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ABSTRACT. We establish effective equidistribution theorems, with a
polynomial error rate, for orbits of unipotent subgroups in quotients
of quasi-split, almost simple Linear algebraic groups of absolute rank 2.

As an application, inspired by the results of Eskin, Margulis and
Mozes, we establish quantitative results regarding the distribution of
values of an indefinite ternary quadratic form at integer points, giv-
ing in particular an effective and quantitative proof of the Oppenheim

Conjecture.
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Part 0. Introduction

A landmark result of Margulis is his proof of the Oppenheim Conjecture
by showing that every SO(2,1) orbit in SL3(R)/SL3(Z) is either periodic
or unbounded (or both — in our terminology an orbit L.z is periodic if it
supports a finite L invariant measure; this implies L.z is closed but does not
preclude it being noncompact). Subsequently, Dani and Margulis showed
that any SO(2, 1)-orbit in SL3(R)/SL3(Z) is either periodic or dense, and
also classified possible orbit closures for a one-parameter unipotent subgroup
of SO(2,1).

More precise information regarding the behavior of orbits of one-parameter
unipotent subgroups in quotients of real Lie groups was provided by Ratner
in [Rat90, Rat91a, Rat91b]. These remarkable theorems have been highly
influential and have had a plethora of applications, many of them quite
unexpected.

This paper is a step in a program to make Ratner’s equidistribution theo-
rem effective. Previously, the first three authors proved effective equidistri-
bution results for unipotent flows in G = SL2(C) or G = SLa(R) x SL2(R)
and the last named author for G = SL3(R) and u; a singular one-parameter
unipotent group; here we consider the generic one-parameter group in any
quasi-split group of absolute rank 2.

As an application, we give here an effective and quantitative equidistribu-
tion result for the values of an indefinite ternary quadratic form at integer
points in large balls. This gives in particular an effective and quantitative
proof of the Oppenheim Conjecture. An effective proof of the Oppenheim
Conjecture was given by Margulis and the first named author in [LM14],
but the rates we give here (say of the smallest nonzero value of |Q(v)| with
v an integer vector of norm at most 7') are polynomial, which is the right
kind of dependency, vs. a polylogarithmic rate in [LM14].

Moreover, the quantitative equidistribution result for the values of an
indefinite ternary quadratic form is new — no effective or explicit rate was
previously known. Here we follow Eskin, Margulis and Mozes who gave a
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beautiful argument proving a qualitative! result of this type for all indefinite
quadratic forms of signature (p,q) with p > 3 and subsequently also for
forms of signature (2,2). The techiniques of Eskin, Margulis and Mozes were
recently extended to forms of signature (2,1) by Wooyeon Kim in [Kim24].

1. EFFECTIVE EQUIDISTRIBUTION

In this section we state the main equidistribution theorems of this paper,
Theorem 1.1 and Theorem 1.2. These theorems will be proved in Part 1 of
the paper.

In §2, we will discuss applications of these equidistribution theorems to
values of quadratic forms, viz. Oppenheim conjecture. Part 2 of the pa-
per, is devoted to the proof of these results using the equidistribution result
Theorem 1.1 as well as an analysis of the cusp excursions for certain or-
bits which is closely related to the works of Eskin Margulis and Mozes in
[EMM98, EMMO05] and Wooyen Kim [Kim24].

Throughout Part 1 of the paper, G denotes the connected component of
identity (as a Lie group) of the real points of an R-algebraic group isogenous
to one of the following

SL2 ((C), SLQ(R) X SLQ(R), SLg(R), SU(2, 1), Sp4(R), GQ(R)

Put differently, G is the finite index subgroup G(R)* C G(R) where G is
a semisimple, connected, algebraic R-group which is R-quasi split and has
absolute rank 2, and G(R)™ is the subgroup generated by unipotent one-
parameter subgroups [Mar91, Ch. I]. For G = SLy(C) and SLa(R) x SLa(R),
Theorem 1.1 and Theorem 1.2 where established in [LMW22]; the proof we
give here in particular gives a somewhat more streamlined proof of effective
equidistribution also in these cases, but up to minor cosmetic improvements
in Theorem 1.2 we do not provide any new results in those cases.

Let H denote the image of a principal SLy(R) in G. In particular, H is
a maximal connected subgroup which is locally isomorphic to SLa(R), and
Lie(G) = Lie(H) & v decomposes as sum of two irreducible representations
of H, see §3.1.

For all t,r € R, let a; and u, denote the images of

el/? 0 d 1 r
O e_t/2 an 0 1 .

in H, respectively. Then a; and u, are regular one parameter diagonalizable
and unipotent subgroups of G, respectively. With this normalization, if
v € tis a highest weight vector for a;, then

Ad(a;)v = e™v where dimt = 2m + 1.

1Eskin, Margulis and Mozes called their result a quantitative version of the Oppenheim
conjecture. It is quantitative in the sense that it counts the number of lattice points in a
large ball for which Q(v) is in a given interval, but not quantitative in the sense it does
not say how large the ball has to be before this asymptotical behaviour begins to hold,
and is not effective.
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Let I' C G be an arithmetic lattice. By Margulis’ arithmeticity theorem,
any lattice I' C G is arithmetic, except possibly when G is isogenous to
SU(2,1) and SLe(C), or G is isogenous to SLa(R) x SLy(R) and I is reducible,
where non-arithmetic lattices exist.

Let X = G/I'. Let d be the right invariant metric on G which is defined
using the Killing form and the Cartan involution. This metric induces a
metric dx on X, and natural volume forms on X and its submanifolds. Let
myx denote the probability Haar measure on X

1.1. Theorem. For every xo € X and large enough R (depending explicitly
on xg), for any T > R4, at least one of the following holds.

(1) For every ¢ € C°(X), we have

1
’/ @(aiog TUrTo) dr — /@de’ <S(p)R™™
0

where S() is a certain Sobolev norm.
(2) There exists x € X such that Hx is periodic with vol(Hz) < R, and

dx(z,x0) < RM(logT) ™™

where dimt = 2m + 1.

The constants A1 and k1 are positive, and depend on X but not on x.

The strategy for the proof of Theorem 1.1 is similar to the general strategy
developed in [LM23, LMW22]. A significant simplification is achieved here
thanks to the use of higher dimensional energy. This in turn is made possible
by using stronger projection theorems proved by Gan, Guo, Wang [GGW22].

Quantitative and effective versions of the aforementioned rigidity theo-
rems in homogeneous dynamics have been sought after for some time, we
refer to [LM23, LMW22, Yan22| for a more detailed discussion of this prob-
lem and some recent progress.

As it was done in [LMW22], combining Theorem 1.1 and the Dani-
Margulis linearization method [DM91] (cf. also Shah [Sha91]), that allows
to control the amount of time a unipotent trajectory spends near invariant
subvarieties of a homogeneous space, we also obtain an effective equidistri-
bution theorem for long pieces of unipotent orbits (more precisely, we use a
sharp form of the linearization method taken from [LMMS19]).

1.2. Theorem. For every xo € X and large enough R (depending explicitly
on X ), for any T > R*2, at least one of the following holds.
(1) For every ¢ € C°(X), we have
1 (T
‘T/ o(urzo) dr—/gpdmx‘ <S(p)R™"?
0

where S(p) is a certain Sobolev norm.
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(2) There exists v € G/T with vol(H.z) < RA?, and for every r € [0,T]
there exists g(r) € G with ||g(r)|| < R4? so that

|s = 7]

1/A;
T ) for all s € [0,T7.

dx (uso, g(r)H.x) < R (

(8) There is a parabolic subgroup P C G and some x € G /T satisfying that

vol(R,(P).x) < RA2, and for every r € [0,T] there exists g(r) € G with
lg(r)|| < R42 so that

N 1/4s
dx (uszo, g(r)Ru(P).z) < RA? <M> for all s € [0,T).

In particular, X is not compact.

The constants Ao, Az, and ko are positive and depend on X but not on xg.

Remarks: In options (2) and (3), one can be more explicit about the
properties of the element g(r). For instance in option (2), since usxo needs
to stay close to g(r)H.x for all s in long intervals around r it follows from
(2) that g(r) is very close to Cq(U) (there is of course some play between
what “stay close” and “long interval” means — if one uses a stricter inter-
pretation of what close means, then one must be more lenient on what long
means and vice versa). An analogous statement for G = SLy(R) x SLa2(R)
turned out to be useful in the work of Forni, Kanigowski, Radziwilt studying
equidistribution of orbits at nearly prime times [FKR24]

2. APPLICATIONS TO THE OPPENHEIM CONJECTURE

We now discuss applications of Theorem 1.1 to values of quadratic forms
in the context of the Oppenheim conjecture.

2.1. Theorem. Let QQ be an indefinite ternary quadratic form with det Q) =
1. For all R large enough, depending on ||Q||, and all T > R4 at least one
of the following holds.

(1) For every s € [—R"3 R"3], there exists a primitive vector v € Z3 with
0 < |jv|]| <T so that

Q) — 5| < R~
(2) There exists some Q' € Matz(R) with ||Q'|]| < R so that
|Q = A\Q'|| < RM(log T)MT~2  where A = (det Q') '/%.
The constants Ay and k3 are absolute.

Since algebraic numbers cannot be well approximated by rationals, one
concludes the following corollary from Theorem 2.1.

2.2. Corollary. Let QQ be a reduced, indefinite, ternary quadratic form which
is not proportional to an integral form but has algebraic coefficients. Then
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for all T large enough, depending on the degrees and heights of the coeffi-
cients of QQ, we have the following: for any

s € [=T", T
there exists a primitive vector v € Z3 with 0 < ||v|| < T so that
Q(v) — s| < T
The constant k4 depends on the degrees of the coefficients of Q.

As was mentioned, Theorem 2.1 and Corollary 2.2 are an effective version
of a celebrated theorem of Margulis [Mar89], see also [DM90]. An effective
version, with a polylogarithmic rate, was proved by the first named author
and Margulis [LM14]. The proofs in [Mar89, DM90] and [LM14] rely on
establishing a special case of Raghunathan’s conjecture for unipotent flows
— albeit an effective version in the case of [LM14].

Similarly, our proof of Theorem 2.1 is based on Theorem 1.1. Indeed,
using Theorem 1.1, for G = SL3(R), H = SO(Q)°, and adapting the ar-
guments developed by Dani and Margulis [DM91] and by Eskin, Margulis,
and Mozes [EMM98, EMMO05], and recent advances by W. Kim [Kim24], we
obtain the following theorem.

2.3. Theorem. Let Q be an indefinite ternary quadratic form with det Q =

1, and put
do
o=,
AN

where L = {v € R3 : |[v|| < 1,Q(v) = 0} and do is the area element on L.
Let a < b and A > 103. There are constants Ty and C depending on A
and ||Q||, absolute constants N > 1 and 0 < dp < 1, and for every 0 < § < &g
some k = k(d, A) so that the following holds.
Assume that for T > Ty and all integral forms Q' with |Q’| < T?

Q= AQ|| > |Q™*  where A = (det Q') ™/,
then the following is satisfied: If

#{v ez i ol < T.a < Q) b} — Colb— )T 2
+C(1+ af + o)V T,
there are at most 4 lines L1,..., Ly and at most 4 planes Py, ..., Py so that
#{veZ: o] < Tya < Qv) < b} =
Colb—a)T + Ry + O((1 + |a| + [p)NT ")

where Ry = #{v € (U;L;)) YU F;) : ||v|| < T,a < Q(v) < b}.
More precisely, these exceptional lines and planes satisfy the following:
L; N Z3 = Span{v;} satisfying that

(2.1) loi < 7% and Qi) < T2+
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for every 1 < i < 4.
Also P; N 73 = Span{w; 1, w; 2} satisfying

(2.2) lwinll, lwiall < T and |Q*(wiy A wig)] < T
for every 1 < i <4.

Note that the main term in part (1) captures the asymptotic behavior of
the volume of the solid given by Q(v) = a, Q(v) =b, and ||v| < T. We also
remark that there is a dense family of irrational quadratic forms which are
very well approximated by rational forms so that

#{veZ’: v <T,a < Qv) < b} > T(ogT)'*,
see [EMMO98, §3.7].

Acknowledgment. We are grateful to the Institute for Advanced Study for
its hospitality on multiple occasions during the completion of this project.
We thank Hong Wang for many valuable discussions on projection theorems.
We also thank Zuo Lin for going over early drafts of the elements of §7 and
providing helpful feedback.

The landmark work of G.A. Margulis on the Oppenheim Conjecture and
more generally in homogeneous dynamics and its applications to number
theory has been a continued source of inspiration for us. In particular, E.L.
and A.M. have had joint works closely related to this paper with Margulis,
and are very grateful for all we have learned from him. His insights feature
in many places in this paper, sometimes implicitly.

Part 1. Polynomially effective equidistribution theorems

In this chapter we prove Theorem 1.1 and Theorem 1.2. As noted ear-
lier, the overall strategy for the proofs aligns with the approach developed
in [LMW22]. A key simplification in the proof of Theorem 1.1 is accom-
plished through the use of higher-dimensional energy, made possible by
stronger projection theorems established by Gan, Guo, and Wang [GGW22].

3. NOTATION AND PRELIMINARY RESULTS

Let G be a semisimple, connected, R-group with absolute rank 2 which
is R-quasi split. Let G = G(R)", where G(R)" is the subgroup generated
by unipotent one-parameter subgroups. In other words G is the connected
component of the identity in the Lie group G(R), see [Mar91, Ch. I].

More explicitly, G is isogenous to one the following groups

80(3, 1), SL2 X SLQ, SL3, SU(Q, 1), Sp4, GQ.

