lemma. �

We now proceed to prove Lemma 11.1. This proof follows an adaptation
of the argument presented in [LMW22, §16], which we recount here for the
reader’s convenience.

Proof of Lemma 11.1. Given our assumption in the lemma, periodic H or-
bits exist. Let H̃1, . . . , H̃k be defined as above. We introduce the constants
A5 and A6 which will be chosen as sufficiently large values to be explicated
later. Specifically, we will require that A5 > max(A,D2), A6 > D and
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C5 > max{kE1, C8} where A, D, and E1 are as in [LMMS19, Thm. 1.4]

applied with {ûr} ⊂ G̃, and D2 and C8 are as described in Lemma B.10.
Write x1 = g1Γ, where ‖g1‖ ≤ C8η

−D2 ≤ M , see Lemma B.10 and our
assumption in this lemma. For every r ∈ Exc, write yr = g(r)Γ where
‖g(r)‖ ≤M , indeed, for every such r there exists γr ∈ Γ so that

(11.2) urg1γr = ε(r)g(r) and ‖urg1γr‖ ≤M + 1,

where ‖ε(r)‖ �M−A5 .
For every 1 ≤ i ≤ k, let

Exci = {r ∈ Exc : H̃r := H̃g(r) is a conjugate of H̃i}.
There is some i so that |Exci| ≥ |Exc|/k. Replacing Exc by Exci, we assume

that H̃r is a conjugate of H̃i for all r ∈ Exc. Put H̃r = g̃(r)−1H̃ig̃(r). Then

g̃(r) = (g−1
i g(r), g̃′(r)) ∈ G×G′,

and vr :=
‖vH̃r‖

‖g̃(r)−1vi‖ g̃(r)−1vi = ±vH̃r . Moreover, we have

(11.3) vr = cr ·
(
(g(r)−1vH)∧ (g̃′(r)−1v′i)

)
where |cr| � ht(H̃g)M �M?

where we used Lemma 11.2 to conclude ht(H̃g)M �M?.
In view of (11.2), we have

(11.4) ûrĝ1(γr, σ(γr)).v
r = cr ·

(
(ε(r)vH) ∧

(
(σ(γr)g̃

′(r)−1)v′i
))
,

where ĝ = (g, 1) for all g ∈ G. Since G′ is compact, (11.4) implies

(11.5) ‖ûrĝ1(γr, σ(γr)).v
r‖ ≤M Â, for some Â.

Let z ∈ g be a vector so that ur = exp(rz). Using (11.4) and associativity
of the exterior algebra, we have

‖ẑ ∧
(
ûrĝ1(γr, σ(γr)).v

r
)
‖ = |cr|

∥∥(z ∧ ε(r)vH) ∧ ((σ(γr)g̃
′(r)−1)v′i

)∥∥
�M?M−A5 < ηAM−AÂ/E1.(11.6)

where we used ‖ε(r)‖ � M−A5 in the second to last inequality, A and E1

are as in [LMMS19, Thm. 1.4], and we choose A5 large enough so that the
last estimate holds.

In view of (11.5) and (11.6), conditions in [LMMS19, Cor. 7.2] are satis-

fied. Hence, there exist r ∈ Exc, γ̃ = (γ, σ(γ)) ∈ Γ̃, and a subgroup

H̃′ ⊂ γ̃−1H̃rγ̃ ∩ H̃r

satisfying that H̃′(C) is generated by unipotent subgroups (see [LMMS19,
p. 3]) so that for all r ∈ [−S, S] both of the following hold

‖ûrĝ1vH̃′‖ �M?(11.7a)

‖ẑ ∧ (ûrĝ1vH̃′)‖ � S−1/DM?.(11.7b)

Let H̃ ′ = H̃′(R)◦. Since ‖g1‖ ≤M , applying (11.7a) with r = 0, we get

(11.8) ‖vH̃′‖ �M?.
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There are two possibilities for H̃ ′:

Case 1. ρ(H̃ ′) is a conjugate of H.
This in particular implies that

ρ(H̃ ′) = g(r0)−1Hg(r0) where r0 ∈ Exc is as above.

Put g′ = g(r0). Then ‖g′‖ ≤M and we have

(11.9)
vol(Hg′Γ/Γ)� ‖g′‖?vol(g′−1Hg′Γ/Γ)

�M?ht(H̃′)�M?

where we used Lemma 11.2 in the second and (11.8) in the last inequality.
Recall that if we choose a maximal compact K ′ ⊂ G associated to a

Cartan involution which stabilizes H, then G = K exp(r′)H, where r′ =
r∩ (Lie(K ′))⊥, see e.g. [EMS96, Thm. A.1]. This and (11.7a) imply that for
every r ∈ [−S, S], we may write

urg1g
′vH = g′rg

′vH , where ‖g′r‖ �M?.

Since the map s 7→ usg1g
′vH is a polynomial with coefficients �M?,

usg1g
′vH = ε′(s, r)g′rg

′vH where ‖ε′(s, r)‖ �M?
(
|s− r|/S

)?
.

Using the fact that d is right invariant, the above implies

d(usg1, g
′
rg
′−1Hg′)�M?

(
|s− r|/S

)?
;

hence part (1) in the lemma holds if for every r ∈ [−S, S] we let g = g′rg
′−1.

Case 2. ρ(H̃ ′) = g′−1Ug′ where U = {ur}.
First note that if this holds, then Γ is a non-uniform lattice and we may

identify G̃ and G as R-groups. Thus vH̃′ ∈ Lie(G), and we have

exp(vH̃′) ∈ H̃
′ ∩ Γ.

Recall from §3 that g = h ⊕ r where h = Lie(H) and r are 3 and 2m + 1
irreducible representation Ad(H), respectively. Let us write

g1vH̃′ = w + w′, where w1 ∈ h and w2 ∈ r.

Now (11.7a) implies that for every r ∈ [−S, S] we have

‖Ad(ur)w‖, ‖Ad(ur)w
′‖ �M?

Using standard representation theory of SL2(R) (recall that H ' SL2(R)
or H ' PSL2(R)), we may write Ad(ur)• in the basis consisting of weight
spaces for at and conclude that for all t ∈ [logM, logS],

‖(Ad(a−tur)w)i‖ �M?e−t for i = −1, 0, 1,

‖(Ad(a−tur)w
′)j‖ �M?e−mt for j = −m, . . . ,m

We apply this with t = ? logM large enough so that the above implies

(11.10) ‖ura−tg1vH̃′‖ ≤M
−1 for all r ∈ [−e−tS, etS]
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Now (11.10) implies that

ura−tg1Γ 6∈ X1/M for all r ∈ [−e−tS, etS].

Thus by Theorem A.1, there exists a Q-parabolic subgroup P ⊂ G satisfying
that vH̃′ ∈ Lie(Ru(P)) so that

‖ura−tg1vRu(P )‖ �M−? for all r ∈ [−e−tS, etS].

Conjugating back, and using t = ? logM , we get

(11.11) ‖urg1vRu(P )‖ �M? for all r ∈ [−S, S].

Arguing as in the previous case, recall also that G = KP = KLRu(P ) where
L is a Levi subgroup of P , we get that part (2) in the lemma holds. �

11.3. Proof of Theorem 1.2. Let A1 be as Theorem 1.1, and let A5, A6

and C5 be as in Lemma 11.1. By increasing A5 and A6 if necessary, we may
assume A5, A6 ≥ 10A1. Let E′ ≥ A10 and F ′ ≥ A9, see Theorem A.1. In
creasing F ′ if necessary, we will assume F ′ ≥ m0 in Proposition 4.2. We will
now demonstrate that the theorem holds with

A2 = ?A5 and A3 = A6

Let C = max{E′, (10C3)3, eC3 , es0 , C4, C5}, see (10.3). Let R ≥ C2, and

d = A5 logR and η = (C/R)
1

F ′A5 .

Let T > RA2 , and put T1 = e−dT ≥ RA5 . Then

(11.12)
1

T

∫ T

0
ϕ(urx0) dr =

1

T1

∫ T1

0
ϕ(adur1a−dx0) dr1

=
1

T1

∫ T1

0

∫ 1

0
ϕ(adurur1a−dx0) dr dr1 +O(‖ϕ‖∞T−1

1 )

where the implied constant is absolute.
Put x1 = a−dx0, and define

Exc1 = {r1 ∈ [0, T1] : ur1x1 6∈ Xη}(11.13a)

Exc2 =
{
r1 ∈ [0, T1] :

there exists x with vol(Hx) ≤ R
and d(ur1x1, x) ≤ RA1dA1e−d

}
.(11.13b)

Let us first assume that

(11.14) |Exc1| ≤ Cη1/F ′T1 and |Exc2| ≤ 2C2R−κT1,

where κ = min{1/(F ′A5A6)}.
For every

r1 ∈ [0, T1] \
(
Exc1 ∪ Exc2

)
,

put x(r1) = ur1x1. Then

R = Cη−F
′A5 ≥ C inj(x(r1))−m0 ,
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see (10.3); moreover, ed = RA5 > RA1 . Thus, conditions of Theorem 1.1
are satisfied with the parameters ed, R, and x(r1). However, by the defi-
nition of Exc2, part (2) in Theorem 1.1 does not hold with these choices.
Consequently, we conclude that for every r1 as described above,∣∣∣∫ 1

0
ϕ(adurx(r1)) dr −

∫
ϕdmX

∣∣∣ ≤ S(ϕ)R−κ1 .

Together with (11.14) and (11.12), this implies that∣∣∣ 1

T

∫ T

0
ϕ(urx0) dr −

∫
ϕdmX

∣∣∣ ≤ (R−κ1 + 3C2R−κ + 2T−1
1 )S(ϕ),

where we used Cη1/F ′ ≤ C2R−κ.
Hence, part (1) in Theorem 1.2 holds with κ2 = min(κ1, κ)/2 if we assume

R is large enough.

We now assume to the contrary that (11.14) fails:

Assume that |Exc1| > Cη1/F ′T1. We will show that part (3) in the theo-
rem holds under this condition.

First note that under this condition Γ is non-uniform, thus, G̃ may be
identified with G as R groups. Let us write x0 = g0Γ. Since |Exc1| >
Cη1/F ′T1, then in view of our choices of F ′ and C, we conclude from Theo-
rem A.1 that there exists a Q-parabolic subgroup P ⊂ G so that

‖ura−dg0vRu(P )‖ ≤ A10η
1/A9 for all r ∈ [−T1, T1].

Conjugating back with ad and using T = edT1 and ed = RA5 ,

‖urg0vRu(P )‖ ≤ A10R
?A5 for all r ∈ [−T, T ].

Arguing as in Case 1 (or Case 2) of the proof of Lemma 11.1, we get that
part (3) holds with A2 = ?A5 and A3 = A6.

Assume that |Exc2| > 2C2R−κT1. If |Exc1| > Cη1/F ′T1, then part (3) in
the theorem holds as we just discussed. Thus, we may assume that

|Exc2| > 2C2R−κT1 and |Exc1| ≤ Cη1/F ′T1.

Put Exc′ := Exc2 \ Exc1. Then

Exc′ =
{
r1 ∈ [0, T1] :

ur1x1 ∈ Xη and there exists x with
vol(Hx) ≤ R and d(ur1x1, x) ≤ RA1dA1e−d

}
,

and |Exc′| ≥ C2R−κT1 ≥ C5η
1/A6T1. Moreover, for R large enough,

RA1dA1e−d = RA1(A5 logR)A1R−2A5 ≤ R−A5 .

Fix some r1 ∈ Exc′ for the rest of the argument. Put

x2 = ur1x1 = ur0a−dx0 and Exc = Exc′ − r1 ⊂ [−T1, T1].

Then the conditions in Lemma 11.1 are satisfied with x2, Exc, η, M = R,
and S = T1 = R−A5T .
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First, assume that part (1) of Lemma 11.1 holds. Then there exists x ∈
G/Γ with vol(H.x) ≤ RA5 . Moreover, for every r ∈ [−T1, T1] there exists
g ∈ G with ‖g‖ ≤ RA5 so that

dX(usx2, gHx) ≤ RA5

(
|s− r|
T1

)1/A6

for all s ∈ [−T1, T1].

Since s− r1, r − r1 ∈ [−T1, T1] for all s, r ∈ [0, T1], the above implies

dX(uedsx0, adgHx) = dX(adusa−dx0, adgHx)

= dX(adus−r1ur1a−dx0, adgHx)

= dX(adus−r1x2, adgHx)

� e?ddX(us−r1x2, gHx) ≤ R?A5

( |eds− edr|
T

)1/A6

.

That is part (2) in the theorem holds with A2 = ?A5 and A3 = A6 for all
large enough R.

Assume now that part (2) in Lemma 11.1 holds. Then arguing as above,
we conclude that part (3) of the theorem with A2 = ?A5 and A3 = A6. �

12. Equidistribution of expanding circles

In this section, we record the following theorem concerning equidistribu-
tion of large circle; this theorem is a corollary of Theorem 1.1 as it was
shown in [LMW23, §5].

We keep the notation from Theorem 1.1. In particular, G is any of the
following groups

SL3(R), SU(2, 1), Sp4(R), G2(R),

and H ⊂ G is the image of the principal SL2(R) in G. For all t, r ∈ R and
all θ ∈ [0, 2π], let at, ur and kθ denote the images of(

et/2 0

0 e−t/2

)
,

(
1 r
0 1

)
, and

(
cos θ − sin θ
sin θ cos θ

)
in H, respectively.

We let Γ ⊂ G be an arithmetic lattice, and let mX denote the probability
Haar measure on X = G/Γ.

12.1. Theorem. For every x0 ∈ X, and large enough R (depending explicitly
on x0), for any T ≥ RA7, at least one of the following holds.

(1) For every ϕ ∈ C∞c (X) and 2π-periodic smooth function ξ on R, we have∣∣∣∫ 1

0
ϕ(alog Tkθx0)ξ(θ) dθ −

∫ 2π

0
ξ(θ) dθ

∫
ϕdmX

∣∣∣ ≤ S(ϕ)S(ξ)R−κ8

where S(·) denotes appropriate Sobolev norms on X and R, respectively.
(2) There exists x ∈ X such that Hx is periodic with vol(Hx) ≤ R, and

dX(x, x0) ≤ RA7(log T )A7T−m.
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The constants A7 and κ8 are positive, and depend on X but not on x0.

Proof. The proof of [LMW23, Thm.1.4] remains valid without modification
when [LMW22, Thm.1.1] is replaced by Theorem 1.1 from this paper. �

Part 2. Application to quadratic forms

The second part of this article concerns applications to quantitative ver-
sion of Oppenheim conjecture. In particular, the proof of Theorem 2.3 and
Theorem 2.1 will be completed in this part. We employ the strategy pi-
oneered by Eskin, Margulis and Mozes in [EMM98]. This result covered
all indefinite quadratic forms in d ≥ 3 variables except forms of signature
(2, 2), or (2, 1) where a Diophantine condition is needed for the requisite
nondivergence results to be true.

The case of (2, 2) forms was treated by Eskin, Margulis and Mozes [EMM05],
and required significant additional ideas. A more precise version, suitable for
a quantitative counting result, for the special case of Γ ⊂ SL2(Z)× SL2(Z)
was given by the first three authors of this paper in [LMW23].

More recently Wooyeon Kim succeeded in giving a treatment of the case
of forms of signature (2, 1) in [Kim24]. Since the actual results we need are
only implicit in [Kim24], we give a full treatment here; but it is possible to
isolate what is needed already from [Kim24].

13. Upper bound estimates

In this section we will state Proposition 13.3 which yields the upper bound
estimates needed for the proof of Theorem 2.3.

Let

Q0(x, y, z) = 2xz− y2.

If Q is an indefinite ternary quadratic form of determinant 1, and Then
there exists some gQ ∈ SL3(R) so that Q(v) = Q0(gQv) for all v ∈ R3.

Let H = SO(Q0)◦ ⊂ SL3(R) = G; note that H ' PSL2(R). In the case at
hand, the groups at and ur featuring in Theorem 1.1 can be more explicitly
described as follows

at =

et 0 0
0 1 0
0 0 e−t

 and ur =

1 r r2

2
0 1 r
0 0 1

 .

Also let K = H ∩ SO(3) ' SO(2). Indeed, K = {kθ : θ ∈ [0, 2π]} where

(13.1) kθ =


1+cos θ

2 − sin θ√
2

1−cos θ
2

sin θ√
2

cos θ − sin θ√
2

1−cos θ
2

sin θ√
2

1+cos θ
2

 .
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Definition 13.1. A rational line L ⊂ R3 will be said to be (ρ,A, t)-exceptional
for Q if the vector v defined up to sign by L ∩ Z3 = Span{v} satisfies

‖v‖ ≤ eρt and |Q(v)| ≤ e−Aρt.

Existence of 5 exceptional lines yields an approximation of Q with a ra-
tional form with low complexity, see Lemma 13.4 below.

We identify ∧2R3 with the dual of R3, which will be identified with R3

using the standard Euclidean inner product. Then for every g ∈ G

(13.2) gv1 ∧ gv2 = g∗(v1 ∧ v2)

where g∗ = (gt)−1. We put Q∗(v) := Q0(g∗v) for any v ∈ R3.
Similar to Definition 13.1, we have the following:

Definition 13.2. Let P ⊂ R3 be a rational plane and suppose P ∩ Z3 =
Span{w1, w2}. Then P will be said to be (ρ,A, t)-exceptional if the line
spanned by w1 ∧ w2 is (ρ,A, t)-exceptional for Q∗.

This definition can be equivalently stated in terms of the height of the plane
P and the determinant of the rational form induced by Q on P .

Let f ∈ Cc(R3). For every h ∈ H, define

(13.3) f̃ρ,A,t(h; gQ) =
∑

v∈NQ,t

f(hv)

where NQ,t denotes the set of vectors in Z3 which are not contained in any
(ρ,A, t)-exceptional line or plane.

13.3. Proposition. For all large enough A, for all small enough ρ (depend-
ing on A), and all large enough t (depending on A and ρ), at least one of
the following holds:

(1) Let C̃t = {k ∈ K : f̃ρ,A,t(atk; gQΓ) ≥ AeAρt}. Then∫
C̃t
f̃ρ,A,t(atk; gQΓ) dk � e−ρ

2t/2.

(2) There exists P ∈ Mat3(Z) with ‖P‖ ≤ eD0ρt so that

‖Q− λP‖ ≤ ‖P‖−A/2 where λ = (detP )−1/3

The implied constant depends on ‖g‖ and D0 is absolute.

The reader may compare Proposition 13.3 and its proof with [LMW23,
Prop. 6.1]. It is also worth noting that Proposition 13.3 is equivalent to

showing that f̃ belongs to L1+ε. The proof of this proposition will occupy
the rest of this section.

Let A and t be large parameters (A is absolute and t > t0(Q)), and let
ρ > 0 a small parameter; these will be explicated later. In what follows η
represents a small number.
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Linear algebra lemmas. We begin with the following lemmas from linear
algebra.

13.4. Lemma. Let A,D ≥ 1 be two parameters. Let v1, . . . , v5 ∈ Z3 be five
vectors so that no three of them are co-planar and |Q(vi)| ≤ ηA for all i.
Then the following hold:

(L-1) Let γ = (v1, v2, v3), and assume that

| det γ| ≤ η−D and ‖γ−1vi‖ ≤ η−D for i = 4, 5.

Then there is a matrix P ∈ Mat3(Z) with det(P ) 6= 0 and ‖P‖ �
η−?D so that ∥∥γtQγ − P∥∥� ηA−?D.

(L-2) If ‖vi‖ ≤ η−D for all i, then there is a matrix P as in (L-1) so that

‖Q− λP‖ � ηA−?D where λ = (detP )−1/3.

Proof. Writing Q in the basis {v1, v2, v3} implies that

γtQγ = B = (bij)

where |bii| � ηA. Write

γ−1v4 = (a1, a2, a3)t

γ−1v5 = (a′1, a
′
2, a
′
3)t.