Indeed, G is R-split except when it is isogenous to SO(3,1) or SU(2,1), in
which case G is R-quasi split but not split. We assume G' C SLy(R) for
some N which is fixed throughout the paper.
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3.1. The principal SLy(R) in G. There is a homomorphism p : SLa(R) —
G with finite central kernel so that

Lie(G) = Lie(H) ® ¢

where H = p(SL2(R)) and v is an irreducible representation of H with
dimension 2m + 1 where

m = 1 if G is isogeneous to SO(3,1) or SLg x SLy

m = 2 if G is isogeneous to SL3 or SU(2,1)

m = 3 if G is isogeneous to Spy

e m =5 if G is isogeneous to Go

see [And75] and the references therein, in particular, see [And75, Prop. 6].
For all t,r € R, let a;, u,, and u; denote the images of

et/? 0 1 r d 1 0
0 e—t/2)" 0o 1) s 1

in H, respectively. Then a; and u, are regular one parameter diagonaliz-
able and unipotent subgroups of G, respectively. Similarly, u; is a regular
unipotent subgroups of G. We let A ={a:}, U = {u,}, and U~ = {u; }.

All regular unipotent one-parameter groups, and hence the corresponding
groups H, are conjugated to each other under G*(R), the adjoint form of
G, see [And75, Thm. 1].

Note also that with the above normalization, if v € v is a highest weight
vector for a;, then Ad(a;)v = e™wv, recall that dimt = 2m + 1.

For any A-invariant subspace V' C sly(R), let VO denote the space of

as-fixed vectors and
VE = {2 €V :limy 70 Ad(as)z = 0}.

We assume the embedding G C SLy(R) is fixed so that g® @ gt = gn by,
the subalgebra of upper triangular matrices in gly.

Lie algebras and norms. Recall that G C SLy(R). Let | | denote the
usual absolute value on R. Let || || denote the maximum norm Maty(R),
with respect to the standard basis.

We fix a norm on h by taking the maximum norm where the coordinates
are given by fixing unit basis vectors for the lines Lie(U), Lie(U™), and
Lie(A). Since v is Ad(H )-irreducible, each weight space is one dimensional.
Fix a norm on t by taking the max norm with respect to a basis consisting
of unit pure weight (with respect to a;) vectors. By taking maximum of
these two norms we get a norm on g, which will also be denoted by || ||.

Let C; > 1 be so that

(3.1) |hw|| < Ch||w|| for all ||h —I|| <2 and all w € g.
For all 0 < 6 < 1, we define
(3:2) Bf = {uy :[s] <0} - {ar: |t} <8} - {ur: |r] < 8}
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Define Bg for § > 0 and L = U, U~ and A similarly, and put

By — {uz :|s| <0} {ar: |1 < 6} = BY By
Note that for all h; € (BgI) ,1=1,...,5, we have
(3.3) hi---hs € B{%O(;.

We also define B§ := BY - exp(B,(0,6)) where B.(0,0) denotes the ball of
radius J in v with respect to || |.

Given an open subset B C L, with L any of the above, and § > 0, put
9sB = {h € B: BL.h ¢ B}.

We fix Haar measures mg on G and mpg on H. Let I' C G be an arithmetic
lattice, and let mx denote the probability Haar measure on X = G/T.

For all z € X, define inj(x) as follows

(3.4) inj(z) = min{0.0l sup{(5 : g — gx is injective on B%Nzé}}.
For every n > 0, let X, = {z € X : inj(z) > n}.

Commutation relations. Let us record the following two lemmas.

3.2. Lemma ([LM23], Lemma 2.1). There ezist 09 and Cy depending on m
so that the following holds. Let 0 < § < g, and let w1, ws € By(0,9). There
are h € H and w € v which satisfy

Flwr —wal < Jlwll < Gllwy — w2l and  [[h = I|| < C2d]jw]

so that exp(wi) exp(—wsz) = hexp(w). More precisely,

lw = (w1 — wa)|| < Cadllwr — w
3.3. Lemma ([LM23], Lemma 2.2). There exists oy so that the following
holds for all 0 < 6 < ég. Let v € X5 and w € B(0,9). If there are
h,h € BEL so that exp(w')ha = h' exp(w)z, then

h'=h and w' =Adh)w

Moreover, we have ||w'|| < 2||w]|.
The set E, ; 5. For all ,t,3 > 0, set
(3.5) Epip:i= BZ’H cag-{uy 17 €[0,n)} C H.

Then mp(Ey, ¢ 8) < nB2et where mpy denotes our fixed Haar measure on H.
Throughout the paper, the notation E, ; 3 will be used only for n,¢,3 > 0
which satisfy e 001 < 3 < 2, even if this is not explicitly stated.
For all n, 8,7 > 0, put

(36) QU ={uy:|s| < pe "} {ag: ld) < B) - {ur: Ir| <}

Roughly speaking, QH . is a small thickening of the (3, n)-neighborhood of

the identity in AU. We erte Q for QH 8.,
The following lemma will also be used in the sequel.
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3.4. Lemma ([LM23], Lemma 2.3). (1) Let 7 > 1, and let 0 < 7,5 < 0.1.
Then

+1)\3
<(Q£I/10N2,,8/10N2,7-) ) C Qg
(2) For all0 < B,n<1,t,7 >0, and all |r| <2, we have
(3.7) Q2 ,
where ' = n(1 — 10N%2e*) and B’ = B(1 — 10N2p).

+1

Linear algebra lemma. Recall that dimt = 2m + 1, and that v is Ad(H)-
irreducible. We have the following

3.5. Lemma (cf. Lemma A.1, [LMW22]). Let 0 < o < 1/(2m +1). For all
d>0 and all 0 # w € t, we have

1
/0 lagupw]| = dr < Ce o™ ||

where C' is an absolute constant.

4. AVOIDANCE PRINCIPLES IN HOMOGENEOUS SPACES

In this section we will collect statements concerning avoidance principles
for unipotent flows and random walks on homogeneous spaces; the reader
will find this section similar to [LMW22, §4] and [LM23, §3]. The proofs are
included in Appendix B for the convenience of the reader.

4.1. Nondivergence results. The results of this subsection are only in-
teresting when I is a nonuniform lattice, i.e., when X is not compact.

4.2. Proposition. There exist mg depending only on m and Cs > 1 depend-
ing on X with the following property. Let 0 < §,e < 1, and let I C [—10, 10]
be an interval with |I| > 6. For all x € X, we have

‘{r el:asurx & Xa}‘ < Cgsl/mO\I],
so long as s > mo|log(dinj(z))| + Cs.

Proof. There exist m’, depending on m, and a function w : X — [2,00) so
that for all x € X

inj(z) > w(x)fm/,

moreover, for all z € X and all s > m’|logd| + Bj,

/w(asurx) dr < e ™w(x) + By,

I

where Bj, and By depends on X. See Proposition B.3 and references there.
The claim in the proposition follows from these statements and Cheby-

shev’s inequality. O
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4.3. Inheritance of the Diophantine property. The following propo-
sition improves the somewhat weak Diophantine property that failure of
part (2) in Theorem 1.1 provides to a Diophantine property in terms of
volume of periodic orbits involved. This proposition can be compared with
the main theorem in [LMMS19], and will be applied as the first step in the
proof of Theorem 1.1.

4.4. Proposition. There exist Dy, depending on m, and Cy, So, depending
on X, so that the following holds. Let R,S > 1. Suppose xo € X s so that

dx(z9,x) > (log §)7°5~™
for all © with vol(Hx) < R. Then for all
s > max{log S, mg| log(inj(zo))|} + so
and all 0 <n <1, we have
inj(asuyzg) < n or there is x with

. 1/m -1
Hr €[0,1]: vol(Hz) < R s.t. dx(asu,xo,z) < 0411%00 HS Caln ™0+ B0

The proof of Proposition 4.4 is postponed to §B.1.

4.5. Closing Lemma. Let 0 < n <x 1 and 8 = n?. For every 7 > 0, put
(4.1) Er=Ei.5=B5" a- {u:re0,1]} C H.

where By = {u7 : |s| < 8} - {aq: |d] < B}, see (3.5).

If y € X is so that the map h — hy is injective over E;, then pg_, denotes
the pushforward of the normalized Haar measure on E to E;.y C X.

Let 7 > 0 and y € X. For every z € E,.y, put

I(z) = {w € v: ||w|]| <inj(z) and exp(w)z € E;.y};

this is a finite subset of v since E. is bounded — we will define I¢(z) for
more general sets £ in the bootstrap phase below.
Let 0 < a < 1. Define the function f : E;.y — [1,00) as follows

F) = {Zo¢w61<z> lwll = if () # {0}

inj(z)~® otherwise

4.6. Proposition. There erist m; depending on m and D1 depending on X
which satisfy the following. Let D > Dy and x1 € X. Then for all large
enough t (depending on inj(x1)) at least one of the following holds.
(1) There is a subset J(x1) C [0,1] with |[0,1]\ J(z1)| <x /™) such
that for all r € J(x1) we have the following
(a) am ¢urz1 € X,
(b) h = h.am,uyz1 is injective over E;.
(c) For all z € Ey.am,rurx1, we have

f(z) <Pt
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(2) There is x € X such that Hx is periodic with
vol(Hz) < Pt and  dx(z,21) < e7PHPIE,

The proof of Proposition 4.6 is postponed to §B.7.

5. MIXING PROPERTY AND EQUIDISTRIBUTION

Let us recall the following quantitative decay of correlations for the am-
bient space X: There exists 0 < kg < 1 so that

(5.1) ‘/90(937)1#(50) dmx —/sodmx/wde’ <<5(gp)5(¢)e*ﬂod(e7g)

for all p, 9 € C°(X)+C-1, where mx is the G-invariant probability measure
on X and d is the right G-invariant metric on GG defined on p. 4. See, e.g.,
[KM96, §2.4] and references there for (5.1).

Here S(+) is a certain Sobolev norm on C2°(X)+ C-1 which is assumed to
dominate ||-||oc and the Lipschitz norm ||-||rip. Moreover, S(g.f) < ||g/|*S(f)
where the implied constants depend only on m.

5.1. Proposition. There ezists ks > ko so that the following holds. Let
A > 1, and let v be a probability measure on BlG with

dv
dmg
Let 01,05 > 0 and 0 < n < 1 satisfy the following

(5.2) (9) <A for all g € suppv.

ksle > max{/y, |logn|}.
Then for all x € X, and all p € CZ(X), we have

1
// p(ap urag,gr)dv(g) dr :/QOde —}—O(S(gp)(n_{_/\l/?e—ﬁsh)).
0JG

Proof. Put B = BY and assume, as we may, that [ pdmx = 0.
Applying Fubini’s theorem and Cauchy-Schwarz inequality, we have

‘/01/3 p(ag urag,gz) dv(g) df"z < /B(/Olw(aelurazggx) dr>2du(g)

Expanding the inner integral in the right side of the above and using (5.2),
we conclude that

(5.3) ‘/01/8 o(ag urag,gz) dv(g) dr

2
<
1 pr1
A///W(aelunaezgw)@(aelumaeggx) dry drg dme(g)-
BJO J0O
For all 1,75 € [0, 1], let

(I)TM“Q (Z) = @(ahuhz)so(ahumz)'
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Then S(®,, 1) < eM18(p)? for some M depending only on the dimension.
Moreover, if |1 — 3| > e1/2, then (5.1) implies that

| [ @1 dma| = [o(an 20 ur,2) dim | < S(ee

where k = *kg. We will assume x < 1/2.
We now estimate the second integral in (5.3). Applying Fubini’s theorem,

1,1
A/B/ / Qp(a&uha€2g$)90(a€1u7“2a€29x) dry dry de(g) =
0J0

1,1
A/ / /BSO(ael uTlang)(p(ahurzang) de(g) drq drg
0J0

Let 2= {(r1,72) € [0,1])? : |r1 — 79| > e /2} and 2" = [0,1]? \ E. Let now
(r1,72) € =, and recall that « € X,. Increasing M if necessary and using
a partition of unity, there exist a collection {¢;} C C2°(X) satisfying that

S(¢i) < 77_M, Zfl/h dmx =1, and

m(IB) /B By, 1y (ar,9y) dm(g) =

S [ Briralan () i () + Ol o)

In view of this and (5.1), thus

(5.4) mgB) /B D1, o (at,99) dmg) =

/(I)TM“Q dmy + O(||¢[l2n + S(@ry vy )~ Memm02))

Using the above observations regarding the Sobolev norm and the integral
of @, ,, (5.4) implies that if (r;,r2) € Z, then

1

— / Dy, 1y (ar,9y) dm(g) = O(S(9)?(n + e " 4y~ MM erolzy)
m(B) B

This, |Z/| < e %/2, and (5.3) imply that if £5 > M max{¢1 /kg,|logn|}, then

‘/01/8 o(ag, urag,gy) dv(g) dr‘ = 0(S(p)(n +A1/2€—nél)).

The proposition thus holds with x5 = min{x, 537} [l

In applying Proposition 5.1, we consider measures supported on t with a
finitary dimension close to 2m + 1. The following lemma, based on standard
arguments, establishes the connection to Proposition 5.1.
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5.2. Lemma. Let 0 < 69 < 1. Let l1,02 > 0 with rsle > max{/1,|logn|}
and 4mfy < |logdol, and let o < g, where 0 < gy < 1 depends only on the
dimension. Let p be a probability measure on By(0, 0) satisfying

(5.5) p(B(w,8)) < Y6*™ for all w € ¢ and all § > &.
Then for all ¢ € C°(X) and all z € X,

1 01
/ / /cp(aglurlagQUTQ exp(w)z) dp(w) dre dry =
0 Jo

/‘Pdmx +O(S(9)(0" +n+ Y2 3/2e7rsty)

Proof. We provide the details of the straightforward proof for the conve-
nience of the reader.

As it was mentioned before, we will use Proposition 5.1 to prove the
lemma. To that end we begin by convolving i with a smooth kernel. Let

(5.6) o=y,

where ®(w) = d; > 1 ®(5; 'w) for a radially symmetric nonnegative smooth
function ® on v — recall that dimv = 2m + 1.
Then, standard computations imply that

(5.7) fi(Be(w,8)) < Y&*™ 1 forallw €vandall 0 < § < 1.

Moreover, since eM1+€2)5, < =01 we have

1,1
(5.8) / / / @ (@, ur, agytr, exp(w)z) dp(w) dro dry =
0Jo

1 p1
/0 /0 / (i, 1yt xp(w)) dji(uw) dry dry + O(S(p)e ™)

In consequence, we now investigate the integral in the second line of (5.8).
The following observation guarantees that we may replace the integral in the
second line of (5.8) by a p-thickening of it along H. Let BY = Bg . Then

1,1
(5.9) /0 /0 /gp(aglu,nlabur2 exp(w)z) di(w) drodry = O(S(gp)g*) +

1,1
mn (BT %BH)/ / / / go(aglurl ag,ur,hexp(w)x) di(w) dh dra dr
o Jo JBH

To see (5.9), recall that for all h € B u,,h = u} aju, where |s|,|q| < ¢ and

S
dr = (1+ O(po)) dro. Furthermore, ag,ugaqg =u__,, aqas,. Thus

742
2 /
a/fluTl aEQUTgh = aéluﬁg aqaégur =g aqaflue_qu afzuTa

where ||¢’ — I||,[|¢" — I|| < e~“17%2. This, together with |e™? — 1| < ¢ and
the Folner properties of dr; and dry, implies the claim in (5.9).

In view of (5.9), we will work with the integral on the second line of (5.9).
Recall that g = h @ v. Assuming gg is small enough, every g € Bl%go
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can be uniquely written as g = hexp(w) € H exp(t), moreover, the map
g+ (h, w) is a diffeomorphism onto its image. Recall that o < g9 and put

dv = (BH) dhd(exp fi). Then (5.7) and my(B#) < 3 imply that
(5.10) V(B (g)) < To 364MmE forall ge G andall 0 < d < 1.
Therefore, d(u#z#) < T for all » € [0,1]. Applying Proposition 5.1, with

UpyVU_p, and up,x for all rg € [0, 1], thus,

1,1
/ / / o (ae, ur, ag,ur,9z) dv(g) dro dry =
0JoJa

/«Pdmx + 0c(S(p) (n + T2 3/2e7rsty).

This, (5.9), and (5.8) complete the proof. O

6. MODIFIED ENERGY AND PROJECTION THEOREMS

We begin by defining a modified (and localized) a-dimensional energy for
finite subsets of R%. Fix a norm || || on R? (below we will apply this with
d=5,7,11). Let © C Bpa(0,1) be a finite set.

For 0 <§ <1and0< «a<d, define g(“) — (0, 00) as follows:
Goaw) = > max(w—uf],6)
w' €eO\{w}

When 6 = 0, we often write gé (w) for Q(a)( ).

This notation will also be used for finite subsets of t, which is an 2m + 1-
dimensional Ad(H )-irreducible representation, see §3.

The following projection theorem plays a crucial role in our argument.

6.1. Theorem. Let 0 < a < 2m+1, there exists w > 0 so that the following
holds. Specifically, the theorem holds with w as in (6.2), see also (6.3).

Let 0 < c < 107%*a, and £ > 0. Let © C B.(0,1), and assume that #0O is
large (depending on c). Assume further that

(6.1) ggg(w) <7T for every w € O,

for some 0 < § < 1.
There exists a subset J C [0, 1] with

10,1\ J] < Le|log dle",
so that the following holds. Let r € J, then there exists ©, C © with
#(0\ 0,) < L|logdle ™" - (#0)
such that for all w € ©,., the following is satisfied
ggl()ww,(Ad(agur)w) < Lee @5
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where §' = e™ max(8, (#0)~ 1Y), L¢ is a constant depending on c, and
O(w) = {Ad(apu,)w' : w' € O,,||w —w'|| < e ™}.

Before proceeding with the proof of this theorem, we explicate the value
of w for which we will prove the theorem. Let 0 < oo < 2m + 1, and define

am—zgﬂ_li 0<a<2m-1
(6.2) @w={max(m(l-2m+a)ml+2m—a)—1) 2m—1<a<2m
m(1+2m — «) Im<a<2m-+1

Note that for any 0 < & < 10%7 and any 0 < a < 2m + 1 — &, we have

(6.3) w > min{am, im}.

Indeed, if 0 < o < 1, then @w = am. Let us now assume d — 1 < a < d for

some 2 < d < 2m — 1, then

d(d—1) - (d—1)(2m—d)
7 2 2

N[ =

w=oam —

>
Now consider 2m — 1 < a < 2m. Indeed
w>m(l+2m—a)—1>2m-1 if2m—-1<a <2m- 32
w>m(l-2m+a)> 7 if2m—%§a§2m
The claim in (6.3) follows.

The proof of Theorem 6.1 relies primarily on a result by Gan, Guo, and
Wang [GGW22, Thm. 2.1]. More specifically, the following lemma forms the
crux of the proof of Theorem 6.1. The proof of this lemma, in turn, depends
on Theorem C.2 which is [GGW22, Thm. 2.1] tailored to our application.

6.2. Lemma. Let 0 < a <2m+1, 0 < by <1 and £ > 0. Let p be the
uniform measure on a finite set © C B(0,1) satisfying the following

(6.4) p(Be(w, b)) < Tv* for all w and all b > by

Let 0 < c < 107, For every 1 > b > e™by, there exists a subset Jop C [0,1]
with |[0,1]\ Jep| < Cle*l so that the following holds. Let r € Jop, then
there ewists a subset Oy, C O with
PO\ Opy,y) < Cle™

such that for all w € Oy, we have

p({w' € Op,y : || Ad(apur)w — Ad(agu, )u'|| < b}) < Clre =hpa—c
where w s as in (6.2).
Proof. We first establish the claim for 0 < o < 2m — 1, and also obtain one
of the bounds in the definition @ = max(m(1 —2m+a), m(1 +2m — ) — 1)
for 2m — 1 < @ < 2m, namely m(1 — 2m + «).

To that end, let k = [«] and write

@ =am- Y1
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For every 1 < d < 2m+1, let vy denote the space spanned by vectors with
weight m,...,m —d+ 1. Let w4 : t — t4 denote the orthogonal projection.
Apply Theorem C.2 with b = e~™b > by and c¢/2. Then for every r € Jy
and all w € Oy ,, we have

(6.5) p({w’ € 0 : ||m(Ad(uy)w)) — mr(Ad(u)w')|| < b’}) < CCT(b’)a_é.

Let P C t;, denote the box b x et/ --- x e~V centered at the origin,
where the directions correspond to the weight spaces for a; in decreasing

order. Then P + m(Ad(asu,)w) can be covered with < eXic it many
boxes of size . Thus (6.5), applied with 2, implies that
g o )P+ m(Ad(an ) < (€O S

' < 2°C e = e,

Note also that

{w' € Oy, : || Ad(agu,)w) — Ad(apu, )w'|| < b} C
{w" € O, ¢ || mr(Ad(agu,)w)) — mp(Ad(apu, )w")|| < b} C Pryap-
This and (6.6) show that

(67) ploy,, ({w € t: || Ad(apur)w) — Ad(agu, )| < b}) <
200 Ye ™ ho=c
which establishes the claim when 0 < a < 2m — 1, as well as when 2m —1 <
a < 2m for @’ = m(1 — 2m + «) (when this is positive).
We now turn to the case when 2m — 1 < o < 2m + 1. For a vector v € ¢

and 1 <1¢ < 2m + 1, let v; denote the component of v in the weight space
m — ¢ + 1. Then for every w € © and all b, we have

(6.8) {w' € ©:| Ad(apu,)w) — Ad(asu)w'|| < b} =
{w' € © : Vi, |(Ad(u,)w); — (Ad(u,)w');| < elmmH=DepY,
Put ¥ = e™b, and let P C ¢ be the box
e*QmEb/ % 6(72m+1)f N effb/ % b/

centered at the origin, i.e., i-th weight space has size e ™~%. In view
of (6.8), we will estimate the measure of sets of the form P + w for w € ©.

To that end, cover © with half-open disjoint boxes {B, : ¢ € Q} of size
V. For all By, let p, = ﬁsq)p’ B,, and let p, denote the image of p; under

2+ & (2 — 24), where z, is the center of By. Then for all § > by /V/,

Pq(Be(v,6)) = ﬁjglz)p(Bq N Be(v + 2, blé))
T

seva . Yedmpe oo
< oy U'0)* = “5m, 0

In particular, if b > e™b,, then e~2m¢ > %}, thus (6.9) holds for § > e=2m¢,

(6.9)
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Let us first assume 2m — 1 < a < 2m. Put P’ = %P. Then using
Theorem C.2, with k = 2m — 1 and p, for all ¢ € Q, there exists a subset

Jq C [0,1] with |[0,1] \ J4| < e*<*! and for every r € Jq a subset Oy, C
© N By with with p,(0 \ ©4,) < e *<*t 50 that for all v € t,

Palo,, (Ad(u_r) P’ +v) < C X" o= Dot

< C. T e(am—zl?!Q i)éba—c

(q)
=C. )e(

m(2m+1—a)— 1)ébo¢—c.

(B
Equip Q x [0,1] with o x Leb where U( ) = p(By). By Fubini’s theorem,
there is J C [0, 1] with |[0, 1]\ J| < e_*c *0 and for all 7 € J a subset Q, C Q
satisfying that > o p(Bg) <e el g0 that r e Jg for all ¢ € Q,.
For every r € J, let ©yp, = Uge0, Oy, Since P + Ad(u,)w is contained
in O(1) many By’s, the above and the definition of p, imply that

p|@£!byr (Ad(u_r)P + ’LU) < CCTG—(m(2m+1—a)—1)Zba—c‘

In view of (6.8), this and (6.7) establish the claim when 2m — 1 < a < 2m.

The proof in the case 2m < a < 2m + 1 is similar. Indeed, applying
Theorem C.2, with k¥ = 2m and {p, : ¢ € Q}, we obtain J C [0, 1], for all
r € J the subset Q, C Q and for each ¢ € Q,, the set ©,, as above so that

ﬁq|@qu(P/+Ad(ur) ) Ccream/ba (= Z T i+c)l

p(Bq)
T am—5"2"m i) a—
< CC (B ) ( szl ) b c
T m(2m+1—a)lpa—c
= Cepmye 7

for all v € v. Put Oy, = Uyc0,Oq,r- Then
m@tb,r (P + Ad(ur)w) < Ccfrefm(2m+1fa)€ba7c
which, thanks to (6.8), gives the claim when 2m < a < 2m + 1. O

6.3. Proof of Theorem 6.1. Recall the definition of @ from (6.2).
Let us write T = %. To simplify the notation, Ad(apu,)(w)
denoted by &, (w) in the proof.
Let p denote the uniform measure on ©. By (6.1),

(6.10)  p(B(w,b) NO) <2Tb* for all b > max(d, (#6) =) = by

Thus, Theorem C.2 and Lemma 6.2 are applicable with p and b > b;.

Let k1 = —[logbi] and kz = m{. Apply Lemma 6.2 with c¢/2 and b = e~*
for all ko < k < k;. Let J = ﬂ',:,l:kg Jye-k where Jpp is as in Lemma 6.2.
Then that lemma implies that

will be

1
[0, 1]\ J| <e D e < [log ol
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For every r € [0, 1], let
ki—m{

(6.11) Or= () Oper,
k=ko

where © .k ,. is given by Lemma 6.2. Applying that lemma, thus, we have

p(0\ 0,) < |logdle ",

Define J and for every r € J, ©, as above for this case. For every w € O,
and every k < k; — m/, let

O(w, k) = {w' € O, : e < e (w) — &, (w)]| < e );

define ©(w, k; — m{) similarly but without imposing a lower bound. Then
by Lemma 6.2, for all k¥ < k1 — m{ we have

(6.12) p(O(w, k) < CLY§~/2e =k,
Put &} = k1 — m{. From the above we conclude

gg&]),a'(w): > max(||&(w) = &op ()], )

w’' €0 (w)

K —1
<p(O(w, k) - M1+ > N 1€ (w) = Eop(w)] 7

k=ka O(w,k)
k1

< Z Yo 2e ek ek . (#0)
k2

< |logdle ™2 < e FCT,

where we used (6.12) in the third line, T = % and k1 < |logd| in the

second to last inequality, and |log 6|6~</2 < §° in the last inequality.
The proof is complete. O

6.4. Linear algebra lemma and the energy. In this section, we detail
how Lemma 3.5 can be employed to improve the initial estimate provided
by Proposition 4.6. While the formulation of Lemma 6.5 below bears simi-
larities to Theorem 6.1 albeit with small «, a key observation is that, unlike
that theorem, this step avoids any loss of scales.

In the proof of Proposition 8.1, we will use Lemma 6.5 to refine the initial
estimate provided by Proposition 4.6, achieving a positive initial dimension.
Subsequently, Theorem 6.1 will be applied to further improve this dimension,
bringing it close to full dimension.

6.5. Lemma. Let 0 < o < ﬁ and £ > 0. Let © C B(0,1) be a finite set
satisfying that

(6.13) gg“) (w) < T for every w € O,

for some YT > 1.
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There exists a subset J C [0,1] with |[0,1] \ J| < Loe™**, so that the
following holds. Let r € J, then there exists a subset ©, C © with

#(0\ 0,) < Lae ™ - (#0)
such that for oll w € ©, we have

9 ad(apup)o(Ad(agu,)w) < Lye 201

where Ly s a constant depending on .

Proof. Recall from Lemma 3.5 that for all 0 # v € v, we have

1
/ laguyo] = dr < Cae||o]
0
where C, depends on «. This and the definition of gg") imply that

/gAdam o(Ad(agu,)w dr—/ Z | Ad(apu,)(w —w')||~*dr

wFw’

< Coe™ ™ ) Jw—w'|
wH#w’
— Cae_o‘egé)a) (w) < C’ae_ae'f,

for all w € ©.
Applying Chebyshev’s inequality, we conclude that if for w € © we put

J(w) - {T = [0’ 1] gA(Aoél)a pUr )G(Ad(afur)w) > Ca€_3ae/4’r} ,

then |J(w)| < e~ /4. Let

(11
I

{ ) €0 x[0,1]: G, 0 0 (Ad(aru ) < Coe 47|
{(w we@rE[Ol]\J( ).