Then ai, a
′
i ∈ Q have height ≤ η−D.

Note that since no three of the vi’s are co-planar, ai, a
′
i are all nonzero.

Suppose (a2a3, a1a3, a1a2) and (a′2a
′
3, a
′
1a
′
3, a
′
1a
′
2) are colinear. Then a2a3

a′2a
′
3

=
a1a2
a′1a
′
2

so a3
a′3

= a1
a′1

and similarly for the other pairs. But this means v4 and v5

are colinear, in contradiction.
Since for i = 4, 5, |Q(vi)| ≤ ηA, we have∑

0<i<j≤3

bijaiaj � ηA−2D and
∑

0<i<j≤3

bija
′
ia
′
j � ηA−2D

Since ai, a
′
i ∈ Q have height ≤ η−D, the above imply (L-1).

The second claim (L-2) follows from (L-1) and ‖γ‖ � η−D. �

13.5. Lemma. Let 0 < σ < 1, and let 0 < δ < 1 − σ. For every v ∈ R3

which satisfies |Q0(v)| ≥ e−2σt, we have∫
K
‖atkv‖−1−δ dk � δ−1e(−1+δ+σ)t ‖v‖−1−δ ,

where the implied constant is absolute.

Proof. Recall that K acts transitively on the level sets

{v ∈ R3 : ‖v‖ = c1, Q0(v) = c2}.
Thus we may assume v = (0, ε, 1) where ε = |Q0(v)|1/2 ≥ e−σt, and have

atkθv =
(
et(1−cos θ−

√
2ε sin θ

2 ), 2ε cos θ−
√

2 sin θ
2 , e−t(1+cos θ+

√
2ε sin θ

2 )
)
.
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Since for 0 < θ < 1/100, we have

1− cos θ −
√

2ε sin θ = −
√

2εθ + θ2

2 +O(θ3) and

1 + cos θ +
√

2ε sin θ = 2 +O(ε).

Let ε′ = min{ε, 1/100}, the above implies∫
K
‖atkv‖−1−δ dk �

∫ e(−2+σ)t

0
e(1+δ)t dθ +

∫ ε′

e(−2+σ)t

e(−1−δ)tε−1θ−1−δ dθ

� e(−1+σ+δ)t + δ−1e(−1−δ)teσtθ−δ
]ε′
e(−2+σ)t

� δ−1e(−1+δ+σ)t.

As we claimed. �

In the bounds in Lemma 13.5, the multiplicative coefficient in front of

‖v‖−1−δ tends to zero as t→∞ (which is what we want), at the expense of
giving a restriction on v. Without the restrictions imposed in Lemma 13.5,
we have the following general (weaker) bound:

13.6. Lemma. Let v ∈ R3, then∫
K
‖atkv‖−1−δ dk � eδt‖v‖−1−δ

where the implied constant is absolute.

Proof. The proof is similar to Lemma 13.5. Indeed, we have∫
K
‖atkv‖−1−δ dk �

∫ e−t

0
e(1+δ)t dθ +

∫ π/4

e−t
e(−1−δ)tθ−2−2δ dθ

� eδt ‖v‖−1−δ ,

as we claimed. �

Cusp functions of Margulis. Recall the functions

α1(g) = {1/ ‖gv‖ : 0 6= v ∈ Z3}
α2(g) =

{
1/ ‖g∗(w1 ∧ w2)‖ : 0 6= w1 ∧ w2 ∈ ∧2Z3

}
from [EMM98] and [EMM05].

For all 0 6= v ∈ R3, all 0 < σ < 1, and all s > 1 let

Isv(σ) = {k ∈ K : ‖askgQv‖ ≤ σ}.
We will be interested in Isv(σ) for vectors where |Q0(gQv)| ≤ σ10 and 1 �
‖gQv‖ ≤ σes. In this range, we have

(13.4) |Isv(σ)| � (e−sσ/‖gQv‖)1/2,

see e.g. [EMM05, Lemma A.6].
Let P denote the set of primitive vectors in Z3, and let

P` = {v ∈ P : e`−1 ≤ ‖v‖ < e`},
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for every integer ` ≥ 1.
We make the following observation, which is a special case of [EMM98,

Lemma 5.6] tailored to our applications here.

13.7. Lemma. Let 0 < σ < 1 and s > 1. Let v1, v2 ∈ P` be so that
|Q0(gQvi)| ≤ σ10, ‖gQvi‖ ≤ σes, and 2Isv2

(σ) ∩ 2Isv1
(σ) 6= ∅. Then

α1(askgQΓ)�c σα2(askgQ) for all k ∈ cIsv1
(σ),

for every constant c.

Proof. Let v1 and v2 be as in the statement. Then, in view of (13.4), we
have

‖askgQv2‖ � σ for all k ∈ cIsv1
(σ).

For every k ∈ cIsv1
(σ), fix a vector vk so that

α1(askgQΓ) = ‖askgQvk‖−1 .

Let P = Span{vk, v} where v = v1 if vk = v2 and v = v2 if vk 6= v2. Let u
be the corresponding covector (which is unique up to sign). Then

‖(askgQ)∗u‖ ≤ ‖(askgQ)∗(vk ∧ v)‖
≤ ‖askgQvk‖ ‖askgQv‖ � σα1(askgQ)−1,

for all k ∈ cIsv1
(σ). Taking reciprocal, we have

α1(askgQΓ)� σ ‖(askgQ)∗u‖−1 ≤ σα2(askgQΓ),

as it was claimed. �

We will also using the following theorem which is due to Eskin, Margulis
and Mozes [EMM98].

13.8. Theorem ([EMM98], Thm. 3.2 and Thm. 3.3). Both of the following
hold for i = 1, 2 and every g ∈ G.

(1) For every 0 < p < 1, we have

sup
s≥0

∫
αpi (askgΓ) dk � 1

(2) For every s ≥ 0, we have∫
αi(askgΓ) dk � s.

The implied constant is � (1− p)−1 ‖g‖? in part (1) and � ‖g‖? in (2).

Proof. The first statement is [EMM98, Thm 3.2] and the second is [EMM98,
Thm 3.3]. It follows from the proofs of these statements that the implied
constant depends polynomially on αi(g) � ‖g‖? and is � 1/(1 − p) in the
first case; see [EMM98, Lemma 5.1] for the dependence on p. �

We will also use the following elementary consequence of Theorem 13.8.
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13.9. Corollary. Let Θ ⊂ K be a set with |Θ| ≤ σ. Then∫
Θ
α

1/2
i (adkgΓ) dk � σ1/4

Proof. Let B = {k ∈ K : α2(adkgQΓ) ≤ σ−1}. Then∫
Θ
α

1/2
i (adkgΓ) dk �

∫
Θ∩B

α
1/2
i (adkgΓ) dk + σ1/4

∫
K\B

αi(atkgΓ)3/4 dk

� σ1/2 + σ1/4 � σ1/4

as we claimed. �

Approximation by rational forms. The following proposition is one of
the main ingredients in the proof of Proposition 13.3.

13.10. Proposition. There exists some D1, A (absolute) so that if ρD1 <
1

100 , and ` > 0 is large enough and the following is satisfied

(13.5) #{v ∈ P` : |Q0(gQv)| ≤ e−Aρ`} ≥ e(1−ρ)`,

then at least one of the following holds:

(1) There exist planes {Pi : 1 ≤ i ≤ N}, for some N ≤ e(1−2ρ)`, so that

#{v ∈ P` \ (∪Pi) : |Q0(gQv)| ≤ e−Aρ`} ≤ e(1−2ρ)`.

Moreover, there are intervals {Ji : 1 ≤ i ≤ N}, with multiplicity at most

two, so that I
(1+2ρ)`
v (e−ρ`) ∩ Ji 6= ∅ for every v ∈ Pi, and∫

cJi

α1(a(1+2ρ)`kgQΓ) dk �c e
−ρ`
∫
cJi

α2(a(1+2ρ)`kgQΓ) dk

for every constant c.
(2) There exists some P ∈ Mat3(Z) with ‖P‖ ≤ eD1ρ` so that

‖Q− λP‖ ≤ e(−1+D1ρ)` where λ = (detP )−1/3.

Until the conclusion of the proof of Proposition 13.10, let η = e−ρ` and
s = (1 + 2ρ)`, and write Iv for Isv(η). We will also put

W` := {v ∈ P` : |Q0(gQv)| ≤ e−Aρ`}

13.11. Lemma. Let the notation be as in Proposition 13.10. Then at least
one of the following holds.

(1) Part (1) in Proposition 13.10 holds.
(2) There exist W ⊂W` with #W ≥ η2e` so that

Iv ∩ Iv′ = ∅ for all v 6= v′ ∈ W.

Proof. Suppose the claim in part (2) fails. Recall from (13.4) that

(13.6) |Iv| � e(−s−`)/2η1/2 � e−`η3/2,

where we used s = (1 + 2ρ)`, η = e−ρ`, and ‖gQv‖ � ‖gQ‖‖v‖ ≤ ηes.
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In consequence, we may choose W ′ ⊂ W` with #W ′ < η2e` so that
{Ji} = {2Iv : v ∈ W ′} covers ∪W`

Iv with multiplicity at most two. Discard
the intervals Ji which intersect only one Iv. For every remaining interval,
Ji, we have

(13.7) ‖askgQv‖ ≤ η for all v with Iv ∩ Ji 6= ∅ and all k ∈ Iv.
We draw both conclusions of part (1) in the lemma from (13.7). First note
that (13.7) implies that if v, v′ so that Iv ∩ Ji 6= ∅ and Iv′ ∩ Ji 6= ∅, and
we put Pi = Span{v, v′}, then for every v′′ so that Iv′′ ∩ Ji 6= ∅, v′′ ∈ Pi.
Otherwise

1 ≤ |det(askgQv, askgQv
′, askgQv

′′| � η3

which is a contradiction assuming s is large enough. Moreover,

#{v : v 6∈ ∪Pi} ≤ η2e`.

To see the second claim in part (1), note that if v, v′ are so that Iv∩Ji 6= ∅
and Iv′ ∩ Ji 6= ∅, the conditions in Lemma 13.7 are satisfied. Hence∫

cJi

α1(askgQΓ) dk �c e
−ρs
∫
cJi

α2(askgQΓ) dk,

as we claimed. �

If part (1) in Lemma 13.11 holds, the proof of Proposition 13.10 is com-
plete. Thus We will assume part (2) in Lemma 13.11 holds, for some C
which will be optimized later, for the rest of the proof.

Recall that K ' SO(2). Using this isomorphism, we identify K with
[0, 2π], and cover K with half open intervals {Ij} where |Ij | = 2π/N for

N = dη5e`e.

13.12. Lemma. Let ` and W be as in part (2) in Lemma 13.11. For every
j, let

W`,j = {v ∈ W` : |Iv ∩ Ij | ≥ |Iv|/2},
and J` = {j : #W`,j ≥ η−2}. Then

#J` ≥ η9e`

Proof. Let J ′` = {j : #W`,j ≤ η−2}. Then

#
(⋃
J ′W`,j

)
� η3e`.

Moreover, note that since Iv ∩ Iv′ = ∅ for all v 6= v′ ∈ W and |Iv| � e−`η3/2,

#W`,j � |Ij |/η3/2e−` � η−7.

These and #W ≥ η2e` imply that

#J` = #{j : #W`,j ≥ η−1} ≥ η9e`,

as we claimed in the lemma. �

13.13. Lemma. With the notation be as in Lemma 13.12, let j ∈ J` and let
{v1, . . . , v5} ⊂ W`,j be so that

∥∥ vα
‖vα‖ −

vβ
‖vβ‖

∥∥� η−1/2e−`. Then
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(1) No three of {v1, . . . , v5} are co-planar.
(2) Let γ = (v1, v2, v3), then

1 ≤ |det γ| ≤ η−D and ‖γ−1vi‖ ≤ η−D for i = 4, 5.

Proof. In the course of the proof, we will write g for gQ to simplify the

notation. Let us write gvi = v′i + ui where ‖ui‖ � e−`ηA and Q0(v′i) = 0.
Now for all vα, vβ ∈ {vi}, we have

(13.8) Q0(gvα, gvβ) = Q0(v′α, v
′
β) +O(ηA).

Moreover, since
∥∥ vα
‖vα‖ −

vβ
‖vβ‖

∥∥ � η−1/2e−` and vα, vβ ∈ W`,j we can write

v′β = λαβv
′
α + w′αβ where |λαβ| = O(1) and η−1/2 � ‖wαβ‖ � η−5 and

w′αβ ⊥ v′α (with respect to the usual inner product). Hence,

gvβ = λαβgvα + wαβ where wαβ = w′αβ +O(ηA).

More explicit, applying an element of K, we will assume v′α = (x, 0, 0). Then

w′αβ = (0, y, z) and η−1/2 � ‖w′αβ‖ � η−5. Moreover, 2λαβzx− y2 = 0 since

Q0(v′β) = 0, this implies |y| � η−1/4, thus |z| � η−1/2/‖v′α‖. This implies

|Q0(v′α, v
′
β)| � η−1/2 which in view of (13.8) gives |Q0(gvα, gvβ)| � η−1/2.

Now assume contrary to the claim in part (1), that gv3 = agv1 + bgv2

(the argument in other cases is similar). Then

aλ31 + bλ32 = 1 and aw31 + bw32 = 0

Solving for a in the first equation, and replacing in the second we conlcude,

w31 = b(λ32w31 − λ31w32).

Since |λαβ| = O(1) and η−1/2 � ‖wαβ‖ � η−5, we conclude that η10 �
|b| � η−10. This and aλ31 + bλ32 = 1 imply η10 � |a| � η−10. Recall that

|Q0(gv3)| = |a2Q0(gv1) + b2Q0(gv2) + 2abQ0(gv1, gv2)| ≤ ηA.

Since |Q0(gv1, gv2)| � η−1/2 and η10 � |a|, |b| � η−10, we get a contradic-
tion so long as A ≥ 40 and η is small enough. The proof of (1) is complete.

We now turn to part (2). Let I ⊂ {w ∈ R3 : ‖w‖ = e`, Q0(w) = 0} be an

interval with |I| � η−5. Let {w1, w2, w3} ∈ I satisfy ‖wi−wj‖ � η−1/2. Let
W = (w1, w2, w3) which is non-singular by part (1). A direct computation
shows that if v′ ∈ {λw : λ ∈ [e−2, e2], w ∈ I}, then Wx′ = v′ has a solution
‖x′‖ � η−?.

As we did in part (1), let us write gvi = v′i + ui where Q0(v′i) = 0 and
‖ui‖ ≤ e−`ηA. Since gv1, gv2, gv3 lie in the e−`ηA neighborhood of an interval
I ⊂ {w ∈ R3 : ‖w‖ = e`, Q0(w) = 0} with |I| � η−5. Thus the volume of
the tetrahedron spanned by gv1, gv2, gv3 is � η−?. This and part (1) give

(13.9) 1 ≤ |det γ| � η−?

Now applying the above discussion with W ′ = (v′1, v
′
2, v
′
3) and v′ = v′4, v

′
5,

there are x′4, x
′
5 ∈ R3 satisfying ‖x′i‖ � η−? so that W ′x′i = v′i.
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Since gγ = W ′ + E where ‖E‖ � e−`ηA. For i = 4, 5, let xi = x′i + ū
where ū = (gγ)−1(ui − Ex′i), then

gγxi = gγx′i + gγū

= W ′x′i + Ex′i + ui − Ex′i = v′i + ui = gvi

moreover, ‖Ex′i‖ � e−`ηA−?, ‖ui‖ ≤ e−`ηA, and ‖(gγ)−1‖ � e`η−?. Thus
‖ū‖ � ηA−?. Altogether, we conclude that ‖xi‖ = ‖γ−1vi‖ � η−?. This
and (13.9), complete the proof of part (2). �

13.14. Lemma. Let the notation be as in Lemma 13.12. Then for every
j ∈ J`, there exists some kj ∈ K so that

a`kjgQΓ = εjgj

where ‖εj‖ � ηA−? and vol(HgjΓ)� η−?.
Moreover, we can choose the collection {kj} as above so that the following

holds. There exists J ′` ⊂ J` with #J ′` � η?e` so that if j, j′ ∈ J ′` are

distinct, then ‖kj − kj′‖ � e−`.

Proof. Fix some j ∈ J`, and let {v1, . . . , v5} ⊂ W`,j be as in Lemma 13.13.
Then conditions of Lemma 13.4 are satisfied with {v1, . . . , v5}. Let

γ1 = γ1(j) = (v1, v2, v3)

By the conclusion of Lemma 13.4 thus γt1Qγ1 = P + E where

P ∈ Mat3(Z), ‖P‖ � η−?, and ‖E‖ � ηA−?.

We conclude that there exists ĝj ∈ G, with ‖ĝj‖ � η−? so that (ĝj)
tQ0ĝj =

P . This implies: HĝjΓ is a periodic orbit with vol(HĝjΓ)� η−?.
Moreover, we conclude from the above that there exists some hj = k′j âkj ∈

SO(Q0) and ε̂j ∈ G with ‖ε̂j − I‖ � ηA−O(1) so that

(13.10) k′j âkjgQγ1 = ε̂j ĝj .

Since ‖ĝj‖ � η−?, we conclude that

e`η? � ‖γ1‖η? � ‖â‖ � ‖γ1‖η−? � e`η−?.

Let us write â = a`aτ where |τ | = ?| log η|. Multiplying (13.10) by (k′jaτ )−1,
we get

a`kjgQγ1 = εjgj where ‖εj − I‖ � ηA−? and gj = (k′jaτ )−1ĝj .

This establishes the first claim.
To see the second claim, let j, j′ ∈ J`. Repeat the above argument with

j and j′, and let kj , kj′ and γ1(j) and γ1(j′) be the elements as above. If

‖kj − kj′‖ � e−`, then

a`kj′gQ = gjj′a`kjgQ where ‖gjj′‖ � 1.

This implies that

‖(γ1(j))−1γ1(j′)‖ � η−?
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Since #J` � η9es, the collection of γ1(j) for j ∈ J` is distinct, the final
claim in the lemma follows. �

Proof of Proposition 13.10. Recall that η = e−ρ`. Let J ′` and {kj : j ∈ J ′`}
be as in Lemma 13.14. Then #J ′` � ηCe`, and for all j ∈ J ′` ,

a`kjgQΓ = εjxj

where vol(Hxj) ≤ η−D
′
1 and ‖εj− I‖ ≤ ηA−D

′
1 , where D′1 is absolute. More-

over, |kj − kj′ | � e−` for all j 6= j′.

Let N = {ĝx : vol(Hx) ≤ η−D
′
1 , ‖ĝ‖ ≤ ηA−D

′
1}. We conclude from the

above that
|{k ∈ K : a`kgQΓ ∈ N}| � ηD

′
1 .

If A is large enough, we conclude that

gQ = εg

where vol(HgΓ) � η−D
′
1 , and ‖ε − I‖ � η−?e−`, see e.g. [LMW22, Prop.

4.6].
In particular, gtQ0g is rational form with height ≤ η−D1 = e−D1ρ`, and

‖Q− gtQ0g‖ � ‖g‖?‖ε− 1‖ ≤ e(−1+D1ρ)`,

as we claimed. �

14. Proof of Proposition 13.3

We will complete the proof of Proposition 13.3 in this section; the proof re-
lies on Proposition 13.10 and Theorem 13.8. If part (2) in Proposition 13.10
holds, with some ` ≥ ρt− 1, then part (2) in Proposition 13.3 holds and the
proof is complete. Thus we assume part (2) in Proposition 13.10 does not
hold for any ` ≥ ρt− 1.

Notation for the proof and Schmidt’s Lemma. Recall that we identify
∧2R3 with the dual of R3, which will be identified with R3 using the standard
inner product. Then for every g ∈ G
(14.1) gv1 ∧ gv2 = g∗(v1 ∧ v2)

where g∗ = (gt)−1; note that H is invariant under this involution. Also note
that Q∗(v) = Q0(g∗v) for any v ∈ R3.