The above discussion implies that px Leb(Z) > 1 — O(e~*/4), where p
denotes the uniform measure on ©. This and Fubini’s theorem imply that
there exists J C [0, 1] with |[0,1] \ J| < e™*® so that for every r € J

pl{w : (w,r) € E}) > 1 — O(e ).
For every r € J, let
(6.14) O, ={w: (w,r) € =}

The claim in the lemma thus follows with J and ©, as above. O
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7. MARGULIS FUNCTIONS AND PROJECTION THEOREMS
Let us put
E={u; :[s| < B} -{aa:|d < B} {ur:|r] <n},

see (3.5). Let F' C B(0, ) be a finite set. Let y € X,, be so that (h,w) —
hexp(w)y is injective over E x F' and

(7.1) E=E{exp(w)y:weF} CX,
For every (h,z) € H x &, define
(7.2) Ie(h, 2) :== {w € v: |w| < inj(hz), exp(w)hz € hE}.

Note that I¢(h,z) contains 0 for all z € £, moreover, since E is bounded,
I¢(h, z) is a finite set for all (h,2) € H x &.
Fix some 0 < o« < 2m+1. For every 0 < § < 1, define a modified Margulis

function féog) : H x €& — [1,00) as follows.

0= > max(||w],6)"°

0£welg (h,z)

In this paper, we will primarily use the above objects with h = e. Hence,
and in order to simplify the notation, we denote I¢(e, z) and féog) (e,z) by

I¢(2) and féo;) (z), respectively.

The modified Margulis function and the modified energy discussed in §6
are closely related. Specifically, the following lemma [LMW22, Lemma 9.2]
establishes, in a general sense, that bounding one of these quantities im-
plies a bound on the other, with the exception of potential edge effects.
When t is a Lie subalgebra, this connection becomes more straightforward.
However, in the general case, understanding the relationship between I(z)
and I(exp(w)z) demands further elaboration; see [LMW22, Lemma 9.2] for
details.

7.1. Lemma. Let the notation be as above, and assume that
féog)(z) <7T for all z € £.
Then for every z € (E\Tsz).{eXp(w)y cw € F}oand all w € Ig(2),
g}j()zL S(w) < T,
where G is defined as in §6.

An iterative dimension improvement lemma. The following lemma
outlines a general iterative process for improving the dimension under suit-
able projection theorems. Readers may compare it to [LMW22, Lemmas 9.1
and 10.7] and [LM23, Lemma 7.10]. In the next section, we apply Lemma 7.2
to establish Proposition 8.1, a central component of our argument.
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Let 0 < ¢ < 107'° be a small parameter, and ¢t > 0 a large parameter.
We also fix some 0 < ¢’ < 1075, and put

(=:£L B=¢ec" and n*=4.

Throughout this section, we fix a large parameter dg. The results of this
section will be applied with dy = 3t + 3df, where dg, is the number of
steps we need to apply Lemma 7.2 in the proof of Proposition 8.1, and is

explicated in the next section.
Recall that F' C B(0, ), and

£ =E{exp(w)y:w e F} C X,

We assume & is equipped with an admissible measure ug, see §D.3.

7.2. Lemma. Let 2m1+1 < a<2m+1, and define w as in (6.2) (w is some
explicit function of a that goes to zero as o — 2m +1). Let T < Pt for

some D > 0, and assume that

&)<Y orallzeé

where 6 =0 if a = ﬁ and e Pt < § < 1 otherwise.
The following holds so long as t is large enough, depending on X, D, and
2m + 1 — a, see (7.6). There exists a collection {&; : 1 <i < N} of sets
& = E{exp(w)y; :w € F;} C X,
where for every 1 <i < N, F; C B(0, ) with
BUMHO L (#F) < #F; < BUTIHE,
and for every i, an admissible measure ig,, so that both of the following hold
(1) For all1 <i < N and all z € E{exp(w)y; : w € F;},

(7.3) PO (2) S e FLT et (#F)

where &' =0 if a = ﬁ and &' = e™ max(d, (#F)_é) otherwise.
(2) For all0 <d <dy—¢, all |s| <2, and every ¢ € CX(X), we have

1
/0 /ap(adusagurz) dpg(z)dr = Z ci/ w(aqusz) due, (z) + O(Lip(v)5™°)

where 0 < ¢; <1 and ), ¢; =1 — O(5"), Lip(p) is the Lipschitz norm
of p, and kg and the implied constants depend on X .

The proof of Lemma 7.2 relies on Lemma 6.5 (for « = 1/(2m + 1)) and
Theorem 6.1 (for a > 1/(2m + 1)) and will be completed in several steps.
The basic idea is straightforward: By applying these results to the sets I¢(z)
for all z € £ and a few applications of Fubini’s theorem, we obtain a large
subset L C [0,1] and for each r € L a large subset £(r) C £ where the upper
bound on the modified Margulis function improves under the application of
agur. We then trim and smear apu,€(r) using the results in [LMW22, §6-8],
see also §D.3, to establish the lemma. The details follow.
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Proof of Lemma 7.2. Let us write
E'=E\0sp2E and & =FE {exp(w)y:w e F}.
Recall from Lemma 7.1 that our condition

EHE R
implies that for every z € £ and all v € I¢(2), we have ggjgz) s(0) < T,
Let z € &, we will estimate

gAd (agur)I,0' (Ad(asu,)v)

for a certain subset I C Ig(Z) Wthh will be explicated below.

First let us assume o = 2m+1, then @w = a and ¢ = 0. In this case,
Lemma 6.5 applied with © = I¢(2) implies that there is 6 > 0 (depending
on m) so that for all large enough ¢ the following holds. Denote by Jz the
set J C [0,1] in Lemma 6.5, and for all r € Jz, let Iz, be the set ©, in
Lemma 6.5 applied with © = I¢(Z), see (6.14). Then

(7.4) #(Ie(2)\ Is,) < e - (#Ie(2)),

and for every v € Iz ,, we have

ggozi)(agur)liz?ﬁ(v),§’ (Ad(aéu'r> ) < gA(AOé) (agun)le (2 )(Ad(agur) )

(7.5)
< e del/4y

where I%(v) = {v/ € Ig(2) : lv — /|| < e”™} and we used @ = a and
4’ = 0 in the case at hand.

We now turn to the case o > Tlﬂ The goal is to establish a similar
estimate, albeit using Theorem 6.1 in this case. To that end, first let c be
small enough so that ePt < ¢@/4,

(7.6) e"FETOY < e 3FAY

where we used § > e~P!. Now apply Theorem 6.1 with © = I¢(2) and this
c. There is 8 > 0 so that for all large enough ¢ the following holds. Denote
by Jz the set J C [0,1] in Theorem 6.1, and for all » € Jz, let Iz, C I¢(2)
be the set O, in Theorem 6.1 applied with © = I¢(Z), see (6.11). Then

(7.7) #(Ie(2)\ Ley) < €700 (#12(2)),
and for every v € Iz, we have
(7.8) Gad azm)ﬂnt(v)ﬁ,(Ad(agur)v) < e 3@y

Where (5/ = e maX( (#F) 1/0()’
I;’I,lﬁ(v) = {U/ S Igﬂn : HU — U’H < 67m€}7

and we used (7.6).
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The set L,.. Equip £ x [0, 1] with o := pg x Leb, where Leb denotes the
normalized Lebesgue measure on [0,1]. Extend the definition of Iz, to all
r € [0, 1] by letting Iz, = 0 if r € Jz, and put

(7.9)  Z={(zr) €&x[0,1]: #(Ie(2)\ I,) < e - (#1:(2)},
where £ = E.{exp(w)y : w € F} and E = E \ 02002 E.
Then, using (7.4) if a = ﬁ or (7.7) when a > ﬁ, we have that
{(z,r):red:}cZ forallzek.
Recall moreover that ug(€\ £) < 8. We conclude that
o(Ex[0,1]\2) < B+e ! e,

where we assumed ¢ < k. This and Fubini’s theorem imply that there is a
subset L = L, C [0,1] with |[0,1] \ L] < ¢! so that

(7.10) pe(EN\Z,) < et forallre L,
where Z, = {z€ £ : (3,r) € Z}.

Decomposing au, g as a convex combination. Fix a maximal e 3%
separated subset £ of L, and d and s as in the statement of Lemma 7.2.
Applying Lemma D.4, see also [LMW22, Lemma 8.9], for every r € £ we

can write

(7.11) /cp(adusagu,,z) dupe(z) =
Sy [ elasusz) dney (2)+O(5" Lin()),

where the 52-/’TS are sets of the form

& =E{exp(w)yi, :w € F,} C X,
with F}, C B:(0, 3) that satisfies

B4m+5 . (#F) < Fz'l,r < 54m+4 . (#F)

We will now further divide the sets S{J.

Let B denote the cubes of size 27" with 27" > e(=2m=1¢ 5 9-n—1 which
are obtained by scaling some fixed partition of t into unit size cubes by 27".
Applying Lemma D.1, with the collection of cubes B, we can write Fi’,r =

El U (I_JQFZ-/’M) where the union is disjoint,
#Fi/,lr < Bl/2(#ﬂl,r)7

and both of the following hold for all ¢

a. #F/, > B (#F/,), and
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b. There exists w; ¢ € v so that if C; # C| € B intersect Fi’mg -+ w; ¢ non-
trivially, the distance between C; N (Fi/,r,g +wj¢) and C) N (Fi’mC + wj )
is > e(=2m-1)(g,

Replacing pgr by > circfier > Where
& re = E{exp(w)yi, cwe F, } forallg,

Z7T7§

we have that

/So(adusaﬁurz) dﬂg(z) = ch,r,g/go(adus'z) dluflfmg (Z) + O(/B* Lip(‘:O))'

By reindexing, may assume that b. above holds already for ‘Fi/,r' In other
words, we may assume that there exists a disjoint collection B of cubes of
size 27" > e(72m=Dlg > 9=7=1 which cover B.(0, ) so that if C; # C; € B,
intersect I, non-trivially, then
(7.12)  the distance between C; N FZ-CT and C| N Fi"T is > e(72m-1¢g,

After this additional refinement, we have

B4m+6 i (#F) < F‘z'/m < B4m+4 . (#F)
Incremental improvements using Z,. Let r € L, and let z € Z
Z

)
see (7.10). Fix w € Iz ,; by definition of I, we have that z = exp(w)Zz € £.
We will estimate

Z maX(”agurUH, 5/)70(7

veIint

where I'™ is explicated in (7.17).
For any small w € v, we have

(7.13) exp(w)z = exp(w) exp(w)z = hexp(vy)Zz

with he H, vy €¢, ||h—I| < B|lw| and

(7.14) IV = (w + @) || < [Jw][[]w]],

see Lemma 3.2. On the other hand, if z € £ and w € I¢(2), we have
exp(w)z = exp(w)h exp(w,)y = hh; exp(w;.)y

for some w,,w., € F, h € E, and h, € H with ||h, — I|| < B|wl|.
Thus (7.13) implies that

exp(vy)Z = h™texp(w)z = h™'hh, exp(w, )y € €.

That is, vy, € Ig(Z). Hence, w +— v,, is one-to-one from I¢(z) into Ig(Z).
Moreover, since e™™||v|| < |lagu,v|| < e™||v]|| for all v € t, we conclude
from (7.13) and (7.14) that if ||@|| < e(=2™=D? then

(7.15) Yagur (v — @) < agurwl] < 2lapu, (v, - @)
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Recall that z € Z,, thus using (7.5) if a = ﬁ and (7.8) if a > Wlﬂ,
we conclude that for every v € Iz,

(7.16) Z max(||agu, (v — '), 0") "¢ < e 3F/AT
vV €IPE (v)

where IM(v) = {v/ € Iz, : [J[v — /|| < e7™}.
Let us now put

(7.17) I = tw e Ig(2) : lwl| <M Vv, € I, ).

Note that for any w € I", we have [ — vy || < B]|w]|, hence vy, € IR (w).
Thus, (7.15) and (7.16) (applied with v = w) imply that

(7.18) Z max(||apuw||, )"
0AweTnt
<22 N max(lagur (@ — )], 6) " < e BAY,
w#v' €I (w)

The set £(r). Recall that B denotes the cubes of size 27" with 27" >
e(=2m=1f ~ 9=n—1 which are obtained by scaling some fixed partition of ¢
into unit size cubes by 27". Let C C B denote the collection of those cubes
C € B with the following property: there exists wc € F N C satisfying that

ch{f S Eexp(wc)yﬂ YA % > (1 _ O(e_*‘:%)} >

(1= O(e™)) ptue (E exp(we)y)

where B = B,(0, e(*Qm*M) and fuy is the restriction of the measure g to
Eexp(wc)y, see D.3. For every C € C, fix one such wc, and let
_ P I5.-NB 42
Zp(we) = {z € Eexp(we)y N Z, : Frigmg > (1—0(e <)},

Fix a covering {Ph;-}j of E with multiplicity bounded by an absolute
constant, where

P= {u; sl < 10ﬂ2} Aar 7] < 1052} Auy o r] < 106%77};

cf. e.g. [LM23, Lemma 7.9]. Note that by our choice of constants, 82 is much
larger than e ‘7.

For every C € C, let Jc denote the collection of j so that Ph’;exp(wc) N
Zr(wc) # 0. For any j € Jc, fix some h; € P so that

Zc,j := h;h) exp(wc) € Z(we).

With this notation, set Ic j = I5. ;N B:(0, e(=2m=1D8) "and let

C,j

£°7(r) = {hexp(w)zc,; :h € Pw € Ic;} NE.
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Define &(r) := Ucee Uz £%9(r); this covering has multiplicity < K, where
K is absolute. It follows from (7.9), (7.10), and the above definitions that

(7.19) pe(E\E(r)) < e *<L.

Trimming &/, using £(r). Recall from part (2) in Lemma D.4 the follow-
ing property of F}

Qf. exp(w)y;, C apu,E for all w € F}

1,19

where Qf = {u; s < ﬁ2e*5} Aar 7] < B2 A{uy || < 0}
For all ¢, all C; € B, Co € C, and all j € Jc,, let

Fi’,cl(zcm) = {w € G :Jw € Ic, j, agu, exp(W)Zc, ; € Qf.exp(w)yi,r},

roughly speaking, this set captured points in FZ.’J N C; which may be traced
back to Ic, ; = Isc, ;» N Bi(0, e(=2m=1)),
For every i, let

Bi:={CieB: %1%#5{@(5@,]-) > (1-107% - (#F, nC1)},
and put Z, = {i : Uc,ep,(C1 N F) > B2 . #(Fi,,r)}‘

For every ¢ € Z, and all C; € B;, choose z; ¢, € Eexp(wcm)y) N Z, so
that #Fj ¢ (Zic,) realizes the above maximum. Put

(7.20) F, = UClEBi Fi’,cl(zﬁcl) and &, = E{exp(w)yi, :w € Fj,}.

For every i € Z,, let pu;, denote the restriction of gr  to &, normalized to
be a probability measure.

7.3. Lemma. With the above notation, we have
féa) 6’(2) < e—wﬁ/2'r + est . (#Fw«)

1,7

foralli €1, and all z € & .
Moreover, we have

(7.21) /cp(adusZ) d(agurpe)(z) =

Zcz',r/cp(adusz) dpe, , (2) + O(B* Lip(¢)).
z

We postpone the proof of Lemma 7.3 to after the completion of the proof
of Lemma 7.2; a task which we now undertake.
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Conclusion of the proof of Lemma 7.2. First recall that

/ / (aqusagurz) dr dug(z / / (Ad 4oty g ge—e2) dr dpg(z).

Since [[0,1] \ L. | < e = B* and L C L,. is a maximal e~3d
separated subset, we have

// @(ad-‘rfur%»se*éz) dr d/Lg(Z) =

Z/ (ad oty se—e2) dpe(2) + O(6" Lip(p)) =

rel

Z/ aqusaguyz) dug(z )+O(5*L1P( ))

rel
Combining these and the second assertion in Lemma 7.3, we conclude that

// o(aqusagu,z) drdus = Z Cir / v(aqusz) dpgw(z) + O(B* Lip(y));
T

moreover, by the first claim in Lemma 7.3, we have
Jeop o (2) S €T PT 4 & - (#F,).
Finally, since M2 . (£F) < #F], < #F and #F;, > /% (#F],),
BIMES L (#F) < #Fp < B (#F).
The proof of Lemma 7.2 is complete. U

Proof of Lemma 7.3. We begin by establishing the first claim in the lemma.
Fix some 7, and denote F; ,, y; », and & » by Fow, Ynw, and &y, respectively.
First note that

(7.22) @< Y max((wll, &) + e - (#Fu)

int
0Awelg" (2)

where I‘lgjtv(z) ={welg, (2): |Jw]| < e(*Qm*QM}.

We also recall the definition of F, and &y from (7.20). In particular, for
every C; € B;, there exists Co € C and z = Zc, ; so that for all w € Fy, NCy,
there is some @ € Ic, ; = I5, N B.(0,e(2mM~1) with

agty exp()z € Q. exp(w)ynw.
For k = 1,2, let z;, = apu, exp(wy)Zz, and write
2k = hk eXp(wk)an7
where wy € Fhyw and hy € Qf. Then we have
2o = hg exp(w2)ynw = ha exp(w2) exp(—wl)hl_lzl
(7.23) = hohy !t exp(Ad(hy)ws) exp(— Ad(hy)wi)z
= hoh thexp()z
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where h € H and o € t, moreover, by Lemma 3.2, we have

(7.24a) Ih— 1| < CoBfw||  and
(7.24b) L Ad(h) (wa — w)|| < (@] < 2/ Ad(hy)(ws — wy)].

Now let v € Ig,, (z1). Then there exist w, € Fyy and hl, € E so that
exp(v)z1 = hl exp(wy,)Ynw-

Moreover, if |[v]| < e(=2™=2¢ then by (7.12) w, € Ci, thus there exist
Wy € Iz, and h, € Qf so that

aguy exp(Wy)Z = hy exp(wy ) Ynw-
Altogether, if ||v| < e(=2m=2¢ then
(7.25) aguy exp(wy)z = hy exp(v)z1

where h, = h,hi! € B}, .
Applying (7.23) with wy = w,, we get that

(7.26) aguy exp(y)z = hvhflﬁv exp(wWy)21

where h, and b, satisfy (7.24a) and (7.24b), and hy, h, € QL.
Recall now that (h,®) — hexp(i)z is injective over B{{)n X B(0,10n).
Thus, we conclude from (7.26) and (7.25) that

(7.27) Wy = v.
Since ||v]| < e(=2m=2¢ (7.24a) and (7.27) imply that
by — 1| < CoBllol] < -2m=205 < g2,
recall that 8 > e~¢ and m > 2. Moreover, hy, h, € Qfl . Therefore,
ﬁ;lhlhglagur exp(wy)z € apu, &,
see (3.7). This, (7.26), and (7.27) yield

exp(v)apu, exp(wi)z = exp(v)z1

ﬁflhlhvflagur exp(wy)z € agu, €.

Recall also that w, € I, and note that that since ||v]| < e(=2™2) we have
| Ad((agur) 1o < el=m=DE Altogether, we conclude that
(7.28) Ad((apu,) M € Ié?(;(wl)z,

see (7.17). Let

I (1) = {0 € Ig (1) : o] < el2m-20y
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Since ||| < e(=2m=D¢ we conclude from (7.28) and (7.18), applied with
exp(wy)z =: 2, that

FO Ly S0 max(ol,8) 7 + e - (#Fm)
O;évefg‘;“ (21)

W

(7.29) < Y max(laguwl,8") " + e - (#F)
0Fwelint

< Ce—3w€/4fr + eat . (#an)’

where C' depends on X, see also (7.22) for the first inequality.
Let now z = hexp(w)ynw € Enw be arbitrary. Then there exists some
21 = agu, exp(wi)Zz so that z; = hexp(w)ynw, and we have

£ 6(2) < 218 L (20),

This and (7.29) complete the proof of the first claim, assuming ¢ is large
enough so that 2Ce3%/4 < ¢=@t/2,

The second claim in the lemma follows from (7.19) and (7.11) as we now
explicate. Fix some ¢, and suppose that C; ¢ B;. Then for all Co € C and
all j € Jc,, we have

#{we N F{yr cexp(w)yir & (Qf)_l.agur exp(ICM-)ECM'}
> 1070 (#(C1 1 F,).
Note now that (agur)*l(Qf)_l.aguT C P and
m ((aguy) "N Q) L agu, < my(P).

Moreover, note that the multiplicity of the covering {Sﬂ’c} is < K. We thus
conclude that the contribution of each C; & B; to ug(€\ &) is

= (#(C N F,))mu(P).

Therefore, the total number of w € (J; Fj, that we have omitted is <
B*(# U; Fz-’yr), which implies the claim. O

8. THE MAIN PROPOSITION

We begin by fixing several parameters that will remain constant through-
out this section. Roughly speaking, « is a small parameter representing the
incremental improvements in dimension. These improvements are achieved
by inductively applying Lemma 7.2 with various choices of a. The constants
d. indicate the number of times the lemma is applied for a fixed «, while
P represents the number of times « is adjusted in increments of . See the
discussion proceeding the statement of the theorem for more details.

Let 0 < kK < 1 be a small parameter — in our application, we will let

K= (5—%)2, see Proposition 5.1 and Lemma 5.2. Set

. [4m?+4
Ptn = |'Hr(112m+;r;'| - ]-Oa
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and let kg, = 55 X (3)P0 and € = K - Kipy.

Let ¢t > 0 be a large parameter, and let D > D1, see Proposition 4.6. Let

do = [(10D79)E£4m2+2m)-|’

dy = (24(?055—‘ and dp"rl = (%dp—‘ for 0 < P < Pm

Set dg, = Zf:r‘o dp, and let
g = 1()_6m_1df_112, B=e" and n*=8.

Put ¢ = f)—tm. Let v4 denote the probability measure on H defined by

1
/gpdud:/ e(aguy) dr,
0

for any ¢ € C.(H), and put
Htpom = Vg k- xVp* Uy

where vy appears n > 0 times in the above expression.
The following proposition, whose proof is based on Lemma 7.2, is a crucial
tool in our argument.

8.1. Proposition. Let z1 € X, and assume that Proposition 4.6(2) does
not hold for x1 with parameters D > Dy and t > 0. Let r1 € I(x1) and put
T2 = Am,tUr, X1, See Proposition 4.6(1).

There exists a collection = ={&; : 1 <i < N} of sets

& = E{exp(w)y; :w € F;} C X,
satisfying that for all 1 <i < N, we have F; C B(0,5) and
098 < Up < o
so that both of the following hold
(1) For all1 <i < N and all z € (E\ 19E).-{exp(w)y; : w € F}},
(8.1) fgf;“fzom)(z) < ¥ (#F) where § = e~ it

(2) For all T < ldy,, all |s| <2, and for every ¢ € C°(X),
/So(afushlé) dpit,,dp, (h) = Z Ci / p(arusz) dpg, (z) + O(Lip(p)8™7)

where
e 0<¢<land) ,c;=1-0(p""),

® Lg, 15 an admissible measure on &; with parameter depending only on D
and X, see §D.3,

e Lip(y) is the Lipschitz norm of ¢, and

e k7 and the implied constants depend on X.
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The reader may compare this proposition to [LMW22, Prop. 10.1]. Indeed
in [LMW22, Prop. 10.1], we established similar bound concerning modified
Margulis functions, but for @ < 1 (in the setting considered in [LMW22],
dimtt = 1) and localized to balls of size e~Ve. Requiring this localized
estimate, albeit for smaller «, was responsible for different stopping times
— in [LMW22, Prop. 10.1] we could not specify the stopping time, only
guarantee that there will be at least one good stopping time n in an interval
of length O(1/4/¢). This resulted in a less transparent endgame analysis.
The estimate established in (8.1) concerns @ dimensional energy for « very
close to 2m+ 1 = dim v. This is made possible thanks to stronger projection
theorems, see Theorem 6.1.

Proof of Proposition 8.1. The proof of Proposition 8.1 relies on Lemma
7.2. Indeed with Lemma 7.2 in place, the general strategy is straightforward:
Let us put p = 7 + ¢ + dg . Using results in [LMW22, §6-8] and the fact
that xo satisfies conditions in part (1) of Proposition 4.6, we can write

[ tapmsuehies) duso(h) = i [ olarues) dpe(2) + O(Lin(e)5")

where the decomposition is similar to the one claimed in the proposition,
but with 4m*Pet < #F; < !, and where we only have the initial estimate

fé%(z) <Pt for all 0 < a < 1.

1

amy1 (hence @ = ag and §' = 0)

Then we apply Lemma 7.2 with ag =

for dy = [(10D79)E€4m2+2m)

| many steps. For every |s| < 2, thus

/@(ap—t—doeushm) dptea, (h) = ch/ p(arusz) dugr(2) + O(Lip(p) 8*)

0.99¢ <

where the decomposition is as in the proposition, but now we have e
#F] < €' for all 4, and the improved estimate

FE) () < 2% (#F)).

In the next phase, we improve the above estimate for f(®) inductively to
obtain similar estimate for ay, = ag + px for all 0 < p < pg: Assume

9 (2) < 26 - (#F),
where 6; = e 99 and Op+1 = 53/4 for all p > 1. We conclude that
FEED(2) < 267 0,7 - (#E)

We now apply Lemma 7.2 with o = a1 for dpy1 many steps. Since og <
apy1 < 2m+1—-10xkm we have @ > 9xm, and each application of Lemma 7.2
improves the bound on f by e~*™¢ while the scale ¢ is replaced by ¢’ = e™§.
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Applying this, pg, — 1 many times, we conclude that
/ p(arushas) dpg gy, (h) =Y c; / p(arusz) dpe, (2) + O(Lip(¢) 8¥)

where the decomposition is as in the proposition, and
(opg, )
FEm) (2) < 267 - (#F),

and the proposition follows.
Let us now turn to the more detailed argument.

Smearing and Folner property. The following equality which is a simple
consequence of commutation relations, will be used throughout the proof

(8'2) Aty Upy QgaUry = Aty 4o Upyye—taprg
Let X\ denote the uniform measure on 82510062’ where as before for all
d > 0, we put

By = {uy :|s| <6} {a, : |7] < 6}
In view of [LMW22, Lemma 7.4], for all z € X and all ¢ € C2°(X),

(3.3) / (1) A(vh, 11y) () = / (ha) ANk vy % Ax 11, ) () + O(B Lip()
so long as e™% < 32.

Closing lemma and initial separation. Recall that x9 = amtur 21

where 71 € I(x1). In particular, the map h — hzg is injective over BZ’H a

Ui, see part (1) in Proposition 4.6. Put
p=T+dpl+t=1+> " d,l+t.

Recall also that s ¢ 4, = Véd“‘) x14. An inductive application of (8.2) implies

that for any ho € supp(u?f“) and any |s| < 2, there exists |s'| < 2 so that
arushg = a,—¢uy. Thus

1
/‘p(aTusth) dﬂt,é,dfn(h) = // So(a'rushoatuer) dVédfn)(hO) dr
(8.4) 0

1
:// Qo(ap—tus’atuer) dVédfn)(ho) dr
0

Now applying [LMW22, Lemma 8.4], see also Lemma D.4, with xzo we get
the following: for every ¢ € C°(X), and all |s'| < 2,

1
(8.5) ‘/ o(ap—uy apurxs) dr —Zci/go(ap_tusxz) dpue, (2)| < Lip(p)5*
0 i

where Y ¢; =1 — O(B*) and the implied constants depend only on X.
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Combining (8.4) and (8.5), and using arushy = a,—¢us, we have

(8.6) /cp(aTushxg) dpeeap, (h) =
S i [ oaruahz) s, (2) dvf*™ (h) + O(Lip()5")

Moreover, & = E.{exp(w)y; : w € F;} where y; € X,, and & C X,,. Since
dimt = 2m + 1, [LMW22, Lemma 8.1 and 8.2], see also Lemma D.2 and
recall that m =1 in [LMW22], we have

— in the references above, the upper bound B3et is asserted, further sub-
dividing F};, we may replace that by e! as it is claimed here.