For every u ∈ ∧2R3, we will write

I∗,tu (σ) = {k ∈ K : ‖(atkgQ)∗u‖ ≤ σ},

and put I∗u := I∗,tu (e−ρt). We will also write Iv for Itv(e
−ρt).

We emphasize that Iv here is shorthand for Itv(e
−ρt), and is does not

represent a shorthand notation for I
(1+2ρ`)
v (e−ρ`), which was used in the

proof of Proposition 13.10.
By a variant of Schmidt’s Lemma, see also [EMM98, Lemma 3.1], and

the definition of f̃ , we have

(14.2) f̃(atk; gQ)� α̃(atk; gQ)
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where α̃(atk; gQ) = max{α̃1(atk; gQ), α̃2(atk, gQ)} and

α̃1(atk; gQ) =
{
‖atkgQv‖−1 : 0 6= v ∈ NQ,t

}
α̃2(atk; gQ) =

{
‖(atkgQ)∗u‖−1 : 0 6= u ∈ NQ∗,t

}
.

Recall the set C̃t = {k ∈ K : f̃(atk; gQ) ≥ AeAρt}. Choosing A large
enough to account for the the implied multiplicative constant in (14.2),

C̃t ⊂ Ct,1 ∪ Ct,2.

where Ct,i = {k ∈ K : α̃i(atk; gQ) ≥ eAρt} for i = 1, 2. In view of 14.2 and
the above, thus, it suffices to control∫

Ct,1
α̃1(atk; gQ) dk and

∫
Ct,2

α̃2(atk; gQ) dk

Let us set

Wt,1 := {v ∈ NQ,t ∩ P : ‖v‖ ≤ et, ∃k ∈ Iv, ‖atkgQv‖ ≤ e−Aρt}, and

Wt,2 := {u ∈ NQ∗,t ∩ P : ‖v‖ ≤ et, ∃k ∈ I∗u, ‖(atkgQ)∗u‖ ≤ e−Aρt}.

Note that if v ∈ Wt,1, then Iv ∩ Ct 6= ∅, thus ‖gQv‖ ≤ e(1−Aρ)t, similarly

for covectors in Wt,2. This implies ‖v‖ � e(1−Aρ)t. For i = 1, 2 and every
integer ` ≤ t− (A− 1)ρt := t′, let

Wt,i(`) =Wt,i ∩ P`.

The sets W ′t,i(`). We will work withWt,1, the argument forWt,2 is similar.

Suppose now v ∈ Wt,1(`) for some ` ≤ 1 + (1 − Aρ)t. Recall from the
definition of Wt,1 that

‖atkgQv‖ ≤ e−Aρt, for some k ∈ Iv;

thus, |Q0(atkgQv)| � e−2Aρt ≤ e−Aρt. Since atk preserves the form Q0,

(14.3) |Q0(gQv)| ≤ e−Aρt.

Moreover, since v does not belong to any (ρ,A, t)-exceptional line we have
‖v‖ ≥ eρt. Since v ∈ Wt,1(`), we conclude that ` ≥ ρt− 1.

For i = 1, 2, let

Li = {ρt− 1 ≤ ` ≤ t′ : #Wt,i(`) ≥ e(1−ρ)`},

and let L′i = {ρt− 1 ≤ ` ≤ t′ : ` 6∈ Li}.
In view of (14.3), we have

Wt,i(`) ⊂ {v ∈ P` : |Q0(gQv)| ≤ e−Aρ`}.

This and the definition of L1, imply that for every ` ∈ L1, we have

#{v ∈ P` : |Q0(gQv)| ≤ e−Aρ`} ≥ e(1−ρ)`.

Thus, the assumptions of Proposition 13.10 holds for any ` ∈ L1. If part (2)
in Proposition 13.10 held, the proof of Proposition 13.3 would be complete.
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Therefore, we may assume that part (1) in Proposition 13.10 holds. That

is: There exist planes {Pi : 1 ≤ i ≤ N}, for some N ≤ e(1−2ρ)`, so that

#{v ∈ P` \ (∪Pi) : |Q0(gQv)| ≤ e−Aρ`} ≤ e(1−2ρ)`.

Moreover, there are intervals {Ji : 1 ≤ i ≤ N}, with multiplicity at most

two, so that I
(1+2ρ)`
v (e−ρ`) ∩ Ji 6= ∅ for such v; thus Iv ⊂ cJi =: Ĵi for an

absolute c ≥ 1. Furthermore, recall that∫
Ĵi

α1(a(1+2ρ)`kgQΓ) dk � e−ρ`
∫
Ĵi

α2(a(1+2ρ)`kgQΓ) dk,

and note that {Ĵi} has bounded multiplicity depending on c.
For every ` ∈ L′i, let W ′t,i(`) =Wt,i(`), and for every ` ∈ Li, let W ′t,i(`) =

Wt,i \ (∪Pi). In either case

(14.4) #W ′t,i(`) ≤ e(1−ρ)`.

We put W ′t,1 =
⋃
`W ′t,i(`).

The task is now two folds: we first show that for all ρt− 1 ≤ ` ≤ t′∑
W ′t,1

∫
Iv

‖atkgQv‖−1−δ dk � e−?ρ
2t;

this is an easy consequence of (14.4) and Lemma 13.6.
Then we show that for such `,∫

∪Ĵi
α1(atkgQΓ)� e−?ρ

2t;

this step is more involved. It relies on Proposition 13.10, Theorem 13.8, and
ideas similar to [EMM98].

Summing these estimates over all ρt− 1 ≤ ` ≤ t′, we get
∫
Ct,1 α1 � e−?ρ

2t

as we wanted to show. The details follow.

Contribution of W ′t,i. Applying [EMM98, Lemma 5.5] we have

∑
W ′t,1

∫
Iv

‖atkgQv‖−1 dk �
dt′e∑
bρt−1c

∑
W ′t,1(`)

‖v‖−1

Using (14.4), one obtains

dt′e∑
bρt−1c

∑
W ′t,1(`)

eδt ‖v‖−1 �
∑

`≥ρt−1

e−`e(1−ρ)` � e−ρ`/2

Altogether, we conclude

(14.5)
∑
W ′t,1

∫
Iv

‖atkgQv‖−1−δ dk ≤ e−ρ2t/2

Similarly,
∑
W ′t,2

∫
I∗u
‖(atkgQ)∗u‖−1−δ dk ≤ e−ρ2t/2.
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Contribution of Wt,i(`) \ W ′t,i(`). Again we will work with i = 1, the

argument for i = 2 is similar. Let ` ∈ L1 otherwise Wt,1(`) = W ′t,1(`).

As it was mentioned above, in view of part (1) in Proposition 13.10, there
are intervals {Ji : 1 ≤ i ≤ N}, with multiplicity at most two, so that

I
(1+2ρ)`
v (e−ρ`) ∩ Ji 6= ∅ for every v ∈ Wt,1(`). This implies Iv ⊂ cJi =: Ĵi for

every such v, where c ≥ 1 is absolute. Furthermore, recall that

(14.6)

∫
Ĵi

α1(a(1+2ρ)`kgQΓ) dk � e−ρ`
∫
Ĵi

α2(a(1+2ρ)`kgQΓ) dk,

and note that {Ĵi} has bounded multiplicity depending on c.

Sublemma. We have

(14.7)
∑
Ĵi

∫
Ĵi

α1(atkgQΓ) dk � e−?ρ`
(

1 +
∑
Ĵi

∫
Ĵi

α2(a(1+2ρ)`kgQΓ) dk
)

Let us first assume (14.7) and complete the proof of the proposition. Since∑
1Ĵi � 1∪Ĵi , (14.7) implies that∑

i

∫
Ĵi

α1(atkgQΓ) dk � e−?ρ`
(

1 +

∫
∪Ĵi

α2(a(1+2ρ)`kgQΓ) dk
)

� e−?ρ`(1 + 2ρ)` ≤ e−?ρ`,

where we used part (2) in Theorem 13.8 in the second inequality.
Altogether, for every ` ∈ L1,

(14.8)

∫
∪Ĵi

α1(atk; gQ) dk � e−?ρ` ≤ e−?ρ2t.

where we used ` ≥ ρt− 1 in the last inequality.
Now summing (14.5) and (14.8) over all ρt− 1 ≤ ` ≤ t′, we get∫

Ct,1
α̃1(atk; gQΓ)� te−?ρ

2t � e−?ρ
2t

Similarly,
∫
Ct,2 α̃2(atk; gQΓ)� e−?ρ

2t.

The proposition follows from these in view of (14.2). �

Proof of the Sublemma. It remains to prove (14.7). The argument is similar
to the arguments pioneered in [EMM98], which are by now well known. To
simplify the notation, let us write s = (1 + 2ρ)` and put x = gQΓ.

Let n1 = d100ρ−3e and let s1 = (t− s)/n1. We claim that

(14.9)
∑
i

∫
Ĵi

α1(ans1+skx) dk ≤ Cn
∑
i

∫
Ĵi

α1(askx) dk + (C + 1)ne−ρ`/2,

for all integers 0 ≤ n ≤ n1, where C ≥ 1 is absolute.
Note that the sublemma follows from (14.9) and (14.6). Therefore, the

task is to establish (14.9).
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We first make the following observation

(14.10)
∑
i

∫
Ĵi

α
1/2
2 (adkx) dk � e−3ρ`/4 for all d ≥ 0.

To see (14.10), first recall from Proposition 13.10 that
∑

1Ĵi � 1∪Ĵi , hence∑
i

∫
Ĵi

α
1/2
2 (adkx) dk �

∫
⋃
Ĵi

α
1/2
2 (adkx) dk.

Moreover, the number of such intervals Ĵi is� e(1−2ρ)` and |Ĵi| � e−`e−3ρ`/2,
see (13.6) and the paragraph following that equation. Thus∣∣⋃ Ĵi

∣∣ ≤∑ |Ĵi| � (e(1−2ρ)` · (e(−1− 3
2
ρ)` ≤ e−3ρ`.

Hence (14.10) follows from Corollary 13.9, applied with Θ =
⋃
Ĵi.

Let us now return to the proof of (14.9), which will be completed using
induction on n. The base case n = 0 is trivial.

Fix some n ≥ 0 and some Ĵi. Let M = dens1+s|Ĵi|e and b = |Ĵi|/M . For
every k ∈ L, let hk = ans1+ska−ns1−s. Then

(14.11)

∫
Ĵi

α1(a(n+1)s1+skx) dk =
∑
j

∫ b

0
α1(as1hkans1+skjx) dk,

where kj = jb for 0 ≤ j ≤M − 1.
If k = kθ, see (13.1), then hk = h′ku−ens1+s sin θ/(1+cos θ) where ‖h′k−I‖ � b

is lower triangular. Using the change of variable r = ens1+s sin θ
(1+cos θ) , we get

(14.12)

∫ b

0
α1(as1hkans1+skjx) dk � e−ns1−s

∫ b′

0
α1(as1u−rans1+skjx) dr.

where b′ = ens1+s sin b0
(1+cos b0) � 1.

In view of [EMM98, Lemma 5.8], see also [EMM98, Lemma 5.5], we have∫ b′

0
α1(as1u−rans1+skjx) dr �∫ b′

0
α1(u−rans1+skjx) dr + e2s1

∫ b′

0
α

1/2
2 (u−rans1+skx) dr

Multiplying the above by e−ns1−s and changing the variables from ur back
to hk in the second line above, we conclude that

e−ns1−s
∫ b′

0
α1(as1u−rans1+skjx) dr �∫ b

0
α1(hkans1+skjx) dk + e2s1

∫ b

0
α

1/2
2 (hkans1+skjx) dk =∫ b

0
α1(ans1+skkjx) dk + e2s1

∫ b

0
α

1/2
2 (ans1+skkjx) dk.
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In view of (14.12) and (14.11), the above implies∫
Ĵi

α1(a(n+1)s1+skx) dk �
∑
j

∫ b

0
α1(ans1+skkjx) dk +

e2s1
∑
j

∫ b

0
α

1/2
2 (ans1+skkjx) dk.

Altogether, we have shown∫
Ĵi

α1(a(n+1)s1+skx) dk �
∫
Ĵi

α1(ans1+skx) dk + e2s1

∫
Ĵi

α
1/2
2 (ans1+skx) dk.

Summing these over all Ĵi, we get

(14.13)
∑
Ĵi

∫
Ĵi

α1(a(n+1)s1+skx) dk ≤ C
∑
Ĵi

∫
Ĵi

α1(ans1+skx) dk +

Ce2s1
∑
Ĵi

∫
Ĵi

α
1/2
2 (ans1+skx) dk

Recall now that ` ≥ ρt− 1 and s1 � ρ3t/100. This and (14.10) imply that

e2s1
∑
Ĵi

∫
Ĵi

α
1/2
2 (ans1+skx) dk � eρ`/10e−3ρ/4 ≤ e−ρ`/2.

This, (14.13) and the inductive hypothesis finish the proof of (14.9). �

15. Circular averages of Siegel tranforms

Let f ∈ Cc(R3). For every g ∈ G, define

(15.1) f̂(g) =
∑
v∈Z3

f(gv)

For any indefinite ternary quadratic form Q with detQ = 1, we let gQ ∈ G
be so that Q(v) = Q0(gQv), where Q0(x, y, z) = 2xz− y2.

In this section, we will use Proposition 13.3 and Theorem 12.1 to prove
the following proposition. The proof of Theorem 2.3 will then be completed
using this proposition.

15.1. Proposition. There is an absolute constant M , and for every large
enough E and 0 < ρ ≤ 10−4, there are %1, %2 (depending on ρ and E) so
that if Q is as above and t is large enough, depending linearly on log(‖Q‖),
the following holds.

Assume that for every Q′ ∈ Mat3(Z) with ‖Q′‖ ≤ eρt and all λ ∈ R,

(15.2)
∥∥Q− λQ′∥∥ > ∥∥Q′∥∥−E/M .
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There exists some C depending on E and polynomially on ‖Q‖ so that the
following holds. For any smooth function ξ on K, if∣∣∣∫

K
f̂(atkgQΓ)ξ(k) dk −

∫
K
ξ dk

∫
X
f̂ dmX

∣∣∣ > CS(f)S(ξ)e−%2t

then there is at least one ( %1

4E , E, t)-exceptional line or plane, and at most
four ( %1

4E , E, t)-exceptional lines {Li} and at most four ( %1

4E , E, t)-exceptional
planes {Pi}. Moreover∫

K
f̂(atkgQΓ)ξ(k) dk =

∫
K
ξ dk

∫
X
f̂ dmX +M+O(S(f)S(ξ)e−%2t)

where

M =

∫
C
f̂sp(atkgQΓ)ξ(k) dk

with

f̂sp(atkgQΓ) =
∑

v∈Z3∩((∪iLi)∪(∪iPi))

f(atkgQv)

C =
{
k ∈ K : f̂sp(atkgQΓ) ≥ e%1t

}
Before starting the proof, we recall the following well-known fact

15.2. Lemma. Suppose there exists g′Γ ∈ X with vol(Hg′Γ) ≤ R, so that

d(gQΓ, g′Γ) ≤ β
There exists an integral form Q′ with ‖Q′‖ � R? and some λ ∈ R so that

‖Q− λQ′‖ � R?β

Proof. Replacing g′ by hg′γ for some h ∈ H and γ ∈ Γ we may assume
‖g′‖ � 1. Similarly, we may assume ‖gQ‖ � 1.

Since vol(Hg′Γ) ≤ R, Q0 ◦ g′ is equivalent to an integral form Q′′ with
‖Q′′‖ � R?.

Since d(gQΓ, g′Γ) ≤ β, gQ = εg′γ′ where ‖ε− I‖ � β and ‖γ′‖ � 1. Thus

‖Q− λQ′‖ � R?β

for some integral form Q′ with ‖Q′‖ � R? and some λ ∈ R. �

Proof of Proposition 15.1. Let E and ρ be as in the statement, and let t > 0
be a large parameter. We will use Lemma 15.2 in the following form:

Let Q satisfy (15.2). There exists E1 ≥ max(4A7, E), where A7 is as in
Theorem 12.1 so that the following holds. For all t so that t > 4A7 log t and
for every x ∈ X with vol(Hx) ≤ eρt/E1 ,

d(gΓ, x) > e−t.

In view of this, part (1) in Theorem 12.1 (applied with G = SL3(R), hence,

m = 2) holds with R = eρt/E1 and t. Indeed, since A7ρ
E1
≤ 1

4 and tA7 ≤ et/4,

RA7tA7e−2t = eA7ρt/E1tA7e−2t ≤ e−t;
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hence, part (2) in Theorem 12.1 cannot hold.
For every S, let 1X1/S

≤ ϕS ≤ 1X1/(S+1)
be smooth with S(ϕS)� S?. Put

f̂S = ϕS f̂ ; we let L be so that S(f̂S) � SLS(f). Recall that α1, α2 � S?

in X1/S , they belong to L2(X,mX), and f̂ � max(α1, α2). Thus,

(15.3)

∫
f̂ dmX =

∫
f̂S dmX +O(S−?).

Set ε = κ8ρ/(2LE1), where κ8 is as in Theorem 12.1. We will show the
claim in the theorem holds with

%1 = ε and %2 = ε2

32E2 .

Apply Lemma 13.4 with η−D = e
ε
E
t, ηA = e−εt, and Q. If there are at

least five ( ε
4E , E, t)-exceptional lines, then Lemma 13.4 implies

‖Q− λQ′‖ ≤ ηA−M ′D = e(−ε+M′ε
E

)t

for some Q′ ∈ Mat3(Z) with ‖Q′‖ ≤ e
M′ε
E
t, where M ′ is absolute. Assuming

E is large compared to this M ′, however, this contradicts (15.2) if M ≥ 2M ′.
Thus, there are at most four ( ε

4E , E, t)-special lines. Similarly, there are at
most four ( ε

4E , E, t)-exceptional planes.
Denote these lines and the planes (if they exist) by {Li} and {Pi}, re-

spectively, and put Exc = (∪iLi) ∪ (∪iPi). For every k ∈ K, write

f̂(atkgQΓ) = f̂S(atkgQΓ) + f̂cusp(atkgQΓ) + f̂sp(atkgQΓ)

where f̂S = ϕS f̂ , f̂cusp is the contribution of Z3 \ Exc to f̂ − f̂S , and f̂sp is

the contribution of Z3 ∩ Exc to f̂ − f̂S .
By Theorem 12.1, applied with R = eρt/E1 , for any ξ ∈ C∞(K) we have

(15.4)
∣∣∣∫
K
f̂S(atkgQΓ)ξ(k) dk −

∫
ξ dk

∫
X
f̂S dmX

∣∣∣�
S(f̂S)S(ξ)e−κ8ρt/E′ � SLS(f)S(ξ)e−κ8ρt/E1 .

If we choose S = eεt = eκ8ρt/(2LE1), the above is � S(f)S(ξ)e−εt/2.
Moreover, by Theorem 13.8 applied with p = 1/2 and the Chebyshev’s

inequality, we have

(15.5)

∫
{k:atkgQΓ/∈X1/S}

S1/4 dk � S−1/2S1/4 = S−1/4.

This and (15.4), reduce the problem to investigating the integral of f̂− f̂S =

f̂cusp + f̂sp over Ĉ := {k ∈ K : f̂ − f̂S ≥ ES1/4}.
Let f̃ be as in (13.3) with ε/4E, E, and t. That is:

f̃(h; gQ) =
∑

v∈NQ,t

f(hv)

where NQ,t denotes the set of vectors in Z3 which are not contained in any
(ε/4E,E, t)-exceptional line or plane.
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Let C̃t = {k ∈ K : f̃(atk; gQ) ≥ Eeεt/4 = ES1/4}. By the definitions,∫
Ĉ
f̂cusp(atkgQΓ)ξ(k) dk ≤ ‖ξ‖∞

∫
C̃t
f̃(atk; gQ) dk.