Furthermore, in view of the definition of &;, see [LMW22, Lemma 8.4],
and the fact that xy satisfies properties in part (1) of Proposition 4.6,

(8.8) fg(%(z) < ePt forall0 < a <1

for all 4 and all z € &;.

Applying Lemma 7.2 with a = 2m —1- The following lemma will be used
to carry out the second phase in the above outline. Before stating the lemma,

let us recall that ¢ = 10 , and

do = [(10D—9)(€4m2+2m)—|.

Also recall that we set &’ = 10_6m_1df_nz, B=e*"t and n? = 6.

8.2. Lemma. Fiz some &; as in (8.6) and some 0 < k < dy. For every
p € Ce(X) and all |s| <2 we have

/ap(aTushz) due, (2) duédf")(h) =
cij | [ @larushe) due,, (=) dv ™ (h) + O(Lip(¢)8*)
Seaf |

and all the following hold

(1) 0< cij < 1 and ZC,']‘ =1 —i—O(,B*)
(2) & = E{exp(w)y;j :w € F;;} C X, and

/8(4k+4)m+6k+7et < H#E,; < e for all j.

(3) Let ag = 5. For all j and all z € &

fgao)( ) Dt—%é 4 et (#FZJ)

zgv
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Proof. We prove the lemma using induction on k. The base case, k = 0,
follows from (8.8) applied with a = ag. That is

(8.9) fé?g)(z) <ePt forall z €&

Assume now the statement for some 0 < k < dp:

/ plarushz) dpe, (z) dv™ (h) =
2. / / p(arushz) dpe,, (s) dvy™ " (h) + O(Lip(0)8)

and properties (1), (2), and (3) above hold.
To obtain desired assertions for k£ + 1, first note that (8.3) implies

(8.10) // p(arushz) due,;(s) dyédf“_k)(h) =

1
/ / / olarushaguyz) dpe,, dr dvf™ D (h) + O(8* Lip(¢))
0

dpn—k—1
fn )) we have

Note again that for every h € supp(l/lg
artsh = ari (g, _k—1)cty, for some [s'| < 2.
Thus, for all |s|] < 2 and all h € supp(yédf“_k_l)), we apply Lemma 7.2 with
E=¢&;j for a =apand d = (dy — k — 1)¢ and ¢’ as above, and conclude

1

(8.11) / /go(aTushagurz) dpe,; (2)dr =

0

S folaruha) dues(2) + OlLin(e) )
S
where 0 < ¢, <1, >~ ¢, =14 O(B*), and both of the following hold
e For all ¢, F! C B(0,3) and & = E{exp(w)y, : w € F!} C X,,, moreover
(8.12) BAMTO (HFy;) < #F! < #Fy;.
e For all ¢ and all z € E.{exp(w)y; : w € F/}, we have
ka
f(Z%)(Z) < 6—a0£/2 . (e(Dt—TOZ) + est . (#Fz])) + eet . (#Fg,)
where we used dg = 0 and w = ag when a = «ay.

Using (2) in the inductive hypothesis (8.12), we have
B HOME6(k+1)FT gt gam6 g(ak+4)m 6547 1

< BT (HE) < #F < #Fyy < e

Moreover, recall that &/ = 10_6m_1dgn2 and 8 = e <'t. Thus e~ 0%/23-4m-7 <
1, and using (8.20) and #F;; < e, we conclude

e—ao€/2(est . (#Flj)) < 6—a0€/2l8—4m—665t . (#Fg/) < eEt . (#Fg/)’
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Thus one obtains
e—agZ/Q . (e(Dt—%l) + €€t-(#F' )) < 6—a0£/2eDt—%Z + €€t-(#F/)
1] = S

_ (k+Deg
SeDt 5 Z—I—eat'(#Fg’).

Therefore, integrating (8.11) over h € supp(yédf“_k_l)), the proof of the

inductive step and of the lemma is complete. O

et

Lemma 8.2 and initial dimension. Recall now that ¢ is small, £ = {5,

do = [(10D79)(€4m2+2m)-‘7 e — 10—6m71df—nZ, and B = efe’t' Thus

60.9915 S 6(4d1+4)m+6d1+7€t S #Fz] S €t, and

_doxg
eDt 4 S 60.9t

2 ,  where ag =

1
2m—+1"
Applying Lemma 8.2 with k = dgy, hence, we conclude

(8.13) /gp(aTushz) due, (2) dyédf“)(h) =
2 C”‘/ / p(azushz) dug, (=) dvi™ (h) + O(Lip(2) 8*)

where &; is any set appearing in (8.6), and all the following are satisfied
(D—l) 0< Cij <1 and Zcij =1+ O(ﬁ*)
(D-2) & = E{exp(w)yi; : w € Fj;} C X, and

099 < #I;; < el for all j.
(D-3) For all j and all z € &;

(8.14) FEO)(z) < 267 (#F).

Lemma 7.2 and incremental dimension improvement. Recall that
P = [2MEIm] — 10 and ¢ = 55 We let 0y = e 09 and let dy = Sy
For all 0 < p < pgy, let

Spr1 =0/ and  dyi1 = 2d,.

Also, for all 0 < p < pg, and all 0 < k < d,,, let

0p0 =0, and dpp = e, 1;
note that 4, 4, = dp41, and
(8.15) 5, "emAmndpt <

Finally, we let o, = ag + pr, for every 0 < p < pg,, and let @, be @
defined as in (6.2) with o = «,. In particular,

(8.16) wp > 9Imk for all 0 < p < pgy,.
The following lemma, which is an analogue of Lemma 8.2, will be used to

inductively improve the dimension from 2m1 1 to 2m +1— 10msx.
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8.3. Lemma. Fiz some &; as in (8.6). Let 0 < p < pg and let 0 < k < dp4q.
For every ¢ € C.(X) and all |s| <2, we have

/ap(aTushz) due, (2) duédf")(h) =
S i [ [ olaruha) due, (2) 4 0) + O(Lin()5")
J

where d'(p) = dg, — do — d(p), d(p) = Zf;: dg forp>1, and d(1) = 0.
Moreover, all the following hold

(1) 0< Cij <1 and ZCU =1 —|—O(ﬁ*)
(2) &ij = E{exp(w)yij : w € Fj} C X, and

ﬁ(4m+6)(d(p)+k)60‘99t < #FZ] < et fOT’ allj
3) For all j and all z € &;;, we have
J

fg;zj) (Z) S 26575 i (5p—n€—4mmk€ + 1) . (#Fz])

617716

Proof. The proof is similar to the proof of Lemma 8.2, and is completed by
induction on p and k. Indeed the case p =1 and k = 0 follows from (8.13)
and properties (D-1), (D-2), (D-3). Indeed, the assertions in (1) and (2) in
this lemma (D-1) and (D-2) are the same. To see (3) in the lemma follows
from (D-3), note that (8.14) implies

FEO(2) < 265 (#Fy)

Recall that a1 = o9 + Kk and 61 = d10 = e 09 Thus

FE0 () < 673 max(wll, 61)

(8.17)
< 26677 - (#Fy)

as it is claimed in part (3) for p =1 and k = 0.
Fix some p and assume now the statement for some 0 < k < djp41:

[ ptacushz) dus, (2) v () =
S ey [ [ laruaha) e, (2) avf O 1)+ O(Lin() 5
J

and properties (1), (2), and (3) above hold.
To obtain desired assertions for k + 1, first note that (8.3) implies

(8.18) // p(arushz) due,,(s) dVéd/(p)fk)(h) =

1 !
/ / / olarushagu2) dpg, dr dvf* @~ D (n) + 0(6* Lip(y))
0
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For every h € supp(uéd/(p)_k)) we have
artish = ary (@ (p)—k—1ycts,  for some |s'| < 2.

Thus, for all |s| < 2 and h € supp(yéd/(p)_k_l)), Lemma 7.2 applied with
E=2¢&;jfora=ap,andd=(d(p) —k—1)¢ and s’ as above, gives

1
(8'19) /0 /So(a'rushafurz) d,ugij (Z) dr =
> Cé/‘P(aT“shz) dpe: (2) + O(Lip(¢)8*),

where 0 < ¢, <1, >~ ¢, =14 O(B*), and both of the following hold

e For all ¢, F! C B(0,) and & = E{exp(w)y, : w € F!} C X,,, moreover
(8.20) BAMTO L (HFy;) < #F! < #Fy;.

e For all ¢ and all z € E{exp(w)y; : w € F/}, we have

6
fg"

where, 0p 41 = emgépyk.

( ) < e—wp€/2 . (268t . (6p—r~ce—4mnk€ + 1) . (#sz)) + eat . (#Fg/)

p k+1

Using (2) in the inductive hypothesis (8.20), we have
BUMH6)(d(p)+h+1) 099 _ g4m—+6 g(4m-+6)(d(p)+k) 099t

< B (#Fy) < H#HFL< #F; < e
Moreover, recall from (8.16) that aj, > 9mx, also recall that § = et where
¢’ =10"%m~'d;>. Using (8.20), thus
e—wp€/2‘ (28515 . (5]J—f~ce—4mnkﬁ + 1) . (#Eg))
< eprZ/Q (Qest . (5gn€74mnk€ + 1) . 674m76 . (#F/))
K —4mn (k+1)¢
< g,"e A (#F)
This and the above estimates imply that
f ( ) < (5;n€f4mﬁ(k+1)€ + est) . (#F§/>

where, 6,41 =€ eép,k

Therefore, integrating (8.19) over h € supp(v, (d(p)—k= 1)), the proof of the
inductive step.
After d, steps, thus, one obtains

(e
fg"

Since 8,4, = dp+1 and 5, " e~4mrdpt < 1 see (8.15), we conclude that

(8.21) fgw p+1( z) < 2 - (#F)).

§7 pk+1

) (Z) < (6;ne—4mndp£ + eet) . (#Fé)

Op,dyp
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Using apy1 = oy + K, the above yields,

TS5 (2) < 26 5,1 - (E).

Therefore, we may repeat the above for 0 < k < dp1.
This completes the proof. O

Conclusion of the proof of Proposition 8.1. Recall that

Kfn = % X (;)pfn

1 and € =K K-

Also note that it follows from (5p7dp = 52/ 1 Op+1 and 01 = e 099 that

o (53/4 — Kt

5pfn7dpfn = Opg, =€

Applying Lemma 8.2 with oy, and k£ = d,, , hence, we conclude
(8.22) /gp(aTushz) due, (2) duédf“)(h) =

cij | | plarushz)due,;(2) + O(Lip(v)5%)
Yosff f

where &; is any set appearing in (8.6), and all the following are satisfied
(1) 0< Cij <1 and ZCZ']' =1+ O(,B*)
(2) &j; = E{exp(w)y;; : w € Fi;} C X, and

" < H#F; <e' forall g,

where we used €998t < 3(Am+6)d(pm) L0.99 < #F;; < e
(3) For all j and all z € &;

fé?;l_mﬁ)(z) < 26 (#Fi)) where § = e~ it

see (8.21) and note that oy, > 2m+ 1 — 20k
In view of (1), (2), and (3), Proposition 8.1 follows from (8.22) and (8.6). O

9. FROM LARGE DIMENSION TO EQUIDISTRIBUTION

The main result of this section is Proposition 9.1 which will be used in
the final step of our proof of Theorem 1.1.

Let 0 < k5 < 1 be the constant given by Proposition 5.1 — this constant
is closely related to the spectral gap (or mixing rate) in G/T", c.f. (5.1).

K5 4m24+4m

Throughout this section, let & = (4i)% and pp, = [mw —10. Let

Ky = % X (%)pfn and €=k K
We also recall that 8 = e~ and n? = B where 0 < &’ < 10764, Let

a=2m+ 1 — 20k.
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9.1. Proposition. The following holds for all large enough t. Let F C
B.(0, B) be a finite set with #F > 9. Let

E=E{exp(w)y:we F} CX,

be equipped with an admissible measure ug, see §D.3. Assume further that
the following is satisfied: For all z = hexp(w)y with h € E\ 0108E,

(9.1) féois)o (e,2) < 26 - (#F) where 8o = e Fnt,

: ot ot
Let T be a parameter in the range o < 17 < 525 Then

| /0 1 [ etaruz)dne@)dr = [ odmy| < S8
for all p € C(X).

Proof. The proof of Proposition 9.1, which will be completed in a few steps,
is based on Lemma 5.2, and in turn on Proposition 5.1.

Folner property. Let 7 be as in the statement, and write 7 = £1+ /{2 where
(9.2) 62 = T/(l + R5) and 61 = R5€2;

In particular, 4mly < 4dm7 < ket = |logdo| and by > 7/2 > |logn|/ks,
where the parameter 7 is fixed above, see Lemma 5.2 for these choices.
For any ¢ € C°(X), we have

©03) [ 1 [ elacuz) dpetz) ar =

1 p1
/ / / (e, Uy gy try2) dp (2) dra dry + O(e~ Lip(p))
0J0

where the implied constant depends on X.
In view of (9.3), the proof of Proposition 9.1 is reduced to investigating

the following
1,1
///(p(aglurlabumz)d,ug(z)drgdrl.
0JO

9.2. Conditional measures of pg. Recall that £ = E{exp(w)y : w € F}.
Fix some v € F and let z = exp(v)y. Then

hexp(w)y = hexp(w) exp(—v) exp(v)y

(9.4) = hhy, exp(vy)z

where [|h, — I|| < % and §|lw — v|| < |Jvw|| < 2|jw — v]|, see Lemma 3.2.

For our application here, it will be more convenient to recenter £ from y
to z. To that end, note that w — vy, see (9.4), is a one-to-one map. Let
Fy,={vy:w e F}, and let E = E\ O208E. Set

& = E{exp(w)z:w e F,}.



EFFECTIVE EQUIDISTRIBUTION IN RANK 2 41

Then by (9.4) and since ||h,, — I|| < 52, we have £ C &; moreover,
pe(E\€) < B.

Thus it suffices to show the claim in the lemma with pg replaced by
N
= m#dg-
For later reference, let us also record that ||h,, — I|| < 32 and (9.4) imply
that indeed
(9.5) Ec& =F {expw)y:weF}

where E/ = E \ 9104E. In particular, (9.1) holds for all z € £.