Thus Proposition 13.3, applied with E and ε/4E, implies∫
C̃t
f̃(atk; gQ) dk � e−

ε2t
32E2 .

From these two, we conclude that

(15.6)

∫
Ĉ
f̂cusp(atkgQΓ) dk � ‖ξ‖∞ e

− ε2t
32E2 .

In view of (15.3), (15.4), (15.5) and (15.6), we have∣∣∣∫
K
f̂(atkgQΓ)ξ(k) dk −

∫
K
ξ dk

∫
X
f̂ dmX

∣∣∣
=

∫
C
f̂sp(atkgQΓ)ξ(k) dk +O(S(f)S(ξ)e−ε

2t/32E2
)

where C = {k ∈ K : f̂sp(atkgQΓ) > Eeεt/4}.
This completes the proof if we let %1 = ε and %2 = ε2/32E2. �

The Diophantine condition onQ, as stated in (15.2), is primarily employed
to derive the desired upper bound estimates for circular averages of the Siegel
transform, namely the application of Proposition 13.3 in the proof. However,
if one assumes the weaker condition on Q specified in Theorem 2.1, it is still
possible to establish a lower bound estimate for these averages. This lower
bound suffices to prove (a stronger version of) Theorem 2.1.

A simplified version of Proposition 15.1, which encapsulates this result,
is presented below.

15.3. Proposition. Let R be large, depending on ‖Q‖, and let T ≥ RA.
Assume that for every Q′ ∈ Mat3(Z) with ‖Q′‖ ≤ R and all λ ∈ R,

(15.7)
∥∥Q− λQ′∥∥ > RA(log T )AT−2.

Then for all f ∈ C∞c (R3) and ξ ∈ C∞c (K) we have∫
K
f̂(alog TkgQΓ)ξ(k) dk ≥

∫
K
ξ dk

∫
X
f̂ dmX +O(S(f)S(ξ)T−κ)

where A and κ are absolute.

Proof. The proof of this proposition is contained in the proof of Proposi-
tion 15.1, we explicate the proof for the convenience of the reader.

For every S, let 1X1/S
≤ ϕS ≤ 1X1/(S+1)

be a smooth function with

S(ϕS)� S?. Put f̂S = ϕS f̂ ; we let L be so that S(f̂S)� SLS(f).
In view of Lemma 15.2, if for some R′ and some g′ with vol(Hg′Γ) ≤ R′,

d(gQΓ, g′Γ) ≤ R′A7(log T )A7T−2,
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then there exists Q′ ∈ Mat3(Z) with ‖Q′‖ � R′A
′

and λ ∈ R so that

‖Q− λQ′‖ ≤ R′A7+A′(log T )A7T−2.

Assuming R′ � R1/A′ is chosen so that ‖Q′‖ � R′A
′

implies ‖Q′‖ ≤ R, the
above contradicts (15.7) so long as A is large enough.

Therefore, by Theorem 12.1, applied with G = SL2(R) (hence m = 2) and

R′ � R1/A′ , for any ξ ∈ C∞(K),

(15.8)
∣∣∣∫
K
f̂S(alog TkgQΓ)ξ(k) dk −

∫
ξ dk

∫
X
f̂S dmX

∣∣∣�
S(f̂S)S(ξ)R′−κ8 � SLS(f)S(ξ)R−κ8/A′ .

If we choose S = R?, the above is � S(f)S(ξ)R−?.
Moreover, recall from (15.3) that∫

f̂ dmX =

∫
f̂S dmX +O(S−?)

Altogether, thus, we conclude∫
K
f̂(alog TkgQΓ)ξ(k) dk ≥

∫
K
f̂S(atkgQΓ)ξ(k) dk

=

∫
ξ dk

∫
X
f̂ dmX + S(f)S(ξ)R−?,

as it was claimed. �

16. Linear algebra and quadratic forms

In this section, we will use transitivity of the action of H on level sets
{v : Q0(v) = c} to relate the counting problem in Theorem 2.3 to averages
considered in Proposition 15.1. As mentioned before, the argument is similar
to [DM91, EMM98].

Let us begin with the following

16.1. Lemma (cf. [EMM98], Lemma 3.4). Let f ≥ 0 be a smooth function
supported on BR3(0, R) (with R ≥ 1) and let ξ be a smooth function on S2.
Let v ∈ R3 and suppose t ≥ 2 logR and et/2 ≤ ‖v‖ ≤ et. Then∫

f(atkv)ξ(k−1e3) dk =

√
2

2π(1+O(e−t))‖v‖Jf (Q0(v), e−t‖v‖)ξ( v
‖v‖) +O

(
S(f)S(ξ)e−2t

)
where {e1, e2, e3} is the standard basis for R3,

Jf (c, d) :=
1

d

∫
f
( c+y2

2d ,−y, d
)

dy that is: Q0( c+y2

2d , y, d) = c,

and the implied constants depend polynomially on R.
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Moreover, there is some C > 0 depending on R so that if either ‖v‖ > Cet

or |Q0(v)| > C, then both sides of the above equality equal zero without the
error term O

(
S(f)e−4t

)
.

Proof. Put Kf (v) = {k ∈ K : f(atkv) 6= 0}. Let k ∈ Kf (v), then

(16.1)
−R ≤ x :=〈atkv, e1〉 = et〈kv, e1〉 ≤ R and

−R ≤ y :=〈atkv, e2〉 = 〈kv, e2〉 ≤ R

The estimates in (16.1) and et/2 ≤ ‖v‖ ≤ et thus imply that there exists
some C ′ which depends polynomially on R so that if we let

KR(v) = {k ∈ K : ‖k−1e3 − v
‖v‖‖ ≤ C

′e−t},

then Kf (v) ⊂ KR(v). Note that if KR(v) = ∅ or Kf (v) = ∅, we still have
Kf (v) ⊂ KR(v). Altogether, the range of integration is restricted to KR(v).

We first note that for all k ∈ KR(v), we have

(16.2) |ξ(k−1e3)− ξ( v
‖v‖)| � S(ξ)e−t

Similarly, for all k ∈ KR(v),

z := 〈atkv, e3〉 = e−t〈kv, e3〉 = e−t‖v‖+O(e−t).

Let us now put

x′ = Q0(v)+y2

2e−t‖v‖ = (2xz−y2)+y2

2e−t‖v‖ = xz
e−t‖v‖ .

Then Q0(x′, y, e−t‖v‖) = Q0(v), |x− x′| � e−t, and

|f(atkv)− f(x′, y, e−t‖v‖)| � S(fc,δ)e
−t.

In view of (16.2), thus, to complete the proof, we need to compute dy.
First note that ∫

f(atkv) dk =

∫
f(atk

′kvv) dk′.

Write kvv = (v1, v2, v3), then v3 = (1 + O(e−t))‖v‖ and in the notation
of (13.1),

y = 〈k′kvv, e2〉 = v1
sin θ√

2
+ v2 cos θ − v3

sin θ√
2
.

Thus dk = −
√

2
2π((1+O(e−t))‖v‖) dy on KR(v), where we used cos θ=1+O(e−2t)

for k′kv ∈ KR(v) and v3 = (1 +O(e−t))‖v‖. Altogether, we get∫
f(atkv) dk =

√
2

2π((1+O(e−t))‖v‖)

∫
f(x′,−y, e−t‖v‖) dy +O

(
S(f)e−2t

)
=

√
2

2π((1+O(e−t))‖v‖)Jf (Q0(v), e−t‖v‖) +O
(
S(f)e−2t

)
.

This and (16.2) complete the proof of the lemma; note that the last claim
in the lemma follows from the above argument. �
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Fix some 0 < ε < 10−4 and cover S2 with disjoint half open cubes {Ω′i,ε}
of size between ε2 and ε2/2. For each i, let

Ωi,ε = (1− ε, 1] · (gQΩ′i,ε).

Also set supΩ′i,ε
‖gQw‖ = di and di − Cε2 = infΩ′i,ε

‖gQw‖, note that di and

C depend on ‖gQ‖.

16.2. Lemma. Let c ∈ R and 0 < ε < 10−4. There exist f±i ∈ C∞c (R3) and

ξi ∈ C∞c (S2) satisfying 0 ≤ f−i ≤ f+
i � 1,

∫
f+
i = (1 + O(ε))

∫
f−i , and

S(•)� ε−L for • = f±i , ξi where L is absolute, so that

Jf−i
(Q0(v), e−t‖v‖)ξi( v

‖v‖) ≤ 1Ωi,ε(e
−tv)1[c−ε,c+ε](Q0(v)) ≤

Jf+
i

(Q0(v), e−t‖v‖)ξi( v
‖v‖)

Proof. Let us set

B−i = {v = (x, y, z) : |y| ≤ 1
2 , (1− ε)di ≤ z ≤ di − Cε2, |Q0(v)− c| ≤ ε}

B+
i = {v = (x, y, z) : |y| ≤ 1

2 , (1− ε)(di − Cε
2) ≤ z ≤ di, |Q0(v)− c| ≤ ε}

Define B−−i and B++
i similarly, by replacing ε by ε− C ′ε2 and ε+ C ′ε2 for

a large C ′, depending on di and C, respectively.
Fix smooth functions f̃±i satisfying 1B−−i

≤ f̃−i ≤ 1B−i
, 1B+

i
≤ f̃+

i ≤ 1B++
i

,

and S(f̃±i )� ε−L. Put f±i = zf̃±i .
Also fix smooth characteristic functions ξi so that

1Ξi ≤ ξi ≤ 1NC′ε2 (Ξi) and S(ξi)� ε−L

where Nδ(Ξi) is the δ-neighborhood of Ξi = { w
‖w‖ : w ∈ gQΩ′i,ε}.

Suppose now that v is so that Jf−i
(Q0(v), e−t‖v‖)ξi( v

‖v‖) 6= 0, then v ∈
gQΩ′i,ε. Moreover, using the definition

Jf−i
(Q0(v), e−t‖v‖) = et

‖v‖

∫
f−i (x,−y, e−t‖v‖) dy

where Q0(x, y, e−t‖v‖) = Q0(v), we have f−i (x,−y, e−t‖v‖) 6= 0 for some x, y.

Since 1
zf
−
i ≤ 1B−i

, we thus conclude

(1− ε)di ≤ e−t‖v‖ ≤ di − Cε2 and |Q0(v)− c| ≤ ε
These imply that e−tv ∈ Ωi,ε. Therefore,

1Ωi,ε(e
−tv)1[c−ε,c+ε](Q0(v)) = 1.

Since Jf−i
(Q0(v), e−t‖v‖)ξ(v/‖v‖) ≤ 1 the lower bound follows.

We now establish the upper bound. Let e−tv ∈ Ωi,ε and |Q0(v)− c| ≤ ε.
Suppose |y| ≤ 1/2, and let x be so that Q0(x, y, e−t‖v‖) = Q0(v). Then
(x,−y, e−tv) ∈ B+

i , thus f+
i (x,−y, e−t‖v‖) = e−t‖v‖. Hence

Jf+
i

(Q0(v), e−t‖v‖) = et

‖v‖

∫
f+
i (x,−y, e−t‖v‖) dy = 1,
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as we claimed. �

We also record the following upper bound estimate whose proof relies on
similar (but simpler) arguments. See [EMM98, Thm. 2.3], also [LMW23,
Lemma 3.9] and a related estimate in [KKL23, Thm. 4].

16.3. Lemma. Let 0 < η < 1. Then for all s� |log η|, we have

#{v ∈ Z3 : ‖v‖ ≤ es, |Q(v)| ≤M} � e(1+η)s

where the implied constants depend polynomially on M and ‖Q‖±1.

Proof. As indicated above, this is proved in [EMM98, Thm. 2.3], the poly-
nomial dependence stated above is implicit in loc. cit., and is made explicit
in [LMW23, Lemma 3.9] and [KKL23, Thm. 4]. �

Recall that we cover S2 with disjoint half open cubes {Ω′i,ε} of size between

ε2 and ε2/2. For t > 0 and a ≤ c ≤ b, let

Ni(c, et) = #{v ∈ Z3 : v ∈ ((1− ε)et, et] · Ω′i,ε, |Q(v)− c| ≤ ε}
The following lemma relates the lattice point counting to averages considered
in Proposition 15.1; its proof relies on Lemma 16.1 and Lemma 16.2.

16.4. Lemma. With the notation as in Lemma 16.2, let fi = f+
i also let ξi

be as in that lemma. Then for all t� | log ε|, we have

2π√
2
et
∫
K
f̂i(atkgQΓ)ξi(k

−1e3) dk = (1 +O(ε))Ni(c, e
t),

where the implied constants depend polynomially on |a|, |b|, and ‖gQ‖±1.

Proof. Let t = log T . By Lemma 16.1, we have

(16.3) 2π√
2
et
∫
fi(atkv)ξi(k

−1e3) dk =

(1 +O(e−t))Jfi(Q0(v), e−t‖v‖)ξ̃i( v
‖v‖) +O

(
S(fi)S(ξi)e

−t)
Recall from Lemma 16.2 that Ωi,ε = (1− ε, 1] · (gQΩ′i,ε). By that lemma

(16.4) Jf (Q0(v), e−t‖v‖)ξi( v
‖v‖) = (1 +O(ε))1Ωi,ε(e

−tv)1[c−ε,c+ε](Q0(v))

Using the last claim in Lemma 16.1, both sides of (16.3) are zero unless
‖v‖ � et and |Q0(v)| � 1. Therefore, using Lemma 16.3, with η small
enough so that S(fi)S(ξi)e

ηt < etε10, and summing (16.3), we conclude

2π√
2
et
∫
f̂i(atkgQΓ)ξi(k

−1e3) dk = 2π√
2
et
∫ ∑
v∈gQZ3

fi(atkv)ξi(k
−1e3) dk =

(1 +O(e−t))
∑

Jfi(Q0(v), e−t‖v‖)ξ̃i( v
‖v‖) +O

(
S(fi)S(ξi)e

−t)
This and (16.4) imply that

2π√
2
et
∫
f̂i(atkgQΓ)ξi(k

−1e3) dk = (1 +O(ε))Ni(c, e
t),
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as we claimed. �

17. Proofs of Theorem 2.1 and Theorem 2.3

In this section, we will use Proposition 15.1 and Lemma 16.4 to complete
the proof of Theorem 2.3. A similar, but simpler, argument based on Propo-
sition 15.3 and and Lemma 16.4 will also be used to complete the proof of
Theorem 2.1.

17.1. Proof of Theorem 2.3. Let A, δ be constants as in the statement
of that theorem. Fix a large parameter T , and put t = log T .

The following is our standing assumption in this section: for all Q′ ∈
Mat3(Z) with ‖Q′‖ ≤ T δ and all λ ∈ R,

(17.1)
∥∥Q− λQ′∥∥ ≥ ∥∥Q′∥∥−A .

17.2. Lemma. There exists an absolute constant M ′, so that for all % <
δ/M ′ and all Ē > 5A + 5M ′%. There are at most four lines L = {Li} and
at most four planes P = {Pi} so that if for some t/5 ≤ ` ≤ t any line L or
plane P is (%, Ē, `)-exceptional then L ∈ L and P ∈ P.

Proof. We prove this for lines, the proof for planes is similar. Let t/5 ≤ ` ≤ t.
Then e%` ≤ e%t and e−Ē` ≤ e−Ēt/5. Recall from Definition 13.1 that a line
L is (%, Ē, `)-exceptional if L ∩ Z3 is spanned by v where

‖v‖ ≤ e%` and |Q(v)| ≤ e−Ē`

Hence any such line is (%, Ē/5, t)-exceptional.

Applying Lemma 13.4 with η−D = e%t, ηA = e−%Ēt/5, and Q, now implies
that if there are at least five (%, Ē/5, t)-exceptional lines, then

‖Q− λQ′‖ ≤ ηA−M ′D = e(−%Ē+5M ′%)t/5

for some Q′ ∈ Mat3(Z) with ‖Q′‖ ≤ eM ′%t, where M ′ is absolute. Assuming
Ē and % are chosen as specified in the statement for this M ′, we derive a
contradiction to (17.1). �

In what follows we will apply Proposition 15.1 with E = max(AM, 5A+5)
and ρ = δ. Then Lemma 17.2 implies that there are most four lines {Li}
and at most four planes {Pi} so that for any t/5 ≤ ` ≤ t, any (%1/4E,E, `)-
exceptional line or plane belongs to {Li} or {Pi}, respectively. Put L = ∪Li
and P = ∪Pi.

The following basic lattice point count will be used in the argument

(17.2) #{v ∈ Z3 : ‖v‖ ≤ et/4} ≤ C ′1e3t/4,

where C ′1 is absolute.
Let ε = e−κ̂t for some κ̂ which will be optimized later. For all t/5 ≤ ` ≤ t

and a ≤ c ≤ b, we put

Υi(c, e
`) = {v ∈ Z3 : v ∈ ((1− ε)e`, e`] · Ω′i,ε, |Q(v)− c| ≤ ε},
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and Ni(c, e`) = #Υi(c, e
`). Similarly, let

Υ(c, e`) = {v ∈ Z3 : v ∈ ((1− ε)e`, e`] · S2, |Q(v)− c| ≤ ε},
and N (c, e`) = #Υ(c, e`).

By Lemma 16.4, there exist f`,i,c ∈ C∞c (R3) and ξi ∈ C∞c (S2) so that

(17.3) e−`Ni(c, e`) = (1 +O(ε)) 2π√
2

∫
f̂`,i,c(a`kgQΓ)ξi(k

−1e3) dk.

In view of (17.1), applying Proposition 15.1 with E and ρ as above,∫
f̂`,i,c(a`kgQΓ)ξi(k

−1e3) dk =

∫
K
ξi(k

−1e3) dk

∫
R3

f`,i,c dLeb

+R′`,i,c +O(S(f`,i,c)S(ξi)e
−%2`)

where

R′`,i,c =

∫
f̂ sp
`,i,c(a`kgQΓ)ξ(k) dk

with

f̂ sp
`,i,c(a`kgQΓ) =

∑
w∈Z3∩(L∪P)

f(a`kgQw)

and we used
∫
X f̂`,i,c dmX =

∫
R3 f`,i,c dLeb.

We note that Proposition 15.1 indeed gives a more precise information
where the domain of integration in the definition of R′`,i,c is restricted to

C =
{
k ∈ K : f̂ sp

`,i,c(a`kgQΓ) ≥ e%1`
}
.

However, the integral over the complement of C is O(S(f`,i,c)S(ξi)e
−%2`), see

(15.5), and it is more convenient for us here to use the above formulation.
Using the definitions of f`,i,c and ξi, see Lemma 16.2, we have∑

i

∫
K
ξi(k

−1e3) dk

∫
R3

f`,i,c dLeb = C ′ · ε2 +O(ε3),

where the implied constant is O((1 + |c|?)), see also [EMM98, Lemma 3.8].

Moreover, arguing as in the proof of Lemma 16.4, but only summing over
v = gQw for w ∈ Z3 ∩ (L ∪ P), we conclude that

e` · R′`,i,c = (1 +O(ε)) ·
(
#(Υi(c, e

`) ∩ (L ∪ P)
)
.

Summing this over all i and using the fact that Ω′i,ε are disjoint,

(17.4) e` · R′`,c := e`
∑
i

R′`,i,c = (1 +O(ε))
(
#(Υ(c, e`) ∩ (L ∪ P)

)
We will, as we may, choose κ̂ in the definition ε = e−κ̂t small enough

compared to %2, then using (17.3) and the above discussion,

N (c, e`) = C · ε2 · e` +R′`,c · e` +O(ε3e`);

we also used t/5 ≤ ` ≤ t.
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Applying this with cj = a+ jε for all 1 ≤ j ≤ b b−aε c and all t/5 ≤ ` ≤ t,

(17.5) #{v ∈ Z3 : (1− ε)e` ≤ ‖v‖ ≤ e`, a ≤ Q(v) ≤ b} =

C
2 · ε · (b− a) · e` +R′` · e` +O(ε2e`),

where the implied constant is O((1 + |a|+ |b|)?) and R′` =
∑

j R′`,cj .
Apply (17.5) with ` = (1− jε)t for 0 ≤ j ≤ d 4

5εe. Summing the resulting

estimate over 0 ≤ j ≤ d 4
5εe and using (17.2) for ` ≤ t/4, we obtain a bound

as stated in Theorem 2.3, but with et · R′ instead of RT in the theorem,
where R′ =

∑
`R′`. Note however that in view of (17.4), we have

et · R′ = (1 +O(ε)) · (#{v ∈ Z3 ∩ (L ∪ P) : ‖v‖ ≤ et, a ≤ Q(v) ≤ b})
This establishes the theorem except for the definition of CQ, and the es-
timates (2.1) and (2.2). See the remark following [EMM98, Lemma 3.8]
for the definition of CQ. The proof of (2.1) and (2.2) is the content of the
following lemma, which completes the proof. �

17.3. Lemma. Suppose L and P be rational lines and planes, respectively,
and let Span{v} = L ∩ Z3 and Span{w,w′} = P ∩ Z3. Then

(1) If |Q(v)| > e(−2+4θ)t, then

#{u ∈ Z3 ∩ L : ‖u‖ ≤ et, a ≤ Q(u) ≤ b} � e(1−O(θ))t

(2) If |Q∗(w ∧ w′)| > e(−2+4θ)t

#{u ∈ Z3 ∩ P : ‖u‖ ≤ et, a ≤ Q(u) ≤ b} � e(1−O(θ))t

Proof. We will use Lemma 13.5 and an argument based on Lemma 16.4
to prove this. Though, a more hands-on proof is certainly possible. Par-
ticularly, for part (1), we have Q(u) = n2Q(v) for all u ∈ Z3 ∩ L, which
immediately implies the claim in part (1).

We will prove part (2), proof of part (1) (using the following argument)
is similar. First note that applying Lemma 16.3 with η = θ/5,

(17.6) #{u ∈ Z3 ∩ P : ‖u‖ ≤ e(1− θ
4

)t, a ≤ Q(u) ≤ b} �

e(1+ θ
5

)(1− θ
4

)t � e(1−O(θ))t

In view of (17.6), we will consider (1− θ
2)t ≤ ` ≤ t. Let us write w̄ = w∧w′

and recall that |Q∗(w̄)| > e(−2+4θ)t. Then

|Q∗(w̄)| > e(−2+2θ)` for all (1− θ
2)t ≤ ` ≤ t.

Therefore, by Lemma 13.5 applied with `, σ = 1− θ, and δ = θ/10, we have

(17.7)

∫
‖(a`k)∗w̄‖−1 dk � e(−2θ/3)` � e−

θ
2
t.

Let ε = e−κ̂t for κ̂ < θ/10. Arguing as in the above prove to relate the
term R′ to the number of points in L ∪ P, we see that

#{u ∈ Z3 ∩ P : (1− ε)e` ≤ ‖u‖ ≤ e`, a ≤ Q(u) ≤ b}
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is �
∑

c,i

∫
f̂P`,i,c(atkgQΓ) dk, where

f̂P`,i,c(a`kgQΓ) =
∑

w∈Z3∩P

f(a`kgQu).

Moreover, by a variant of Schmidt’s Lemma, we have

fP`,i,c(a`kgQΓ)� ‖(a`k)∗w̄‖−1.

This together with (17.7), thus imply

#{u ∈ Z3 ∩ P : (1− ε)e` ≤ ‖u‖ ≤ e`, a ≤ Q(u) ≤ b} � e−
θ
2
t.

Summing this over all ` = t(1 − jε) for 0 ≤ j ≤ b θ2εc, and using κ̂ < θ/10
and (17.6), the claim in part (2) follows. �

17.4. Proof of Theorem 2.1. We now use a simplified version of the above
argument to prove the following

17.5. Theorem. Let Q be an indefinite ternary quadratic form with detQ =
1. For all R large enough, depending on ‖Q‖, and all T ≥ RA8 at least one
of the following holds.

(1) Let a < b, then we have

#
{
v ∈ Z3 : ‖v‖ ≤ T, a ≤ Q(v) ≤ b

}
≥

CQ(b− a)T + (1 + |a|+ |b|)NTR−κ9 .

(2) There exists Q′ ∈ Mat3(R) with ‖Q′‖ ≤ R so that∥∥Q− λQ′∥∥ ≤ RA8(log T )A8T−2 where λ = (detQ′)−1/3.

The constants N , A8, and κ9 are absolute, and

CQ =

∫
L

dσ

‖∇Q‖

where L = {v ∈ R3 : ‖v‖ ≤ 1, Q(v) = 0} and dσ is the area element on L.

Proof. As noted above, the proof follows steps similar to those in the proof
of Theorem 2.3 in §17.1, but replaces the application of Proposition 15.1
with Proposition 15.3. We will use the notation used in §17.1.

We will, as we may, assume throughout the argument that for all Q′ ∈
Mat3(R) with ‖Q′‖ ≤ R and all λ ∈ R

(17.8)
∥∥Q− λQ′∥∥ ≤ RĀ(log T )ĀT−2

for some Ā, which will be determined later in the proof. Otherwise, part (2)
in the theorem holds and the proof is complete.

Recall again the following basic lattice point count

(17.9) #{v ∈ Z3 : ‖v‖ ≤ et/4} ≤ C ′1e3t/4,

where C ′1 is absolute.
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Let ε = e−κ̂t for some κ̂ which will be optimized later. For all t/5 ≤ ` ≤ t
and a ≤ c ≤ b, we put

Υi(c, e
`) = {v ∈ Z3 : v ∈ ((1− ε)e`, e`] · Ω′i,ε, |Q(v)− c| ≤ ε},

and Ni(c, e`) = #Υi(c, e
`). Similarly, let

Υ(c, e`) = {v ∈ Z3 : v ∈ ((1− ε)e`, e`] · S2, |Q(v)− c| ≤ ε},

and N (c, e`) = #Υ(c, e`).
By Lemma 16.4, there exist f`,i,c ∈ C∞c (R3) and ξi ∈ C∞c (S2) so that

(17.10) e−`Ni(c, e`) = (1 +O(ε)) 2π√
2

∫
f̂`,i,c(a`kgQΓ)ξi(k

−1e3) dk.

In view of (17.8), and assuming Ā is large enough, Proposition 15.3 implies∫
f̂`,i,c(a`kgQΓ)ξi(k

−1e3) dk ≥
∫
K
ξi(k

−1e3) dk

∫
R3

f`,i,c dLeb

+O(S(f`,i,c)S(ξi)e
−κ`)

where we used
∫
X f̂`,i,c dmX =

∫
R3 f`,i,c dLeb.

Using the definitions of f`,i,c and ξi, see Lemma 16.2, we have∑
i

∫
K
ξi(k

−1e3) dk

∫
R3

f`,i,c dLeb = C ′ · ε2 +O(ε3),

where the implied constant is O((1 + |c|?)), see also [EMM98, Lemma 3.8].
We will, as we may, choose κ̂ in the definition ε = e−κ̂t small enough

compared to κ, then using (17.3) and the above discussion,

N (c, e`) ≥ C · ε2 · e` +O(ε3e`);

we also used t/5 ≤ ` ≤ t.
Applying this with cj = a+ jε for all 1 ≤ j ≤ b b−aε c and all t/5 ≤ ` ≤ t,

(17.11) #{v ∈ Z3 : (1− ε)e` ≤ ‖v‖ ≤ e`, a ≤ Q(v) ≤ b} ≥
C
2 · ε · (b− a) · e` +O(ε2e`),

where the implied constant is O((1 + |a|+ |b|)?).
Apply (17.11) with ` = (1− jε)t for 0 ≤ j ≤ d 4

5εe. Summing the resulting

estimate over 0 ≤ j ≤ d 4
5εe and using (17.9) for ` ≤ t/4, we obtain a bound

as stated in part (1) of the theorem. For the definition of CQ, see the remark
following [EMM98, Lemma 3.8]. �

Proof of Theorem 2.1. This is a direct consequence of of Theorem 17.5. In-
deed, let κ3 = κ9/2N and let A4 = κ9. Now Theorem 17.5 applied with
[a, b] = [c−R−κ3 , c+R−κ3 ] for any |c| ≤ Rκ3 implies Theorem 2.1. �

Proof of Corollary 2.2. This is a direct consequence of Theorem 2.1. For
more details, see [LM14, §12.3]. �
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Appendices

Appendix A. Unipotent trajectories and parabolic subgroups

In this section G̃ ⊂ SLN denotes a semisimple Q-subgroup. We let G̃ =
G̃(R) and g̃ = Lie(G̃). Also let g̃Z := g̃ ∩ slN (Z), then g̃ has a natural Q-

structure, and g̃Z is a G̃∩SLN (Z)-stable lattice in g̃. If there is no confusion,
we will simply write gv for Ad(g)v; similarly for the natural actions on ∧`g̃.

Fix a Euclidean norm ‖ · ‖ on MatN (R). This induces a norm on slN (R)
and on SLN (R). We will also write ‖ · ‖ for the induced norms on exterior
products of slN (R). For g ∈ SLN (R) we let |g| = max{‖g‖, ‖g−1‖}.

Let Γ̃ ⊂ G̃ ∩ SLN (Z) be an arithmetic lattice in G̃; let X̃ = G̃/Γ̃, and

X̃η = {gΓ̃ ∈ X̃ : min
06=v∈g̃(Z)

‖gv‖ ≥ η} for all η > 0.

These are compact subsets of X̃, and any compact subset of X̃ is contained
in X̃η for some η > 0.

If L ⊂ G̃ is a connected Q-subgroup, we let vL be a primitive inte-
gral vector on the line ∧dimLLie(L) ⊂ ∧dimLg̃ where L = L(R). Recall
from [LMMS19] the definition of the height of L

(A.1) ht(L) = ‖vL‖.

We also recall the following setting from [LMMS19]. This notation will

only be used in this section. Let U ⊂ G̃ be a unipotent subgroup and let u =
Lie(U). We fix a basis BU of u consisting of unit vectors and set Bu(0, δ) =
{
∑

z∈BU azz : |az| ≤ δ} for δ > 0 as well as BU (e) = exp(Bu(0, 1)).

Let λ : u→ u be an R-diagonalizable expanding linear map (all eigenval-
ues have absolute value > 1). For any k ∈ Z and any u = exp(z) ∈ U , we
set λk(u) = exp(λk(z)). We note that λk ◦ λ` = λk+`. We shall assume that
there exists k0 ∈ N such that for every integer k > k0,

(A.2) exp (λk−k0(Bu(0, 1))) exp (λk−1(Bu(0, 1))) ⊂ exp (λk(Bu(0, 1))).

Since the exponential map exp : u → U pushes the Lebesgue measure on u
to a Haar measure, denoted by | · |, on U , for any measurable B ⊂ U

(A.3) |λk(B)| = | det(λ)|k|B| for all k ∈ Z.

To avoid cumbersome statements, we suppose throughout that any constant
that is allowed to depend on ht(G̃) is also (implicitly) allowed to depend on

‖λ‖,
∥∥λ−1

∥∥, |λ1(BU (e))|
|BU (e)| = |det(λ)|, and k0.

A.1. Theorem. There exist A9 depending on N and A10 depending on N
and polynomially on ht(G̃) so that for any g ∈ G̃, k ≥ 1, and any 0 < ε ≤
1/2 at least one of the following holds.

(1)

|{u ∈ BU (e) : λk(u)gΓ̃ 6∈ X̃ε}| ≤ A10ε
1/A9 |BU (e)|.
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(2) There is a Q-parabolic subgroup P ⊂ G̃ with ht(P) ≤ A10|g|A9ε1/A9 so
that all the following are satisfied

‖λk(u)gvP ‖ ≤ A10ε
1/A9 for all u ∈ BU (e),(A.4a)

‖λk(u)gvRu(P )‖ ≤ A10ε
1/A9 for all u ∈ BU (e),(A.4b)

‖λk(u)gvQ‖ ≤ A10ε
1/A9 for all u ∈ BU (e),(A.4c)

where Q = Q(R) for Q = [P,P].

This result strengthens [LMMS19, Thm. 6.3]. While the original theorem
only established the existence of a unipotent subgroup, we now demonstrate
that this subgroup may, in fact, be taken to be the unipotent radical of a
Q-parabolic subgroup. Indeed we will prove Theorem A.1, using [LMMS19,
Thm. 5.3], which was also used in the proof of [LMMS19, Thm. 6.3], and
the following theorem, which is of independent interest.

For every subspace V ⊂ g̃, let V ⊥ denote the orthogonal complement of
V with respect to the Killing form kg̃ on g̃.

A.2. Theorem. There are positive constants δ, C, depending on G̃, such
that if g ∈ G̃ is such that there exists a vector v ∈ g̃Z with ‖gv‖ ≤ δ, then

(1) {w ∈ g̃Z : ‖gw‖ ≤ δ1/C} generates a nilpotent subalgebra, v say.

(2) v⊥ ∩Ad(g)g̃Z is spanned by vectors of size ≤ Cδ−1/C .
(3) v⊥ generates a proper parabolic subalgebra of g̃.

Let us first assume Theorem A.2 and complete the proof of Theorem A.1.

Proof of Theorem A.1. Let E andD be constants as in [LMMS19, Thm. 5.3].

In particular, D depends only on N , and E on N and ht(G̃). We will show
that Theorem A.1 holds with appropriately chosen A10 ≥ E and A9 ≥ D.
Assume

|{u ∈ BU (e) : λk(u)gΓ̃ 6∈ X̃ε}| > Eε1/D|BU (e)|.
Then [LMMS19, Thm. 5.2] implies that there is a rational subspace W ⊂ g̃,
say of dimension `, so that

(A.5) sup
u∈BU (e)

‖λk(u)gvW ‖ = ε̂� ε?,

where vW denotes the primitive vector corresponding to W.
For later use, let us record that Minkowski’s theorem and the above imply

that for every u ∈ BU (e), there exists a nilpotent vector zu ∈ g̃Z with

(A.6) ‖λk(u)gzu‖ ≤ ε̂1/dim g̃.

Let the partial flag ∆`1 ⊂ · · · ⊂ ∆`d and the function η be given as
in [LMMS19, Thm. 5.3]. In particular, rk(∆`i) = `i and η(`0), . . . , η(`d+1) ∈
(0, 1], with `0 = 0 and `d+1 = dim g̃, is defined by

η(`0) = η(`d+1) = 1

η(`i) = max
u∈BU (e)

‖λk(u)∆`i‖ for 1 ≤ i ≤ d;
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as shown in [LMMS19], the function η(•) extends to a function η : [0, dim g̃]→
(0, 1] so that − log η : [0, dim g̃]→ R+ is concave and linear on each interval
[`0, `1], . . . , [`d, `d+1].

For 0 < τ < 1, put

Excτ = {u ∈ BU (e) : αi(λk(u)g)−1 < τ iη(i)},

where αi’s are also as in loc. cit. Then by [LMMS19, Thm. 5.3], we have

|Excτ | ≤ Eτ1/D|BU (e)|, where D depends only on dim g̃.
Moreover, by the last sentence in [LMMS19, Thm. 5.3], we can assume

that ∆`1 ⊂ · · · ⊂ ∆`d is so that

η(rk(∆)) ≤ max
u∈BU (e)

‖(λk(u)∆)‖,

where ∆ = W ∩ g̃Z.
We now argue as in the proof of [LMMS19, Lemma 6.2]. Since − log η is

concave, we have η(1) ≤ ε̂1/`. Let κ = (4`dim g̃)−1, and let ε̂1/` < ρ < 1 be
a parameter which will be optimized later. Let 1 ≤ s0 < d be the largest

integer so that η(s0)
η(s0−1) ≤ ρ. The choice of κ and η(dim g̃) = 1 imply that

there is some m ≥ 0 so that η(s0+d)
η(s0+d−1) ≤ ρ

1−dκ for all 0 ≤ d ≤ m and

(A.7) η(s0+m+1)
η(s0+m) ≥ ρ

1−(m+1)κ.

Put s = s0 + m, and note that s = `j for some j. Let V be the subspace
spanned by ∆s, then

‖λk(u)gvV ‖ ≤ η(s) ≤ ρ1−mκ for all u ∈ BU (e)

Moreover, V is a nilpotent subalgebra of g̃, and we can choose a basis
{v1, . . . , vs} for V ∩ g̃Z so that

(A.8) ‖λk(u)gvi‖ ≤ Â
η(i)

η(i− 1)
≤ Âρ1−mκ,

where Â depends only on dim g̃, see the proof of [LMMS19, Lemma 6.2] for
all these statements.

Put τ = ρκ/(2 dim g̃). Then for all u ∈ BU (e) \ Excτ and any w ∈ g̃Z \V,

τ s+1η(s+ 1) ≤ ‖λk(u)g(∆s + Zw)‖
≤ ‖λk(u)gw‖‖λk(u)g∆s‖ ≤ ‖λk(u)gw‖η(s).

This and (A.7) imply that

(A.9)
‖λk(u)gw‖ ≥ τ s+1ρ1−(m+1)κ

> ρ1−(m+ 1
2

)κ > Âρ1−mκ.

In view of (A.8) and (A.9), for every u ∈ BU (e) \ Excτ , the space

Ad(λk(u)g)(g̃Z ∩V)

is spanned by {w ∈ g̃Z : ‖λk(u)gw‖ ≤ Âρθ}.
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Apply Theorem A.2 with Âρ1−mκ and λk(u)gV. Then part (2) of that

theorem implies that
(
Ad(λk(u)g)(g̃Z ∩V)

)⊥
generates a proper parabolic

subalgebra, Ad(λk(u)g)Lie(P ) say. Moreover, if we choose ρ to be a small
enough power of ε, then (A.6) and part (2) in Theorem A.2 imply that

‖λk(u)gvP ‖ ≤ ρ−?ε̂1/ dim g̃ � ε? for all u ∈ BU (e) \ Excτ .

Since u 7→ λk(u)gvP is a polynomial map and |Excτ | � τ1/D|BU (e)|, we
conclude that

‖λk(u)gvP ‖ � ε? for all u ∈ BU (e).

This finishes the proof of (A.4a).
To establish the claims in (A.4b) and (A.4c), we use (A.4a) and follow

the argument in the proof of [LMMS19, Lemma 4.2]. Specifically, we show
that for all u ∈ BU (e)\Excτ , Ad(λk(u)g)Lie(Q) and Ad(λk(u)g)Lie(Ru(P ))
are spanned by vectors of size � ρ−?. Combined with (A.6), this completes
the proof, provided that ρ is chosen to be a sufficiently small power of ε. �

A.3. Proof of Theorem A.2. We continue to use the above notation. The
proof of Theorem A.2, relies on the following two lemmas.

A.4. Lemma. Let v ⊂ g̃ be a nilpotent Lie subalgebra. Then there exists a
parabolic subgroup P such that

v ⊂ Lie(Ru(P )) ⊂ Lie(P ) ⊂ v⊥.

Proof. Let v0 = v, and for i ≥ 1, define vi to be the niladical of Ng̃(vi−1).
Then there exists some m so that vm = Lie(Ru(P )) for a parabolic subgroup

P of G̃. Since vi ⊂ vi+1, we have

v ⊂ Lie(Ru(P )).

This and the definition of the Killing form, kg̃(v, w) = tr(adv ◦ adw), now

imply that Lie(P ) ⊂ v⊥. The proof is complete. �

A.5. Lemma. There is a positive constant C ′, depending on dim g̃, so that
for every A ≥ 2 and δ ≤ A−C′ the following holds. If there is a vector v ∈ g̃Z
with ‖gv‖ ≤ δ, then {w ∈ g̃Z : ‖gw‖ ≤ A} generates a proper Lie subalgebra
of g̃.