Recall that fi is the probability measure proportional to ), fi, where
dity, = pwdmpg and p, < 1. As it was mentioned earlier the proof of
Proposition 9.1 relies on Proposition 5.1. To set the stage for the latter to be
applicable, we will use Fubini’s theorem to change the order of disintegration
of ji as follows. Let z € &, then

z = hexp(v)z = exp(Ad(h)v)hz € €.

Moreover, Ad(h)v € B,(0,87b). Since 77/2 < inj(z’) < 27 for every 2’ € &,
we conclude that
Ad(h)v € Ig(hz).

Let 7 : & — E.z denote the projection 2/ = hexp(w)z — hz. Using Fubini’s
theorem, we have

- / i, fu(h.),

where /" denotes the conditional measure of ji for the factor map 7.

Note that " is supported on I¢(hz). In view of the above discussion, dr, /i
is proportional to pdmp restricted to the support of m, i where 1 < p < 1,
moreover, for every w € supp(ji"),

(9.6) AN (w) < (#F)

where the implied constant depends on X.
Now, using Fubini’s theorem, we have

1,1
/ / /cp(aglurlagQUTQ,z) di(z)dradr; =
00

1,1
/ J / /go(aglurlagzu7~2 exp(w)hz) diaM(w) dry dry dm,ji(h.2).
E.zJo Jo

Fix some h € E=E \ O20pE. The proof of the proposition is thus reduced
to investigating the following

1,1
(9.7) / / / o(ap, Upy gy Uy, exp(w)hz) d,&h (w) drg dry.
0Jo
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Discretized dimension of /i" and Lemma 5.2. Set

F" .= supp(i) = {Ad(h)w : w € F}.
Note that (9.5) implies

exp(Ad(h)w)hz = hexp(w)z € & C &
Moreover, (9.1) and Lemma 7.1 imply that for every w € F",

G y(w) < 265 - (#F),

where G is defined as in §6. This and (9.6) yield
(9.8) (AN (B(w,d)) < 2e°t6” for all 0 > §y

where the implied constant depends only on X.
Therefore, Lemma 5.2 applies with p = P, 0 = 3, §g = e "t
T = 26620n65t — 262Onnfntest

and /1 and ¢y as above, see (9.2). By the conclusion of that lemma, thus,
1,1
(9.9) ///cp(aglun%ur2 exp(w)hz) P (w) drg dry =
0Jo

/%" dmx + O(S(¢)(B" +n+ Y/2p732e7met))

Recall now that 7 > ’””f“ and ¢, = r5ly = 2. Therefore, (1 > "‘”vfnol;?t and

I‘Ll" f K/5
TI/Q/B—3/2€—H5€1 < BIOanKteate 10r: tS e~ S0m t

where in the second to last inequality we used 2et/2373/2 < eEt, and in last
inequality, we used k= (§2-)? and € = K - K.
In view of (9.9), thus, the proof of Proposition 9.1 is complete. O

10. PrROOF OF THEOREM 1.1

The proof will be completed in some steps and is based on various propo-
sitions which were discussed so far.

Fixing the parameters. Let 0 < k5 < 1 be the constant given by Propo-

sition 5.1. Let £ = (42-)? and pg, = (ﬁ'&iﬁg] —10. Put

(10.1) Kfn = 19090 X (3)pr and €=k Km
Let D = DgDq + 2D where Dy is as in Proposition 4.4 and D; is as in

Proposition 4.6; we will always assume D1, Dy > 10m. We will show the
claim holds with

(10.2) Al = 2D0(2m + 1) + mg + my + 4,

where mq is as in Proposition 4.2 and m; is as in Proposition 4.6.
Let us also assume (as we may) that

(10.3) R > max{(10C3)%inj(z0) "™, 2, %, Oy},
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see Proposition 4.2 and Proposition 4.4.
Let T > R*', and suppose that Theorem 1.1(2) does not hold. That is,
for every x € X with Hx periodic and vol(Hz) < R,

(10.4) dx(x,z0) > RY (log T)MT~™ > (log S)Pos™™m
where S := R~41T.

Pfn

Folner property and random walks. We put dg, = P d,, where

do = ((10D—9)(E4m2+2m)-|

9

di = (24(?0551 and  dpi1 = [%dp—| for 0 < p < ppm

Let t = D% log R, and let £ = 1(E)fn' Then

(10.5) el < ((1DD—9g(2m+1) T

We now write logT = t3 + to + t1 + tg where
(10.6) tp =mit, to=t+dml, and t3= g%t

The choice of t9 is motivated by Proposition 8.1, the choices of ¢; and t3 are
motivated by Proposition 4.6 and Proposition 9.1, respectively. Thus

to =logT — (t; +to + t3)

> log T — (my + 1+ (1OP=9CmEL 909y | oy Kinyy

2D(2 2
> log T — nglg

we used (10.6) and (10.5) in the second line, and used ¢ = D% log R in the
third line. Using this and (10.2), we conclude that

to >logT — Ajlog R+ (mg +2)log R

10.7
(10.7) > log S + mg|loginj(xo)| + 2log R.

we used R > inj(xg)~™° and log S = logT — A; log R in the last inequality.
Since ap, Urp, = Gpy4pyUe—p2y, for any ¢ € C°(X), we have

1
(108) | plagrusan) dr = Ollglle™) +
0

1 1 1 1
/ / / / DAy Uy Ay Upy Oy Uy g Uy o) A3 drg Ay drg
0 0 0 0

where the implied constant is absolute and we used g, t1,t2 > t.

Finally, recall that 0 < ¢’ < 107%* and we put § = e¢~="* and n*> = 5.
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Improving the Diophantine condition. Apply Proposition 4.4 with S =
R=MT, then for all

s > max{log S, mg|loginj(xo)|} + so,
we have the following

asurzo ¢ X, or 3z with vol(Hz) < R

(10.9) Hr € [0,1]: so that dx (z, asuyzg) < R~Po~1

} <o

where we also used 771/”‘0 > R ' and R > C4.
Let Jy C [0,1] be the set of those rg € [0,1] so that a uy,zo € X, and

dX($7 a’tou’rol‘o) > R_Do_l = 6_D1(D0+1)t
for all z with vol(Hz) < R = eP'*. Then since by (10.7) and (10.3) we have
to > log S + mg|loginj(zg)| + 2log R > max(log .S, mg|log inj(zo)|) + so,

the assertion in (10.9) implies that [[0,1] \ J| < n'/™M0. In consequence,

1
(10.10) / (a10g Turz0) dr = O(plloc/™) +
0

1 1 gl
/ / / / Oy Upg Oy Upy Ay Up, 2 (10) ) drg drg dry drg
JoJo Jo Jo

where x(rg) = at,ur,z0 and the implied constant depends on X.

Applying the closing lemma. For every ry € Jy, we now apply Propo-
sition 4.6 with z(rg), D = DyD1 + 2Dy and the parameter ¢. For any such
rp, we have

dx (2, 2(ro)) > PP = DD
for all 2 with vol(Hz) < ePt*. Thus Proposition 4.6(1) holds. Let
J1(ro) = I(2(ro)) = I(atyur,wo)

Then

1 _1
(10.11) / p(argTurzo) dr = O(|lplleon®™ ) +
0

1 1
/ / / / DAy Upg Oty Upy (10, 71)) drrg drg dry drg
Jo JJi(ro) JO JO

where x(rg,r1) = at, ur, at,ur,xo and the implied constant is absolute.
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Improving the dimension phase. Fix some ry € Jy, and let 1 € J(rg).
Put x1 = z(rg,71). Recall that

Mt b de, = Vo Xk Vg X1y

where vy appears dg, times in the above expression. Then

1,1
(10.12) // O(atyUry Aty Ury 1) drg drg =
00

1
/ / (s, g 1) dr i g 4, (1) + O(Lip()e ™),
0

where we used t2 = d, ¢ and (8.2), see also [LMW22, Lemma 7.4].
We now apply Proposition 8.1 with 1 and 7 = t3 and s = r3. Then

(10.13) /go(at3u7~3hx1) dpg p,d5, () =
2 CZ/ layiryz) due, (2) + O(Lip(0)8)

where 0 < ¢; <1and ) ,¢; =1 — O(B*) and the implied constants depend
on X. Moreover, for all 7 we have

& = E{exp(w)y; :w € F;} C X,
with F; C B(0,3), "% < #F; < e!, and
(10.14) féjzs(z) < e®t. (#F;) where § = e "' and o = 2m + 1 — 20k
for all z € (E\ d105E).{exp(w)y; : w € F}.

From large dimension to equidistribution. We now apply Proposi-

tion 9.1 with & (see (10.14) and recall that t3 = ’"gf;t). Hence,
1

(10.15) )//cp(atsumz) dpe, (z)drs — /@de’ < S(p)p*
0

where the implied constant depends on X.
Recall now that § = R™*. Thus, (10.15), (10.13), (10.12), (10.11), (10.10),
and (10.8), imply

1
‘/ gp(alogTuTxo)dr—/gpde‘ < S(p)R™™,
0

where the implied constant depends on X. The proof is complete. [l

11. PROOF OF THEOREM 1.2

In this section, we use an argument analogous to [LMW22, §16] to estab-
lish Theorem 1.2. As in [LMW22, §16] and previously noted, the proof relies
on Theorem 1.1 and linearization techniques of Dani and Margulis, albeit
in their quantitative form, which were developed in [LMMS19].
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11.1. Lemma (cf. [LMW22]|, Lemma 16.1). There exist As, Ag, and Cs
(depending on X ) so that the following holds. Let S, M >0, and0 < n < 1/2
satisfy

S> MY and M > C’57]7A5.

Let x1 € X,), and suppose there exists Exc C {r € [-5,5] : u,x1 € X} with
|Exc| > Csn'/4e 8
so that for every r € Exc, there exists y,. € X with
vol(Hy,) <M and d(urz1,yr) < M4

Then one of the following holds

(1) There exists x € G /T with vol(H.z) < M43, and for every r € [-S, 5]
there exists g € G with ||g|| < M4 so that

s — |
S
(2) There is a parabolic subgroup P C G and some x € G /T satisfying that

vol(Ry(P).x) < M43, and for every r € [—S, S] there exists g € G with
lgll < M45 so that

1/Ae
dx (uszy, gH.z) < M < > for all s € [—S,S5].

N /A
dx (usz1, gRu(P).z) < M5 <M> for all s € [-S,S].

In particular, X is not compact.

Arithmetic groups. Recall that G = G(R) where G is an absolutely
almost simple R-group, and H = H(R)® where H ~ SLs or PGL3 is an R-
subgroup of G and the connected component is considered as a Lie group.
Since I is an arithmetic lattice, there exists a semisimple simply connected
Q-almost simple Q-group G C SLp, for some D, and an epimorphism

p:G(R) - GR) =G

of R-groups with compact kernel so that I' is commensurable with p(G(Z)).
Moreover, since G is simply connected, we can identify G(R) with G x G’
where G’ = ker(p) is compact.

We are allowed to choose the parameter M in the lemma to be large
depending on I', therefore, by passing to a finite index subgroup, we will
assume that I' € T := p(G(Z)), where G(Z) = G(R) N SLp(Z).

Thus, every « € T lifts uniquely to (v,0(v)) € I', where o is (a collection
of) Galois automorphisms. For every g € G, put

d=1(9,1) € GxG.
If g € G is so that HgI is periodic, let Ay, =T'N g 'Hg and let Ag =

p~1(A,)NT. Let Hy be the Zariski closure of A,. Then Hj is a semisimple
Q-subgroup, and the restriction of p to Hy surjects onto ¢ 'Hg.
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Let ﬁg = ﬂg(R)o, as a Lie group, then
§g-YHGT = H,T
Lie algebras and the adjoint representation. Recall that Lie(G) = g

and Lie(H) = b, which are considered as R-vector spaces. Let vy be a unit
vector on the line A3h. Then

Ng(H) ={9€ G : guvg =vg}

which contains H as a subgroup of finite index.

Let g = Lie(G(R)) and gz := g N sly(Z). Then g has a natural Q-
structure, and gz, is a G(Z)-stable lattice in g.

Assuming H has periodic orbits in X = G/I', we fix g1,...,gr so that
vol(Hg;,I') < 1 (the implied constant and k£ depend on I') and that every
ﬁg is conjugate to some H; = flgi in G. Let

vi € A (Lie(H,)) € adim g
bNe a primitive integral vector. Then Né(ﬁz) = {g € G : gv; = v;}, and
H; C Ng(H;) has finite index. For all 4,
vi=c¢; ((g; 'vg) Av}) where v} € ALie(G’) and |¢;| < 1.
More generally, if L ¢ G is a Q-subgroup, we let vy, be a primitive

integral vector on the line AY™ELie(L) C AY™Lg where L = L(R)°. Recall
from [LMMS19] the definition of the height of L

(11.1) he(L) = |[vl.

Fix a right invariant metric on G defined using the killing form and the
maximal compact subgroup K = K x G’; this metric induces the right
invariant metric on G which we fixed on p. 4.

11.2. Lemma. Let Hgl' be a periodic orbit, and let ﬁg be as above. Both
of the following properties hold:

ht(H,)* < vol(H,T'/T) < ht(H,)*
lgll~*vol(HgT) < vol(H,'/T) < [|g]*vol(HgT)

Proof. We refer the reader to [LMW22, Lemma 16.2] and references there
for the proof of this lemma. O

We now proceed to prove Lemma 11.1. This proof follows an adaptation
of the argument presented in [LMW22, §16], which we recount here for the
reader’s convenience.

Proof of Lemma 11.1. Given our assumption in the lemma, periodic H or-
bits exist. Let Hy, ..., H; be defined as above. We introduce the constants
As and Ag which will be chosen as sufficiently large values to be explicated
later. Specifically, we will require that A; > max(A4, Dy), Ag > D and
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C5 > max{kFEy,Cg} where A, D, and E; are as in [LMMS19, Thm. 1.4
applied with {@,} C G, and Dy and Cg are as described in Lemma B.10.