Proof. Let l denote the Lie algebra spanned by {w ∈ g̃Z : ‖gw‖ ≤ A}, and
let gLg−1 be the corresponding subgroup. Then l is spanned by vectors of
size � A?, where the implied constants depend only on dim g̃. Moreover
gv ∈ l. Thus if δ is small enough, we have

(A.10) ‖gvL‖ � A?δ ≤ δ1/2,

which in particular implies that l 6= g̃. �

Proof of Theorem A.2. Let δ1 = δ? be a small power of δ which will be
explicated later. Let us also put Λ := Ad(g)g̃Z. Then so long as δ is small
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enough, {w ∈ Λ : ‖w‖ ≤ δ1} generate over Z a lattice in a nilpotent Lie
subalgebra v ⊂ g̃. This establishes part (1) in the theorem.

We now prove part (2). That is: v⊥ ∩ Λ is spanned by elements of size
� δ−1

1 . Consider the vectors v1, v2, . . . , vn that attain the ith successive
minima of Λ, respectively. Let m = dim v. Then v1, . . . , vm ∈ v, and
furthermore, ‖vi‖ > δ1 holds for all i > m.

Let v∗1, . . . , v
∗
n be the dual basis with respect to the Killing form kg̃. Then

〈v∗1, . . . , v∗n〉 ⊂ Λ/M where M � 1. Since kg̃(vi, v
∗
j ) = δij , we deduce that

‖v∗i ‖ � ‖vi‖−1. Moreover,
∏
‖vi‖ �

∏
‖v∗i ‖−1, therefore, ‖v∗i ‖ � ‖vi‖−1.

The orthogonal complement v⊥ is spanned by the vectors v∗m+1, . . . , v
∗
n,

and therefore, increasing M if necessary, it is spanned by {w ∈ Λ : ‖w‖ ≤
M‖vm+1‖−1}. In other words, it is spanned by vectors in Λ of size � δ−1

1 .
We now prove part (3) in the theorem. By applying Lemma A.5, see

in particular (A.10), if δ1 is a small enough power of δ, the Lie algebra
generated by v⊥ cannot be the entire algebra. Furthermore, by Lemma A.4,
we know it must contain a parabolic subalgebra which contains v. Therefore,
〈v⊥〉 is indeed a nontrivial parabolic subalgebra containing v. �

A.6. An S-arithmetic version of Theorem A.1. We conclude this ap-
pendix with noting that Theorem A.1 can easily be adapted to the S-
arithmetic setting as in [LMMS19], the only difference being that now A10

can depend also on #S and polynomially on the primes in S. For the record
we state this explicitly; the straightforward modification of the proofs above
to this more general context is left to the reader.

In addition to the semisimple Q-subgroup. G̃ ⊂ SLN , we now also choose
a finite set of places S of Q containing the infinite place. Let G̃ = G̃(QS) and

g̃ = Lie(G̃). Also let g̃ZS := g̃∩ slN (ZS). Then g̃ has a natural Q-structure,

and g̃ZS is a G̃ ∩ SLN (ZS)-stable lattice in g̃. If there is no confusion, we
will simply write gv for Ad(g)v; similarly for the natural actions on ∧`g̃.

Let ‖ · ‖∞ denote the Euclidean norm on MatN (R), and for every finite
place v ∈ S, let ‖·‖v be a maximum norm with respect to the standard basis
for MatN (Qv) induced by the standard absolute value on Qv. Let ‖ · ‖S or
simply ‖ · ‖ denote maxv∈S ‖ · ‖v This induces a norm on slN (QS) and on
SLN (QS). We will also write ‖·‖ for the induced norms on exterior products
of slN (R). For g ∈ SLN (QS) we let |g| = max{‖g‖, ‖g−1‖}.

Let Γ̃ ⊂ G̃ ∩ SLN (ZS) be an arithmetic lattice in G̃; let X̃ = G̃/Γ̃, and

X̃η = {gΓ̃ ∈ X̃ : min
06=v∈g̃(Z)

‖gv‖ ≥ η} for all η > 0.

These are compact subsets of X̃, and any compact subset of X̃ is contained
in X̃η for some η > 0.

As it was done in [LMMS19], let U =
∏
v∈S Uv ⊂ G̃ be a unipotent

subgroup and let u = Lie(U). We fix a basis BU of u consisting of unit
vectors and set Bu(0, δ) = {

∑
z∈BU azz : |az|S ≤ δ} for δ > 0 as well as

BU (e) = exp(Bu(0, 1)).
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Let λ : u → u be a QS-diagonalizable expanding linear map satisfy-
ing (A.2) and (A.3).

The proof of Theorem A.1 generalizes mutatis mutandis to yield the fol-
lowing result.

A.7. Theorem. There exist A11 depending on N , and A12 depending on N ,
#S and polynomialy on ht(G̃) and the primes in S so that for any g ∈ G̃,
k ≥ 1, and any 0 < ε ≤ 1/2 at least one of the following holds.

(1)

|{u ∈ BU (e) : λk(u)gΓ̃ 6∈ X̃ε}| ≤ A12ε
1/A11 .

(2) There is a Q-parabolic subgroup P ⊂ G̃ with ht(P) ≤ A12|g|A11ε1/A11 so
that all the following are satisfied

‖λk(u)gvP ‖ ≤ A12ε
1/A11 for all u ∈ BU (e),(A.11a)

‖λk(u)gvRu(P )‖ ≤ A12ε
1/A11 for all u ∈ BU (e),(A.11b)

‖λk(u)gvQ‖ ≤ A12ε
1/A11 for all u ∈ BU (e),(A.11c)

where Q = Q(QS) for Q = [P,P].

Appendix B. Avoidance principles: The proofs

This section contains proofs of results in §4. The proofs are by now
standard, and we include them primarily for the convenience of the reader.

B.1. Proof of Proposition 4.4. In this section, we prove Proposition 4.4.
The proof, which is essentially that of [LMW22, Prop. 4.6] mutatis mutandis,
is based on the study of a certain Margulis function, see (B.5). We recall
the details to explicate the necessary changes.

For every d > 0, define the probability measure σd on H by∫
ϕ(h) dσd(h) =

1

3

∫ 2

−1
ϕ(adur) dr.

Let us first remark on our choice of the interval [−1, 2]: We will define a
function fY in (B.5) below. In Lemmas 13.5–B.5, certain estimates for∫

fY (h •) d(σd1∗· · ·∗σdn)(h)

will be obtained, then in Lemma B.6, we will convert these estimates to
similar estimates for ∫ 1

0
fY (ad1+···+dnur •) dr.

The argument in Lemma B.6 is based on commutation relations between
ad and ur; similar arguments have been used several times throughout the
paper. Since the function fY can have a rather large Lipschitz constant, we
will not appeal to continuity properties of fY in Lemma B.6. Instead, we
will use the fact that [0, 1] ⊂ [−1, 2] + r for any |r| ≤ 1/2.
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Recall that dim r = 2m + 1, and that r is Ad(H)-irreducible. Moreover,
recall that for every highest weight vector w ∈ r, we have

(B.1) Ad(at)w = emtw.

We begin with the following linear algebra lemma.

B.2. Lemma (cf. Lemma A.1, [LMW22]). Let 0 < α ≤ 1/(2m + 1). For all
0 6= w ∈ r, we have∫

‖Ad(h)w‖−α dσd(h) ≤ Ce−αmd‖w‖−α

where C is an absolute constant.

Sketch of the proof. Standard representation theory of SL2 implies that for
every ‖w‖ = 1, we have

Ad(atur)w = (emtpw(r), . . .)

where pw(r) =
∑
cir

i is a polynomial of degree 2m with max{|ci|} � 1.
Thus if we put

I(ε) = {r ∈ [−1, 2] : ε/2 ≤ pw(r) ≤ ε},
then |I(ε)| � ε1/(2m) where the implied constant is absolute, see e.g. [KM98,
Prop. 3.2].

Moreover, ‖Ad(atur)w‖ ≥ emtε/2, for every r ∈ I(ε). The lemma follows
if we dyadically decompose the domain and summing the resulting geometric
series, which converges independently of α since α ≤ 1

2m+1 <
1

2m . �

We will also use the following non-divergence result á la Eskin, Margulis,
and Mozes [EMM98].

B.3. Proposition (cf. [EM04]). There exist A13, κ10 depending only on the
dimension, and a function ω : X → [2,∞), so that both of the following hold
for all x ∈ X and all d ≥ Bω

inj(x) ≥ ω(x)−A13(B.2a) ∫
ω(hx) dσ

(`)
d (h) ≤ e−κ10`dω(x) + B̄eA13d(B.2b)

where σ
(`)
d denotes the `-fold convolution and B̄ ≥ 1 depends only of X.

Proof. A function with these properties is constructed in [EM04]. More
explicitly, see [SS22, Prop. 26] for (B.2a) and [SS22, Thm. 16] for (B.2b). �

Let Y = Hy be a periodic orbit. For every x ∈ X \ Y , define

IY (x) = {w ∈ r : 0 < ‖w‖ < A13
−1ω(x)−A13 , exp(w)x ∈ Y }.

Increasing A13 if necessary, we have

(B.3) #IY (x) ≤ Evol(Y )

for a constant E depending only on X, see [SS22, Prop. 25] also [LM23, §9].
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Again increasing A13 if necessary, for every h = adur with d ≥ 0, all
r ∈ [−1, 2], and for all w ∈ g and all x ∈ X, we have

‖Ad(h±1)w‖ ≤ A13e
A13d/2‖w‖,(B.4a)

A13
−1e−A13d/2ω(x) ≤ ω(h±1x) ≤ A13e

A13d/2ω(x).(B.4b)

Let α = min{1/(2m + 1), 1/A13}, furthermore, we will replace κ10 with a
smaller constant if necessary and assume that κ10 ≤ αm/2.

Define

(B.5) fY (x) =

{∑
w∈IY (x) ‖w‖−α IY (x) 6= ∅

ω(x) otherwise
.

B.4. Lemma. Let C be as in Proposition B.3, and let d ≥ Bω. Then∫
f(hx) dσd(h) ≤ Ce−αmdfY (x) +A13e

dEvol(Y ) · (e−κ10dω(x) + B̄eA13d)

where B̄ is as in Proposition B.3.

Proof. Since Y is fixed throughout the argument, we drop it from the index
in the notation, e.g., we will denote fY by f etc.

Let d ≥ 0 and let h = adur for some r ∈ [−1, 2]. Let x ∈ X. First, let us
assume that there exists some w ∈ I(hx) with

‖w‖ < A13
−2e−A13dω(hx) =: Υ.

This in particular implies that both I(hx) and I(x) are non-empty. Hence,

(B.6)

f(hx) =
∑

w∈I(hx)

‖w‖−α =
∑
‖w‖<Υ

‖w‖−α +
∑
‖w‖≥Υ

‖w‖−α

≤
∑

w∈I(x)

‖Ad(h)w‖−α +A13
2αeA13αd

(
1 + #I(hx)

)
· ω(hx)α

≤
∑

w∈I(x)

‖Ad(h)w‖−α +A13e
d
(
1 + #I(hx)

)
· ω(hx),

in the last inequality, we used 0 < α ≤ min{1/2, 1/A13} and ω(·) ≥ 1.
Note also that if ‖w‖ ≥ Υ for all w ∈ I(hx) (which in view of the choice

of A13 includes the case I(x) = ∅) or if I(hx) = ∅, then

(B.7) f(hx) ≤ A13e
d
(
1 + #I(hx)

)
· ω(hx).

Averaging (B.6) and (B.7) over [−1, 2] and using (B.3), we conclude that∫
f(hx) dσd(h) ≤

∑
w∈I(x)

∫
‖hw‖−α dσd(h) +

A13e
dEvol(Y ) ·

∫
ω(hx) dσd(h);

we replace the summation on the right by 0 if I(x) = ∅.
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Thus by Lemma B.2 and Proposition B.3, we conclude that∫
f(hx) dσd(h) ≤ Ce−mαd ·

∑
w∈I(x)

‖w‖−α +

A13e
dEvol(Y ) · (e−κ10dω(x) + B̄eA13d)

again, the summation on the right by 0 if I(x) = ∅. Thus∫
f(hx) dσd(h) ≤ Ce−mαdf(x) +A13e

dEvol(Y ) · (e−κ10dω(x) + B̄eA13d).

The proof is complete. �

B.5. Lemma. Let C, A13, and κ10 be as in Proposition B.3, and let

` = d10(A13 + 1)/κ10e.

There is an absolute constant T0 so that the following holds. Let T ≥ T0

and define

di =
log T

2i`

for all i = 1, . . . , k where k is the largest integer so that dk ≥ max
{
Bω,

log(4C)
κ10

}
— note that 1

2 log log T ≤ k ≤ 2 log log T . Then∫
fY (hx) dσ

(`)
d1
∗ · · · ∗ σ(`)

dk
(h) ≤

(log T )D
′
0T−mαf(x) +B′vol(Y )

(
T−κ11ω(x) + 1

)
where D′0 and κ11 depend on dimension and B′ depends on X.

Proof. Again since Y is fixed throughout the argument, we drop it from the
index in the notation, e.g., we will denote fY by f etc.

Let us make some observations before starting the proof. Since di ≥
log(4C)
κ10

for all i, and κ10 ≤ αm/2, the following holds

(B.8) Ce−αmdi ≤ e−κ10di ≤ 1/4

Moreover, we have the following two estimates:

(B.9) 5
k∑

j=i+1

dj ≥ 5`−1 × 2−i−1 log T ≥ (2i`)−1 · log T = di

By Lemma B.4, for all d ≥ Bω, we have

(B.10)

∫
f(hx) dσd(h) ≤

Ce−αmdf(x) +A13Ee
dvol(Y ) ·

(
e−κ10dω(x) + B̄eA13d

)
.
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Let λ = A13EB̄. Iterating (B.10), `-times, we conclude that∫
f(hk · · ·h1x) dσ

(`)
d1

(h1) · · · dσ(`)
dk

(hk) ≤

C`e−αm`dk
∫
f(hk−1 · · ·h1x) dσ

(`)
d1

(h1) · · · dσ(`)
dk−1

(hk−1) +

A13Ee
dkvol(Y )(Ξk + 2B̄eA13dk)

we used Ce−αmdk ≤ e−κ10dk ≤ 1
4 , see (B.8), to bound the `-terms geometric

sum by 2B̄eA13dk , and

Ξk =

`−1∑
j=0

e−κ10dk(`−j)
∫
ω(hkhk−1 · ·h1x) dσ

(`)
d1

(h1) · · dσ(`)
dk−1

(hk−1) dσ
(j)
dk

(hk),

again we used Ce−αmdk ≤ e−κ10dk , in the definition of Ξk.
Note also that in view of the definition of λ, we have

A13Ee
dkvol(Y )(Ξk + 2B̄eA13dk) ≤ λvol(Y )e(1+A13)dk(Ξk + 2),

therefore, we conclude

(B.11)

∫
f(hk · · ·h1x) dσ

(`)
d1

(h1) · · · dσ(`)
dk

(hk) ≤

C`e−αm`dk
∫
f(hk−1 · · ·h1x) dσ

(`)
d1

(h1) · · · dσ(`)
dk−1

(hk−1) +

λvol(Y )e(1+A13)dk(Ξk + 2).

We will apply Proposition B.3, to bound Ξk from above. Let us begin by
applying Proposition B.3, `-times with dk, then

Ξk ≤ e−κ10`dk

∫
ω(hk−1 · ·h1x) dσ

(`)
d1

(h1) · · dσ(`)
dk−1

(hk−1) + λeA13dk

where we used e−κ10dk ≤ 1/4 and λ = A13EB̄ ≥ 2B̄ to estimate the `-terms
geometric sum.

The goal now is to inductively apply Proposition B.3, ` times with di
for all 1 ≤ i ≤ k − 1, in order to simplify the above estimate. Applying
Proposition B.3, `-times with dk−1, we obtain from the above that

Ξk ≤ e−κ10`(dk+dk−1)

∫
ω(hk−2 · ·h1x) dσ

(`)
d1

(h1) · · dσ(`)
dk−2

(hk−2) +

e−κ10`dk · (λeA13dk−1) + λeA13dk .
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Put Θk = 0, and for every 0 ≤ i < k, let Θi =
∑k

j=i+1 dj . Continuing the
above inequalities inductively, we conclude

Ξk ≤ e−κ10`Θ0ω(x) + λ(eA13dk +
k−1∑
i=1

e−κ10`ΘieA13di)

≤ e−κ10`Θ0ω(x) + λ(eA13dk +
k−1∑
i=1

e−di) ≤ e−κ10`Θ0ω(x) + λ(eA13dk +M)

where we used κ10`Θi ≥ κ10`
5 ·(5Θi) ≥ (A13+2)di, see (B.9) and the definition

of `, in the second to last inequality and wrote
∑
e−di ≤ M in the last

inequality.
Iterating (B.11) and using the above analysis, we conclude∫
f(hk · · ·h1x) dσ

(`)
d1

(h1) · · · dσ(`)
dk

(hk) ≤

C`ke−αm`Θ0f(x) + λvol(Y )
k∑
i=1

e−κ10`Θie(A13+1)di
(
Ξi + 2

)
where for every 1 ≤ i ≤ k, we have

Ξi =
`−1∑
j=0

e−κ10di(`−j)
∫
ω(hihi−1 · ·h1x) dσ

(`)
d1

(h1) · · dσ(`)
di−1

(hi−1) dσ
(j)
di

(hi).

Arguing as above, we have

Ξi ≤ e−κ10`(
∑i
j=1 dj)ω(x) + λ(eA13di +M).

Recall that Θi =
∑k

j=i+1 dj ; therefore, we conclude that∫
f(hk · · ·h1x) dσ

(`)
d1

(h1) · · · dσ(`)
dk

(hk) ≤

C`ke−αm`Θ0f(x) + e−κ10`Θ0λvol(Y )ω(x)
∑k

i=1 e
(A13+1)di+

(M + 2)λ2vol(Y )
k∑
i=1

e−κ10`Θie(2A13+1)di

Recall again from (B.9) and the definition of ` that κ10`Θi ≥ (2A13 + 2)di.
Hence, the last term above is ≤ B′vol(Y ) for an absolute constant B′ ≥ λ.
Similarly, sine `

∑
di = log T−O(1) second to last term is ≤ B′vol(Y )T−κ11 .

Moreover, `
∑
di = log T − O(1) where the implied constant is absolute,

and k ≤ 2 log log T . Hence,

C`ke−mα`(
∑k
i=1 di) ≤ (log T )1+? logCT−mα

so long as T is large enough. The proof of the lemma is complete. �
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B.6. Lemma. Let the notation be as in Lemma B.5, in particular for every
T ≥ T0 define d1, . . . , dk as in that lemma. Put d(T ) = `

∑
di, then∫ 1

0
fY (ad(T )urx) dr ≤ 3(log T )D

′
0T−αmfY (x) +Bvol(Y )

(
T−κ11ω(x) + 1

)
where B ≥ 1 depends on X.

Proof. Again, since Y is fixed throughout the argument, we drop it from the
index in the notation, e.g., we will denote fY by f etc.

By Lemma B.5, we have

(B.12)
1

3`k

∫ 2

−1
· · ·
∫ 2

−1
f(adkurk,` · · · adkurk,1 · · · ad1ur1,1x) dr1,1 · · · drk,` ≤

(log T )D
′
0T−αmf(x) +B′vol(Y )

(
T−κ11ω(x) + 1

)
Now, for every (rk,`, . . . , r1,2, r1,1) ∈ [−1, 2]`k, we have

adkurk,` · · · adkurk,1 · · · ad1ur1,1 = ad(T )uϕ(r̂)+r1,1

where r̂ = (rk,`, . . . , r1,2) and |ϕ(r̂)| ≤ 0.2.

In view of (B.12), there is r̂ = (rk,`, . . . , r1,2) ∈ [−1, 2]`k−1 so that

(B.13)
1

3

∫ 2+ϕ(r̂)

−1+ϕ(r̂)
f(ad(T )urx) dr ≤

(log T )D
′
0T−αmf(x) +B′vol(Y )

(
T−κ11ω(x) + 1

)
.

Since |ϕ(r̂)| ≤ 0.2, we have [0, 1] ⊂ [−1, 2] +ϕ(r̂). Therefore, (B.13) and the
fact that f ≥ 0 imply that

1

3

∫ 1

0
f(ad(T )urx) dx ≤ (log T )D

′
0T−αmf(x) +B′vol(Y )

(
T−κ11ω(x) + 1

)
.

The lemma follows with B = 3B′. �

Proof of Proposition 4.4. LetR ≥ 1 be a parameter and assume that vol(Y ) ≤
R. Recall that for a periodic orbit Y , we put

fY (x) =

{∑
w∈IY (x) ‖w‖−α IY (x) 6= ∅

ω(x) otherwise
.

Let ψ(x0) = max{d(x0, Y )−α, ω(x0)}. Then

(B.14) ψ(x0)� fY,d(x0)� vol(Y )ψ(x0),

where the implied constant depends only on X, see (B.3).

With the notation of Lemma B.5, let T ≥ T0 and di = log T
2i`

for 1 ≤ i ≤ k.
Then

(B.15) log T − b̄ ≤ d(T ) ≤ log T

where b̄ is absolute.
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Let T1 ≥ T0 be so that (log T )D
′
0T−αm is decreasing on [T1,∞). Let

(B.16) T2 = inf{T ≥ max(T1, ω(x0)1/κ11) : (log T )D
′
0T−αm ≤ d(x0, Y )α}.

In other words, for all T ≥ T2, we have T−κ11ω(x0) ≤ 1 and

(log T )D
′
0T−αmd(x0, Y )−α ≤ 1.

Furthermore, in view of (B.14) and since vol(Y ) ≤ R, for all T ≥ T2,

(log T )D
′
0T−αmfY (x0)� R(log T )D

′
0T−αmψ(x0)

In particular, using (B.14) again, we have (log T )D
′
0T−1/3fY (x0)� R.

Altogether, we conclude that for all T ≥ T2, we have

(B.17) 3 log(T )D
′
0T−αmfY (x0) +Bvol(Y )T−κ11(ω(x0) + 1) ≤ B2R

where B2 is absolute.
Let T ≥ T2, and let d(T ) = `

∑
di where di’s are as above. Using (B.17)

and Lemma B.6,

(B.18)

∫ 1

0
fY (ad(T )urx) dr ≤ B2R.

Let D ≥ 10. Then by (B.18) we have

|{r ∈ [0, 1] : fY (ad(T )urx0) > B2R
D}| ≤ B2R/B2R

D ≤ R−D+1.

In view of (B.14), there some B1 (depending on X) so that dX(asurx0, Y ) ≤
B−1

1 R−D/α implies fY (asurx0) > B2R
D for all s ≥ 0 and r ∈ [0, 1]. There-

fore, we conclude from the above that

(B.19)
∣∣{r ∈ [0, 1] : dX(ad(T )urx0, Y ) ≤ (B1R

D/α)−1
}∣∣ ≤ R−D+1.

Let now s ≥ log T2, then by (B.15) there exists some T ≥ T2 so that

d(T )− 2b̄ ≤ s ≤ d(T ) + 2b̄

For every s ≥ log T2, let Ts be the minimum such T . Then (B.4a) implies

that is B̂ ≥ 1 (absolute) so that if s ≥ log T2 and r ∈ [0, 1] are so that

dX(asurx0, Y ) ≤ (B̂RD/α)−1,

then dX(ad(Ts)urx0, Y ) ≤ (B1R
D/α)−1. This and (B.19), imply that

(B.20)
∣∣{r ∈ [0, 1] : dX(asurx0, Y ) ≤ (B̂RD/α)−1

}∣∣ ≤ R−D+1

Let C3 be as in Proposition 4.2, increasing T1 if necessary, we will assume
log T2 ≥ m0| log(inj(x0))|+ C3. Using Proposition 4.2, thus,

(B.21)
∣∣{r ∈ [0, 1] : inj(asurx) < η

}∣∣ < C3η
1/m0

for any η > 0 and all s ≥ log T2.
Altogether, from (B.20) and (B.21) it follows that for any s ≥ log T2,

(B.22)
∣∣∣{r ∈ [0, 1] :

inj(asurx) < η or

dX(asurx0, Y ) ≤ (B̂RD/α)−1

}∣∣∣ ≤ C3η
1/m0 +R−D+1.
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In view of [SS22, Thm. 5], the number of periodic H-orbits with volume

≤ R in X is ≤ ÊRD̂ where D̂ depends only on dimension and Ê depends
on X. Let D = D̂ + 10 and C4 = max{Ê, B̂, C3}. Then (B.22) implies

(B.23)
∣∣∣{r ∈ [0, 1] :

inj(asurx) < η or there exists x with

vol(Hx) ≤ R s.t. dX(asurx0, x) ≤ (C4R
D/α)−1

}∣∣∣
≤ C4(η1/m0 +R−1).

We now show that (B.23) implies the proposition. Suppose

dX(x0, x) ≥ S−m(logS)D
′
0

for every x with vol(Hx) ≤ R. Then by (B.16), we have

T2 ≤ max{S, ω(x0)1/κ11 , T1}.
Therefore, if we let D0 = (max{D′0, D̂ + 10})/α and set s0 = C3 + log T1,
then Proposition 4.4 follows from (B.23). �

B.7. Proof of Proposition 4.6. In what follows all the implied multiplica-
tive constants depend only on X.

We begin by recalling some statements and lemmas which will be used in
the proof. Let vH be a unit vector on the line ∧3h ⊂ ∧3g.

B.8. Lemma (Cf. [LM23], Lemma 6.3). There exist A14, A15, and C6 so
that the following holds. Let γ1, . . . , γn ∈ Γ, and let

δ ≤ C6
−1
(

max{‖γ±1
i ‖ : 1 ≤ i ≤ n}

)−A14 .

Suppose there exists some g ∈ G so that γig
−1vH = εig

−1vH for i = 1, 2
where ‖εi − I‖ ≤ δ. Then, there is some g′ ∈ G such that

‖g′ − g−1‖ ≤ C6‖g‖A15δ
(

max{‖γ±1
i ‖ : 1 ≤ i ≤ n}

)A15

and γig
′vH = g′vH for i = 1, . . . , n.

B.9. Lemma (Cf. [LM23], Lemma 6.2). There exist C7 and A16 depending
on Γ, and A17 (depending on the dimension) so that the following holds. Let
γ1, γ2 ∈ Γ be two non-commuting elements. If g ∈ G is so that γig

−1vH =
g−1vH for i = 1, 2, then HgΓ is a closed orbit with

vol(HgΓ) ≤ C7‖g‖A17
(
max{‖γ±1

1 ‖, ‖γ
±1
2 ‖}

)A16 .

The statements in [LM23, Lemma 6.2, and Lemma 6.3] assumed |g2| � 1.
However, the arguments work without any changes and yield Lemmas B.8
and B.9.

We also recall the following lemma which is a consequence of reduction
theory. In this form, the lemma is a spacial case of [LMMS19, Lemma 2.8].

B.10. Lemma. There exist D2 (depending on m) and C8 (depending on X)
so that the following holds for all 0 < η < 1. Let g ∈ G be so that gΓ ∈ Xη.
Then there is some γ ∈ Γ so that

(B.24) ‖gγ‖ ≤ C8η
−D2 .
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Finally, we recall Proposition 4.2: for all positive ε, every interval J ⊂
[0, 1], and every x ∈ X, we have

(B.25)
∣∣{r ∈ J : inj(adurx) < εm0

}∣∣ < C3ε|J |,

so long as d ≥ m0| log(|J | inj(x))|+ C3.
For the rest of the argument, let

(B.26) t ≥ 100D2m0| log(η inj(x1))|+ C3

Let r1 ∈ [0, 1] be so that x2 = atur1x1 ∈ Xη. Write x2 = g2Γ where
|g2| � η−D2 , see (B.24).

Also let k be a constant which will be explicated later and will depend
only on m.

In the course of the proof, we will use k· to denote constants which depend
on k. The notation m̂· (and the previously used m·) will be used for constants
which depend on m but not on the choice of k above.

Let m̂0 be a constant which depends on m so that

(B.27) ‖as‖ ≤ em̂0s for all s ≥ 1.

We will show that unless part (2) in the proposition holds, we have the
following: for every such x2, there exists J(x2) ⊂ [0, 1] with |[0, 1]\J(x2)| ≤
200C3η

1/(2m0) so that for all r ∈ J(x2), we have:

(a) akturx2 ∈ Xη,
(b) the map h 7→ hakturx2 is injective over Et, and
(c) for all z ∈ Et.akturx2, we have ft,α(z) ≤ eDt.

This will imply that part (1) in the proposition holds as

akturatur′x1 = ak+1tur′+e−trx1.

Assume contrary to the above claim that for some x2 as above, there
exists a subset I ′bad ⊂ [0, 1] with |I ′bad| > 200C3η

1/(2m0) so that one of (a),
(b), or (c) above fails. Then in view of (B.25) applied with x2 and kt, there

is a subset Ibad ⊂ [0, 1] with |Ibad| ≥ 100C3η
1/(2m0) so that for all r ∈ Ibad

we have akturx2 ∈ Xη, but

• either the map h 7→ hakturx2 is not injective on Et,
• or there exists z ∈ Et.akturx2 so that ft,α(z) > eDt.

We will show that this implies part (2) in the proposition holds.
Let us first recall that fτ : Eτ .y → [1,∞) is defined as follows

fτ (z) =

{∑
06=w∈Iτ (z) ‖w‖−α if Iτ (z) 6= {0}

inj(z)−α otherwise
.

where 0 < α ≤ 1.
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Finding lattice elements γr. We introduce the shorthand notation

hr := aktur, for any r ∈ [0, 1].

Let us first investigate the latter situation. That is: for r ∈ Ibad (recall that
hrx2 ∈ Xη) there exists some z = h1hrx2 ∈ Et.hrx2, so that ft,α(z) > eDt.
Since hrx2 ∈ Xη, we have

(B.28) inj(hhrx2)� ηe−mt, for all h ∈ Et.

Using the definition of ft,α, thus, we conclude that if It(z) = {0}, then
ft,α(z) � η−1emt. Since t ≥ 100D2m0| log η|, assuming m0 ≥ m + 1, D ≥
m + 1 and t is large enough, we conclude that It(z) 6= {0}. Moreover,
using (B.28), we have #It(z) � η−m̂1em̂1t, see [LM23, Lemma 6.4] or the
similar estimate [LMW22, Lemma 8.1].

Altogether, if D ≥ m + 1 + 2m̂1 and t is large enough, there exists some
w ∈ It(z) with

0 < ‖w‖ ≤ e(−D+m̂1+1)t =: e−D
′t.

The above implies that for some w ∈ r with ‖w‖ ≤ e−D′t and h1 6= h2 ∈ Et,
we have exp(w)h1hrx2 = h2hrx2. Thus

(B.29) exp(wr)h
−1
r srhrx2 = x2

where sr = h−1
2 h1, wr = Ad(h−1

r h−1
2 )w. In particular, ‖wr‖ � e(−D′+m̂0k)t

where the implied constant depends only on m. Assuming t is large enough
compared to the implied multiplicative constant,

(B.30) 0 < ‖wr‖ ≤ e(−D′+m̂0k+1)t.

Recall that x2 = g2Γ where |g2| � η−D2 , thus, (B.29) implies

(B.31) exp(wr)h
−1
r srhr = g2γrg

−1
2

where 1 6= sr ∈ H with ‖sr‖ � e2m̂0t and e 6= γr ∈ Γ.
Similarly, if for some r ∈ Ibad, h 7→ hhrx2 is not injective, then

h−1
r srhr = g2γrg

−1
2 6= e.

In this case we actually have e 6= γr ∈ g−1
2 Hg2 — we will not use this extra

information in what follows.

Some properties of the elements γr. Recall that ‖g2‖ � η−D2 and that
t ≥ 100D2m0| log η|. Therefore, if we put k1 = 2m̂0(k + 1) + 1, then

(B.32) ‖γ±1
r ‖ ≤ ek1t

where we assumed t is large compared to η and used (B.31).

We identify

(
a1 a2

a3 a4

)
∈ SL2(R) with its image in H, however, when we

write ‖ ‖ the norm is in G but |ai| denotes the usual absolute value. With
this notation, e.g., h−1

r srhr is represented by

u−r

(
a1 e−kta2

ekta3 a4

)
ur
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where |ai| ≤ 10et.
Let ξ > 0 be so that ‖gγg−1 − I‖ ≥ ξη2D2 for all γ ∈ Γ \ {1} and

‖g‖ ≤ C8η
−D2 , see (B.24). Then by (B.31), we have∥∥∥u−r ( a1 e−kta2

ekta3 a4

)
ur − I

∥∥∥ ≥ ηD′2
for some D′2 depending only on m and D2. This implies

(B.33) max{ekt|a3|, |a1 − 1|, |a4 − 1|} ≥ ηD′2 .

Note also that if ekt|a3| < ηD
′
2 , then

|a2a3| ≤ 10ηD
′
2e(−k+1)t,

thus |a1a4−1| � η?e(−k+1)t, and (B.33) implies |a1−a4| � ηD
′
2 . Altogether,

(B.34) max{ekt|a3|, |a1 − a4|} � ηD
′
2 .

Since |Ibad| ≥ 100C3η
1/(2m0), there are two intervals J, J ′ ⊂ [0, 1] with

d(J, J ′) ≥ η1/(2m0), |J |, |J ′| ≥ η1/(2m0), and

(B.35) |J ∩ Ibad| ≥ η1/m0 and |J ′ ∩ Ibad| ≥ η1/m0 .

Put Jη = J ∩ Ibad.

Claim: There are � e(k−2)t/2 distinct elements in {γr : r ∈ Jη}.
Fix r ∈ Jη as above, and consider the set of r′ ∈ Jη so that and γr = γr′ .

Then for each such r′,

h−1
r srhr = exp(−wr)g2γrg

−1
2 = exp(−wr) exp(wr′)h

−1
r′ sr′hr′

= exp(wrr′)h
−1
r′ sr′hr′

where wrr′ ∈ g and ‖wrr′‖ � e(−D′+m̂0k)t.
Set τ = ekt(r′ − r). Assuming D′ = D

m+1 − m̂1 − 1 is large enough, we
conclude that

(B.36) uτ sru−τ = hr′h
−1
r sr hrh

−1
r′ = exp(ŵrr′)sr′ ,

where ‖ŵrr′‖ = ‖Ad(hr′)wrr′‖ � e(−D′+m̂0k+mk)t. Finally, we compute

uτ sru−τ =

(
a1 + a3τ a2 + (a4 − a1)τ − a3τ

2

a3 a4 − a3τ

)
.

In view of (B.34), for every r ∈ Jη the set of r′ ∈ Jη so that

(B.37) |a2e
−kt + (a4 − a1)(r′ − r)− a3e

kt(r′ − r)2| ≤ 104e(−k+1)t

has measure � η−D
′
2/2e(−k+1)t/2 since at least one of the coefficients of this

quadratic polynomial is of size � ηD
′
2 . Let Jη,r be the set of r′ ∈ Jη for

which (B.37) holds.
If r′ ∈ Jη \ Jη,r, then |a2 + (a4 − a1)τ − a3τ

2| > 104et (recall that τ =

ekt(r′ − r)), thus for all r′ ∈ Jη \ Jη,r, we have

‖uτ sru−τ‖ > 104et > ‖ exp(ŵrr′)sr′‖,
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in contradiction to (B.36).
In other words, for each γ ∈ Γ the set of r ∈ Jη for which γr = γ

has measure � η−D
′
2/2e(−k+1)t/2 and so the set {γr : r ∈ Jη} has at

least � η(D′2+1)/2e(k−1)t/2 � e(k−2)t/2 distinct elements so long as t ≥
100m0 max(D′2, D2)| log η|, see (B.26). This establishes the claim.

Zariski closure of the group generated by {γr : r ∈ Ibad}. Let L
denote the Zariski closure of 〈γr : r ∈ Ibad〉.

First note that by [LMM+24, Lemma 2.4], we have [L : L◦] � 1, where
the implied constant depends only on the dimension. This and

#{γr : r ∈ Ibad} � e(k−2)t/2

imply that L◦ 6= {e}. Moreover, from [L : L◦] � 1 we also conclude
that there exists γ1, . . . , γn ⊂ {γr : r ∈ Ibad}, where n depends only the
dimension, so that L equals the Zariski closure of 〈γi : 1 ≤ i ≤ n〉.

Recall now from (B.31) that exp(wr)h
−1
r srhr = g2γrg

−1
2 , thus

γr.g
−1
2 vH = exp(Ad(g−1

2 )wr).g
−1
2 vH .

Moreover, since ‖wr‖ ≤ e(−D′+m̂0k+1)t,

‖Ad(g−1
2 )wr‖ � η−2mD1e(−D′+m̂0k+1)t ≤ e(−D′+m̂0k+2)t

for all r ∈ Ibad. Recall that ‖γ±1
r ‖ ≤ ek1t. If D′ = D

m+1 − m̂1 − 1 is large

enough, we may apply Lemma B.8, with {γ1, . . . , γn}, and conclude that
there exists some g3 ∈ G with

(B.38)
‖g2 − g3‖ ≤ C6η

−2mD1A15e(−D′+m̂0k+2+A15k1)t

≤ e(−D′+A15k2)t,

so that γi.g
−1
3 vH = g−1

3 vH for all i, where k3 depends only on m and we
assumed t is large.

In view of the choice of {γi : 1 ≤ i ≤ n}, this implies g.g−1
3 vH = g−1

3 vH
for all g ∈ L(R). Hence,

(B.39) L(R) ⊂ g−1
3 NG(H)g3

We also note that [NG(H) : H] � 1 since H ⊂ G is a maximal connected
subgroup.

We now consider two possibilities for the elements {γr : r ∈ Ibad}.

Case 1. L is commutative. Then L◦(R) ⊂ g−1
3 Hg3 is commutative and

#{γ ∈ L◦(R) : ‖γ‖ ≤ ek1t} � e(k−2)t/2.

Since for every torus T ⊂ G, we have #(BT (e,R) ∩ Γ) � (logR)2, where
the implied constant is absolute, L◦ is unipotent and L ⊂ L◦ · CG.

We also note that since L◦ is a one dimensional unipotent subgroup,

#{γ ∈ L : ‖γ‖ ≤ 100e(k−2)t/3} � e(k−2)t/3.
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Furthermore, there are � e(k−2)t/2 distinct elements γr with r ∈ Jη. Thus

#{γr : ‖γr‖ > 100e(k−2)t/3 and r ∈ Jη} � e(k−2)t/2.

For every r ∈ Ibad, let(
a1,r a2,r

a3,r a4,r

)
where |aj,r| ≤ 10et

denote the element in SL2(R) corresponding to sr ∈ H.

We will obtain an improvement of (B.33). Let ξη2D2 ≤ Υ ≤ e(k−2)t/3 and
assume that ‖g2γrg

−1
2 − I‖ ≥ Υ — by the definition of ξ, this holds with

Υ = ξη2D2 for all r ∈ Ibad and as we have just seen this also holds for with
Υ = e(k−2)t/3 for many choices of r ∈ Jbad. Then by (B.31), we have

(B.40)
∥∥∥u−r ( a1,r e−kta2,r

ekta3,r a4,r

)
ur − I

∥∥∥ ≥ 10Υ′ = O(Υ1/m̂0)

where we increase m̂0 in (B.27) if necessary so that above holds.
We claim

(B.41) |a3,r| ≥ Υ′e−kt.

To see this, first note that by (B.40) max{ekt|a3,r|, |a1,r − 1|, |a4,r − 1|} ≥
Υ′. Assume contrary to our claim that |a3,r| < Υ′e−kt. Then

(B.42) max{|a1,r − 1|, |a4,r − 1|} ≥ Υ′;

furthermore, we get |a2,ra3,r| � Υ′e(−k+1)t. Thus,

(B.43) |a1,ra4,r − 1| � Υ′e(−k+1)t � e−kt/2.

Moreover, since h−1
r srhr is very nearly g2γrg

−1
2 , and the latter is either a

unipotent element or its minus, we conclude that

(B.44) min(|a1,r + a4,r − 2|, |a1,r + a4,r + 2|)� e(−D′+?)t.

Equations (B.43) and (B.44) contradict (B.42) if t is large enough. Alto-
gether, (B.41) holds.

We now show that Case 1 cannot occur. Since L◦ is unipotent and L ⊂
L◦ · CG, we conclude from (B.39) combined with (B.31) and (B.38) that

(B.45) u−r

(
a1,r e−kta2,r

ekta3,r a4,r

)
ur ∈ exp(−wr)(hUh−1) · CG

for all r ∈ Ibad, where h ∈ H and ‖h‖ � 1. We show that this leads to a
contradiction.

Recall the intervals J and J ′ from (B.35), and let r0 ∈ J ′ ∩ Ibad. then

|r0 − r| ≥ η1/(2m0) for all r ∈ Jη. Then, (B.45), yields that

(B.46) u−r+r0

(
a1,r e−kta2,r

ekta3,r a4,r

)
ur−r0 ∈ exp(−w′r)(ur0hUh−1u−r0) · CG

for all r ∈ Ibad.
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Let us write ur0h =

(
a b
c d

)
, then for all z ∈ R we have

ur0h

(
1 z
0 1

)
h−1u−r0 =

(
1− acz a2z
−c2z 1 + acz

)
.

Let z0 ∈ R be so that(
a1,r0 e−kta2,r0

ekta3,r0 a4,r0

)
= ± exp(−wr0)

(
1− acz0 a2z0

−c2z0 1 + acz0

)
.

By (B.41) applied with Υ′ corresponding to Υ = ξη2D2 , we have |a3,r0 | ≥
η?e−kt. Since

|a|, |b|, |c|, |d| � 1,

comparing the bottom left entries of the matrices, we get |z0| � ηD3 . Now,
since |a2,r0 | ≤ 10et, comparing the top right entries we conclude that

|a|2 � η−D3e(−k+1)t ≤ e−(k+2)t.

Since det(ur0h) = 1, it follows that |c| is also � 1.

Let now r ∈ Jη be so that ‖γr‖ ≥ 100e(k−2)t/3. We write r1 = r − r0,

a′2,r = e−kta2,r and a′3,r = ekta3,r. By (B.41), applied this time with Υ′

corresponding to Υ = e(k−2)t/3, we have |a′3,r| ≥ Υ′ ≥ e
k−2
4m̂0

t
; note also that

|a′2,r| � e(−k+1)t. In view of (B.46), there exists zr ∈ R so that

u−r1

(
a1,r a′2,r
a′3,r a4,r

)
ur1 =

(
a1,r − r1a

′
3,r a′2,r + (a4,r − a1,r)r1 − a′3,rr2

1

a′3,r a4,r + r1a
′
3,r

)
= ± exp(−w′r)

(
1− aczr a2zr
−c2zr 1 + aczr

)
.

Recall that |a′3,r| ≥ e
k−2
4m̂0

t
, |a1,r|, |a4,r| � et, and |a′2,r| � e(−k+1)t; moreover

η1/(2m0) ≤ |r1| ≤ 1 and by (B.26) et/10 ≥ η−1. Thus, so long as k− 2 > 5m̂0,

0.1|a′3,r|η1/m0 ≤ |a′2,r + (a4,r − a1,r)r1 − a′3,rr2
1| ≤ 2|a′3,r|.

Hence, since w′r is small, |c2zr|η � |a2zr| � |c2zr|. On the other hand,

using r = r0, we already established |a|2 ≤ e(−k+2)t and |c| � 1, thus

|a2zr| � e(−k+2)t|c2zr|, which is a contradiction, see (B.26) again.
Altogether, we conclude that Case 1 cannot occur.

Case 2. L is not commutative. In other words, there are r, r′ ∈ Ibad so that
γr and γr′ do not commute.

Recall from (B.38) that

γr.g
−1
3 vH = g−1

3 vH and γr′ .g
−1
3 vH = g−1

3 vH .

where ‖g2 − g3‖ ≤ e(−D′+A15k2)t.
In view of Lemma B.9, thus, we have Hg3Γ is periodic and

vol(Hg3Γ) ≤ C7η
−D2A17

(
max{‖γ±1

r ‖, ‖γ±1
r′ ‖}

)A16 ≤ C7e
(1+A16k1)t.
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Then for t large enough,

vol(Hg3Γ) ≤ e(2+A16)k1t and dX(g2Γ, g3Γ) ≤ e(−D′+A15k2)t,

where D′ = D
m+1 − m̂1 − 1.

Since g2Γ = x2 = atur1x1, part (2) in the proposition holds with x′ =
(atur1)−1g3Γ and D1 = max{2 +A16k1, 1 + m̂1 +A15k2} so long as t is large
enough. �

Appendix C. Projection theorems

We begin by recalling a theorem of Gan, Guo, and Wang [GGW22]. Let

ξ(r) = ( r1! ,
r2

2! , . . . ,
rn

n! ) ⊂ Rn.

For all r ∈ [0, 1] and all 1 ≤ d ≤ n, let πr,d : Rn → Rd denote the orthogonal
projection into

Span{ξ′(r), ξ(2)(r), . . . , ξ(d)(r)}.
The following theorem follows from [GGW22, Thm.2.1], combined with a

finitary adaptation of the argument presented in [GGW22, §2].

C.1. Theorem. Let 1 ≤ d ≤ n and let 0 < α ≤ d. Let ρ be the uniform
measure on a finite set Θ ⊂ BRn(0, 1) satisfying

ρ(Br(w, b) ∩Θ) ≤ Υbα for all w and all b ≥ b1
where Υ ≥ 1 and 0 < b1 ≤ 1.

Let 0 < c < 10−4α. For every b ≥ b1, there exists a subset Jb ⊂ [0, 1] with

|[0, 1] \ Jb| ≤ Ccb
?c2

so that the following holds. Let r ∈ Jb, then there exists
a subset Θb,r ⊂ Θ with

ρ(Θ \Θb,r) ≤ Ccb
?c2

such that for all w ∈ Θb,r, we have

ρ
(
{w′ ∈ Θ : ‖πr,d(w)− πr,d(w′)‖ ≤ b}

)
≤ CcΥb

α−c

where the implied constants are absolute.

Proof. Since 1 ≤ d ≤ n is fixed throughout the argument, we will simplify
the notation by writing πr instead of πr,d.

For every r ∈ [1
2 , 1] and all w ∈ Θ, define

mb(πr(w)) = ρ({w′ : ‖πr(w)− πr(w′)‖ ≤ b}).
Let E1, E2, . . . be large constants to be specified later. Put ε = c/E1. For

all r ∈ [1
2 , 1], set

ΘExc(r) = {w : mb(πr(w)) ≥ Υbα−E1ε}.
Suppose, contrary to the claim in Theorem C.1 that there exists a subset

IExc ⊂ [1
2 , 1] with |IExc| ≥ E2b

ε2/2 so that for all r ∈ IExc, we have

(C.1) ρ(ΘExc(r)) ≥ E2b
ε2/2.
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We will get a contradiction with [GGW22, Thm. 2.1], provided that E1 and
E2 are large enough.

First note that, for every r ∈ IExc, the number of b-boxes {Bi,r} required
to cover πr(ΘExc(r)) is ≤ E3Υ−1b−α+E1ε. Let Ti,r = π−1

r (Bi,r) ∩ BRn(0, 1),
and put Tr = {Ti,r}. Note that

(C.2) #Tr ≤ E3Υ−1b−α+E1ε.

Let Λb ⊂ IExc be a maximal b-separated subset, and extend this to a
maximal b-separated subset Λ̂b of [1

2 , 1]. Equip Λ̂b × Θ with the product

measure ρ× σ, where σ denotes the uniform measure on Λ̂b. Let

F = {(r, w) ∈ Λb ×Θ : mb(πr(w)) ≥ Υbα−E1ε}
= {(r, w) ∈ Λb ×Θ : w ∈ ΘExc(r)}.

In view of (C.1) and |IExc| ≥ E2b
ε2/2, we have σ × ρ(F ) ≥ E2

2b
ε2 .

For every w ∈ Θ, let Fw = {r ∈ Λb : (r, w) ∈ F}, and set

Θ′ = {w ∈ Θ : σ(Fw) ≥ E2b
ε2}.

Then, using Fubini’s theorem, we conclude that ρ(Θ′) ≥ 1
2E

2
2b
ε2 .

The above definitions thus imply∑
r∈Λb

1Tr(w) ≥ E3b
ε2−1 for all w ∈ Θ′

where E3 = O(E2), for an absolute implied constant.
Let ρ′ = ρ|Θ′ . Applying [GGW22, Thm. 2.1] with ε2, ρ′ and {Tr : r ∈ Λb},∑

r∈Λb

#Tr ≥ E4(n, c, α)Υ−1ρ′(Rn)b−1−α+Eε

≥ 1
2E

2
2E4(n, c, α)Υ−1bε

2
b−1−α+Eε

where E = 1010n and in the second line we used ρ′(Rn) = ρ(Θ′) ≥ 1
2E

2
2b
ε2 .

Thus there exists some r ∈ Λδ so that

(C.3) #Tr ≥ 1
2Υ−1E4(n, c, α)E2

2b
−α+(D+1)ε.

Now comparing (C.3) and (C.2) we get a contradiction so long as E1 is large
enough and b is small enough. The proof is complete. �

Recall that the n-dimensional (n ≥ 2) irreducible representation of SL2(R)
can be normalized so that for all w ∈ Rn,

urw =
(
w · ξ′(r), w · ξ(2)(r), · · · , w · ξ(n)(r)

)
Recall also that r ' R2m+1 is an irreducible representation of Ad(H) where

• m = 1 if G is isogeneous to SO(3, 1) or SL2 × SL2

• m = 2 if G is isogeneous to SL3 or SU(2, 1)
• m = 3 if G is isogeneous to Sp4

• m = 5 if G is isogeneous to G2
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Theorem C.1 thus applies to the adjoint action of ur on these spaces. For
every 1 ≤ d ≤ 2m+1, let rd denote the space spanned by vectors with weight
m, . . . ,m− d+ 1. Let πd : r→ rd denote the orthogonal projection.

C.2. Theorem. Let 0 < α, d ≤ 2m + 1, d ∈ Z, and 0 < b1 ≤ 1. Let ρ be the
uniform measure on a finite set Θ ⊂ Br(0, 1) with

ρ(Br(w, b) ∩Θ) ≤ Υbα for all w and all b ≥ b1
where Υ ≥ 1.

Let 0 < c < 10−4α. For every b ≥ b1, there exists a subset Jb ⊂ [0, 1] with

|[0, 1] \ Jb| ≤ C ′cb?c
2

so that the following holds. Let r ∈ Jb, then there exists
a subset Θb,r ⊂ Θ with

ρ(Θ \Θb,r) ≤ Ccb
?c2

such that for all w ∈ Θb,r we have

ρ
(
{w′ ∈ Θ : ‖πd(Ad(ur)w)− πd(Ad(ur)w

′)‖ ≤ b}
)
≤ CcΥb

min(α,d)−c.

Appendix D. Measures and partitions of unity

In this appendix we collect some of the results from [LMW22, §6–8] which
were used in this paper.

Regular tree decomposition. Let us recall the following discussion from
[LMW22, §6] see also [BFLM11, Lemma 5.2]. Let t,D0 ≥ 1 and 0 < ε < 1 be
three parameters: t is large and arbitrary, D0 is moderate and fixed, and ε is
small and fixed; in particular, our estimates are allowed to depend on D0 and
ε, but not on t. Let β = e−κt for some κ satisfying 0 < κ(D0 + 1) ≤ 10−6ε.

Let F ⊂ Br(0, 1) satisfy that

et/2 ≤ #F ≤ eD0t,

and assume that

(D.1) G(α)
F,δ (w) ≤ Υ for all w ∈ F

where Υ > 0 satisfies the following

(D.2) Υ ≤ e(D0+1)t.

Fix L ∈ N, large enough, so that both of the following hold

(D.3) 2−L(D0 + 1) < κ/100 and (4m + 2)L < 2κL/100.

Define k0 := b(− log2 β)/Lc and k1 := d(1 + α−1 log2 Υ)/Le+ 1; note that

(D.4) 2(Lk1−1)α > Υ.

For every k0 ≤ k ≤ k1, let CLk denote the collection of 2−Lk-cubes in r.

D.1. Lemma. For all large enough t, we can write F = F ′
⋃

(
⋃N
i=1 Fi) (a

disjoint union) with

#F ′ < β1/4 · (#F ) and #Fi ≥ β2 · (#F )

so that the following hold.
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(1) For every i and every k0 − 10 ≤ k ≤ k1, there exists some τik so that
for every cube C ∈ CLk we have

(D.5) 2L(τik−2) ≤ #Fi ∩ C ≤ 2Lτik or Fi ∩ C = ∅.

(2) For every i, we have

G(α)
Fi,δ

(w) ≤ β−2m−2Υ for all w ∈ F

Proof. Part (1) is proved in [LMW22, Lemma 6.4].
For part (2) see [LMW22, Lemma 6.5]. �

Covering lemmas. Fix 0 < η ≤ 0.01 and let β = η2. For m ≥ 0, we
introduce the shorthand notation QHm for

(D.6) QHη,β2,m =
{
u−s : |s| ≤ β2e−m

}
· {aτ : |τ | ≤ β2} · Uη,

where for every δ > 0, let Uδ = {ur : |r| ≤ δ}, see (3.6).
Define QGm ⊂ G by thickening QHm in the transversal direction as follows:

(D.7) QGm := QHm · exp(Br(0, 2β
2)).

D.2. Lemma. For every m ≥ 0, there exists a covering{
QGm.yj : j ∈ Jm, yj ∈ X3η/2

}
of X2η with multiplicity K, depending only on X. In particular, #Jm �
η−1β−4m−6em.

Proof. This is proved in [LMW22, Lemma 7.1], we recall the set up to ex-
plicate the bound claimed here. There exists a covering{(

Bs,H
β2 · Bη · exp(Br(0, β

2))
)
.ŷk : k ∈ K, ŷk ∈ X2η

}
of X2η with multiplicity O(1) depending only on X.

Let us write B̄Gη,β2 = Bs,H
β2 · Bη · exp(Br(0, β

2)). Then

(D.8)
(
B̄G0.1η,0.1β2

)−1 ·
(
B̄G0.1η,0.1β2

)
⊂
(
B̄Gcη,cβ2

)
,

where c depends only on m, see Lemma 3.2.
Let {ŷk ∈ X2η : k ∈ K} be maximal with the following property

B̄G0.01η,0.01β2 .ŷi ∩ B̄G0.01η,0.01β2 .ŷj = ∅ for all i 6= j.

In view of (D.8) thus {B̄Gη,β2 .ŷk : k ∈ K} covers X2η with multiplicity O(1).

Since mG(B̄Gη,β2) � ηβ4m+6, we that K � η−1β−4m−6.

The rest of the proof goes through as in [LMW22, Lemma 7.1]. �
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Boxes and complexity. Let prd : R3 → H be the map

prd(s, τ, r) = u−s aτur.

A subset D ⊂ H will be called a box if there exist intervals I • ⊂ R (for
• = ±, 0) so that

D = prd(I− × I0 × I+).

We say Ξ ⊂ H has complexity bounded by L (or at most L) if Ξ =
⋃L

1 Ξi
where each Ξi is a box.

For every interval I ⊂ R, let ∂I = ∂100η|I|I (recall that η = β1/2), and

put I̊ = I \ ∂I. Given a box D = prd(I− × I0 × I+), we let

D̊ = mul
(
I̊− × I̊0 × I̊+

)
and(D.9a)

∂D = D \ D̊.(D.9b)

More generally, if D = prd(I− × I0 × I+) is a box, and Ξ ⊂ D has
complexity bounded by L, we define ∂Ξ :=

⋃
∂Ξi and

(D.10) Ξ̊D :=
⋃

Ξ̊i

where the union is taken over those i so that Ξi = prd(I−i × I0
i × I

+
i ) with

|I •i| ≥ 100η|I •| for • = ±, 0.

D.3. Admissible measures. Let Λ > 0. Let E = E.{exp(w)y : w ∈ F}. A
probability measure µE on E is said to be Λ-admissible if

µE =
1∑

w∈F µw(X)

∑
w∈F

µw

where for every w ∈ F , µw is a measure on E. exp(w)y satisfying that if
h exp(w)y is in the support of µw

dµw(h exp(w)y) = λ%w(h) dmH(h) where 1/Λ ≤ %w(•) ≤ Λ,

for some λ > 0 independent of w ∈ F . Moreover, there is a subset Ew =⋃Λ
i=1 Ew,i ⊂ E so that

(1) µw
(
(E \ Ew). exp(w)y

)
≤ Λβµw(E. exp(w)y),

(2) The complexity of Ew,i is bounded by Λ for all i, and
(3) Lip(%w|Ew,i) ≤ Λ for all i.

Convex combination of measures. The following lemma was used sev-
eral times in the paper, in particular, in the proof of Lemma 7.2.

D.4. Lemma. Let `, d > 0. Assume that e−`/2 ≤ β and that h 7→ hx is
injective on E · at · {ur : r ∈ [0, 1]}. Let

E = E.{exp(w)y : w ∈ F} ⊂ Xη

be equipped with an admissible measure µE . For every r ∈ [0, 1],

(D.11)

∫
ϕ(adusa`urz) dµE(z)=

∑
i

ci

∫
ϕ(adusz) dµEi(z) +O(β? Lip(ϕ)),
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where Ei = E.{exp(w)yi : w ∈ Fi} ⊂ Xη and Fi ⊂ Br(0, β) satisfies

(1) β4m+5 · (#F ) ≤ Fi ≤ β4m+4 · (#F ), and
(2) QH` . exp(w)yi ⊂ a`urE for all w ∈ Fi, where

QH` =
{
u−s : |s| ≤ β2e−`

}
· {aτ : |τ | ≤ β2} · {ur : |r| ≤ η}.

The implied constant depends on X.

Proof. This is proved in [LMW22, Lemma 8.9]. We provide road map to
the argument to elucidate the claims made above regarding Fi,r.

To see part (1), and with the notation as in [LMW22, Lemma 8.7], we

have cji,r � N
j
i,r

(
e−`β4η

)
· (#F )−1. Therefore, if cji,r ≥ β4m+8e−`, then

N j
i,r ≥ β

4m+4 · (#F ).

Moreover, by Lemma D.2, #J` � η−1β−4m−6e` ≤ β−4m−7e`. Thus,∑
cji,r<β

4m+8e−`

cji,r ≤ β.

One now defines Fi := F j,mi,r where again we used the notation which is

used after the conclusion of the proof of [LMW22, Lemma 8.7]. Then

β4m+5 · (#F ) ≤ #Fi ≤ β4m+4 · (#F ),

see [LMW22, eq. (8.18)].
As it is argued in the proof of [LMW22, Lemma 8.9], the claim in (D.11)

holds with Ei = E.{exp(w)yi : w ∈ Fi}, see [LMW22, eq. (8.21)].
Part (2) above is [LMW22, eq. (8.14)]. �
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