Write 1 = g1, where ||g1]| < Cgn~P? < M, see Lemma B.10 and our
assumption in this lemma. For every r € Exc, write y. = g(r)I" where
llg(r)|| < M, indeed, for every such r there exists ~, € I" so that

(11.2) urg1yr = €(r)g(r) and [lurg1ye|| < M +1,
where |le(r)| < M~4s.
For every 1 <1i¢ <k, let

Exc; = {r € Exc: H" := PNIg(,,) is a conjugate of H;}.
There is some ¢ so that [Exc;| > [Exc|/k. Replacing Exc by Exc;, we assume

that H" is a conjugate of H; for all » € Exc. Put H" = §(r) "' H;§(r). Then
g(r) = (g '9(r),d'(r) € G x &,

ro— vl o N-1o — 4o
and v" := ||§(T)‘IV¢|Ig(T) v; = £V ,. Moreover, we have

(11.3) v" = ¢, - ((g(r) o) A (' (r) "))  where |e,| < ht(Hy)M < M*

where we used Lemma 11.2 to conclude ht(Hy)M < M*.
In view of (11.2), we have

(114) @il o)V = (o) A ((003)7 () ))),
where g = (g,1) for all g € G. Since G’ is compact, (11.4) implies
(11.5) i1 (9, 0(72))V"|| < M4, for some A.

Let z € g be a vector so that u, = exp(rz). Using (11.4) and associativity
of the exterior algebra, we have

12 A (@rgr (v 0 (30) V) | = lerl][ (2 A e(ryom) A (0 ()3 (7)) |
(11.6) < M*M~% < pAM~44/E,.

where we used ||e(r)|| < M~ in the second to last inequality, A and E;
are as in [LMMS19, Thm. 1.4], and we choose A5 large enough so that the
last estimate holds.

In view of (11.5) and (11.6), conditions in [LMMS19, Cor. 7.2] are satis-

fied. Hence, there exist r € Exc, ¥ = (v,0(y)) € T, and a subgroup
H c 3y 'H3NH
satisfying that H'(C) is generated by unipotent subgroups (see [LMMS19,
p. 3]) so that for all r € [=S,S] both of the following hold
(11.7a) |ty g1 v || < M*
(11.7b) 12 A (trgiv )| < S™YPM*.
Let H' = H'(R)°. Since |g1|| < M, applying (11.7a) with r = 0, we get
(11.8) [V | < M*.
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There are two possibilities for H':

Case 1. p(H') is a conjugate of H.
This in particular implies that
p(H') = g(ro)"'Hg(rg) where ry € Exc is as above.
Put ¢' = g(r¢). Then ||¢'|| < M and we have
119) vol(Hg'T/T) < |lg'|[*vol(g'™ Hg'T/T)
< M*ht(H') < M*

where we used Lemma 11.2 in the second and (11.8) in the last inequality.
Recall that if we choose a maximal compact K/ C G associated to a
Cartan involution which stabilizes H, then G = K exp(t/)H, where v/ =
tN(Lie(K"))*, see e.g. [EMS96, Thm. A.1]. This and (11.7a) imply that for
every r € [—S, S], we may write
urgrg'vg = g,g'vi,  where ||g)|| < M*.
Since the map s — usg1g'vy is a polynomial with coefficients < M*,
usgrg'vir = € (s,r)gg'vi where [[€'(s,7)|| < M*(|s —r|/S)".
Using the fact that d is right invariant, the above implies
d(usg1, ghg T Hg') < M*(|s —r|/S)";

hence part (1) in the lemma holds if for every r € [-S, S] we let g = g/.g'~ L.

Case 2. p(H') = ¢"'Ug’ where U = {u,}.
First note that if this holds, then I' is a non-uniform lattice and we may
identify G and G as R-groups. Thus v, € Lie(G), and we have

exp(vy,) € H'NT.

Recall from §3 that g = h @ v where h = Lie(H) and v are 3 and 2m + 1
irreducible representation Ad(H ), respectively. Let us write

g1V =w+ w', where w; € h and wy € t.
Now (11.7a) implies that for every r € [—-S, S| we have
| Ad(up)wll, || Ad(ur)w'|] < M*

Using standard representation theory of SLa(R) (recall that H ~ SLa(R)
or H ~ PSLs(R)), we may write Ad(u,)e in the basis consisting of weight
spaces for a; and conclude that for all ¢ € [log M, log 5],

I(Ad(a_pu,)w);|| < M*e ™ fori= —1,0,1,
[(Ad(a_u,)w');|| < M*e™™ for j = —m,...,m
We apply this with ¢t = xlog M large enough so that the above implies
(11.10) Jura—tgivg | < M~ for all r € [—e™'S, €' 5]
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Now (11.10) implies that
ura_1g1 & Xy /pr for all r € [—e7'S, e'S)].

Thus by Theorem A.1, there exists a Q-parabolic subgroup P C G satisfying
that v, € Lie(R,(P)) so that

|ura_tg1vR, Pyl < M™* for all r € [—e™'S, €' ).
Conjugating back, and using t = xlog M, we get
(11.11) lurg1ve, oyl < M*  for all r € [-S, S].

Arguing as in the previous case, recall also that G = K P = KLR,,(P) where
L is a Levi subgroup of P, we get that part (2) in the lemma holds. O

11.3. Proof of Theorem 1.2. Let A; be as Theorem 1.1, and let As, Ag
and C5 be as in Lemma 11.1. By increasing As and Ag if necessary, we may
assume As, Ag > 104;. Let E' > A9 and F’ > Ay, see Theorem A.1. In
creasing F” if necessary, we will assume F’ > m in Proposition 4.2. We will
now demonstrate that the theorem holds with

A2 = *A5 and Ag = A6
Let C = max{F’, (10C3)3,e%, e%,Cy, C5}, see (10.3). Let R > C?, and

1
d=AslogR and n=(C/R)F4s.
Let T > R4, and put 71 = e 9T > R%. Then
1 [

1 [T
(11.12) / o(upzg)dr = — o(aguy, a_gxo) dr
T Jo 11 Jo

1 Ty rl 3
— [ eladusuna o) drdrn + 0T
1Jo Jo
where the implied constant is absolute.
Put z1 = a_gx(, and define
(11.13a)  Excy ={r € [0,T1] : up,x1 € Xy}

. . <
(11.13b) Excy — {7“1 c0.71] : there exists z with vol(Hxz) < R }

and d(up, x1,x) < RA1gA1e—d

Let us first assume that

(11.14) [Exci| < Cp/F'Ty and  |Exco| < 2C°R™"Ty,
where k = min{1/(F’AsAg)}.
For every

e [O,Tl] \ (EXCl U EXCQ),

put x(r1) = uy, 1. Then

R=Cn % > Cinj(z(r)) ™,
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see (10.3); moreover, e¢ = R4 > R4 Thus, conditions of Theorem 1.1
are satisfied with the parameters e?, R, and z(r;). However, by the defi-
nition of Exca, part (2) in Theorem 1.1 does not hold with these choices.
Consequently, we conclude that for every r; as described above,

1
’/ o(aqurpx(ry)) dr — /cpde’ <S(p)R™"1.
0
Together with (11.14) and (11.12), this implies that
1 /7
’T/ o(upxg) dr — /apdmx‘ < (R™™ 4+ 3C% R 4 217 1S (p),
0
where we used Cnl/F/ < C?R".
Hence, part (1) in Theorem 1.2 holds with k2 = min(k1, k)/2 if we assume
R is large enough.

We now assume to the contrary that (11.14) fails:

Assume that [Exc;| > Cn'/*'T;. We will show that part (3) in the theo-
rem holds under this condition.

First note that under this condition I' is non-uniform, thus, G may be
identified with G as R groups. Let us write 9 = goI'. Since |Exci| >
cnt/F "Ty, then in view of our choices of F' and C, we conclude from Theo-
rem A.1 that there exists a Q-parabolic subgroup P C G so that

lura_agove,p)ll < Alonl/A9 for all r € [-T1,T1].

Conjugating back with ag and using T = €T} and e? = R%5,

urgovr, )l < AR for all v € [T, 7.
Arguing as in Case 1 (or Case 2) of the proof of Lemma 11.1, we get that
part (3) holds with Ay = xA5 and Az = Ag.
Assume that [Exco| > 2C2R™"Ty. If [Exc;| > Cn'/F'Ty, then part (3) in
the theorem holds as we just discussed. Thus, we may assume that

|Exco| > 2C?R™"T1 and |Exc| < Cn'/F'Ty.
Put Exc’ := Excy \ Exci. Then

Exc’ {T e 0,71 : ur, 1 € X, and there exists x with }
= 1 L1 - )

vol(Hz) < R and d(uy,z1,z) < RA1d4te=?
and |Exc/| > C?R~"Ty > C5n1/A6T1. Moreover, for R large enough,
RAtdMe=? = R4 (A5log R)MR™245 < =45,
Fix some 71 € Exc’ for the rest of the argument. Put
Ty = Up, T = Up,a_qro and Exc = Exc —r C [Ty, Ti).

Then the conditions in Lemma 11.1 are satisfied with zo, Exc, n, M = R,
and S =Ty = R~4T.
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First, assume that part (1) of Lemma 11.1 holds. Then there exists = €
G/T with vol(H.z) < RA5. Moreover, for every r € [T}, T1] there exists
g € G with ||g|| < R? so that

|s — 7]

1/Aq
dx (usze, gHz) < R < > for all s € [-T1,T1].

1
Since s — r1,r —ry; € [Ty, Th] for all s,r € [0,T}], the above implies
dx (ugagro, aggHz) = dx (agusa_qxo, aggHx)
= dx(aqus—r tur, a_qro, aggHx)
= dx(aqus—r, T2, aq9Hx)
les — er| ) 1/As
T .

That is part (2) in the theorem holds with As = xA5 and A3z = Ag for all
large enough R.

Assume now that part (2) in Lemma 11.1 holds. Then arguing as above,
we conclude that part (3) of the theorem with Ay = xA5 and A3 = Ag. O

< e*ddX (usfrl T2, ng') < R*AS (

12. EQUIDISTRIBUTION OF EXPANDING CIRCLES

In this section, we record the following theorem concerning equidistribu-
tion of large circle; this theorem is a corollary of Theorem 1.1 as it was
shown in [LMW23, §5].

We keep the notation from Theorem 1.1. In particular, G is any of the
following groups

SL3(R)’ SU(2’ 1)a Sp4(R)a GQ(R)v

and H C G is the image of the principal SLy(R) in G. For all ¢, € R and
all 8 € [0,27], let at, u, and ky denote the images of

el/? 0 1 r q cosf —sin6
0 e t/2) o 1) sinf cos#

in H, respectively.
We let I' C G be an arithmetic lattice, and let mx denote the probability
Haar measure on X = G/I.

12.1. Theorem. For every xg € X, and large enough R (depending explicitly
on xg), for any T > RA7, at least one of the following holds.

(1) For every ¢ € C°(X) and 2m-periodic smooth function & on R, we have

1 2
[ elanerioné@) a0~ [ e@)a0 [ pamy] < SSE©R™
0 0

where S(+) denotes appropriate Sobolev norms on X and R, respectively.
(2) There ezists x € X such that Hx is periodic with vol(Hz) < R, and

dx(x,z0) < R (log T)A"T~™,
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The constants A7 and kg are positive, and depend on X but not on xg.

Proof. The proof of [LMW23, Thm.1.4] remains valid without modification
when [LMW22, Thm.1.1] is replaced by Theorem 1.1 from this paper. O

Part 2. Application to quadratic forms

The second part of this article concerns applications to quantitative ver-
sion of Oppenheim conjecture. In particular, the proof of Theorem 2.3 and
Theorem 2.1 will be completed in this part. We employ the strategy pi-
oneered by Eskin, Margulis and Mozes in [EMMO98|. This result covered
all indefinite quadratic forms in d > 3 variables except forms of signature
(2,2), or (2,1) where a Diophantine condition is needed for the requisite
nondivergence results to be true.

The case of (2, 2) forms was treated by Eskin, Margulis and Mozes [EMMO05],
and required significant additional ideas. A more precise version, suitable for
a quantitative counting result, for the special case of I' C SLa(Z) x SL2(Z)
was given by the first three authors of this paper in [LMW23].

More recently Wooyeon Kim succeeded in giving a treatment of the case
of forms of signature (2,1) in [Kim24]. Since the actual results we need are
only implicit in [Kim24], we give a full treatment here; but it is possible to
isolate what is needed already from [Kim24].

13. UPPER BOUND ESTIMATES

In this section we will state Proposition 13.3 which yields the upper bound
estimates needed for the proof of Theorem 2.3.

Let
QO(Xv Y, Z) = 2xz — y2'
If @ is an indefinite ternary quadratic form of determinant 1, and Then
there exists some gg € SL3(R) so that Q(v) = Qo(ggv) for all v € R3.

Let H = SO(Qo)° C SL3(R) = G; note that H ~ PSLy(R). In the case at
hand, the groups a; and u, featuring in Theorem 1.1 can be more explicitly
described as follows
2

e 0 0 1 r o
a=10 1 0 and u,=(0 1 ~r
0 0 et 0 0 1

Also let K = H N SO(3) ~ SO(2). Indeed, K = {kg : 0 € [0, 27]} where

l14cosf® _ sinf 1—cosf
2 V2 2
(131) kg = 55159 cos 6 _sin@

V2
1—cosf sin 0 14+cosf
2 V2 2
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Definition 13.1. A rational line L C R3 will be said to be (p, A, t)-exceptional
for Q if the vector v defined up to sign by L N Z3 = Span{v} satisfies

v <e” and |Q(v)] < e~ APt

Existence of 5 exceptional lines yields an approximation of QQ with a ra-
tional form with low complexity, see Lemma 13.4 below.

We identify A2R? with the dual of R?, which will be identified with R?
using the standard Euclidean inner product. Then for every g € G

(13.2) gu1 A guz = g*(v1 A vg)
where ¢g* = (¢°)~!. We put Q*(v) := Qo(g*v) for any v € R3.
Similar to Definition 13.1, we have the following:

Definition 13.2. Let P C R? be a rational plane and suppose P N Z3 =
Span{wi,ws}. Then P will be said to be (p, A,t)-exceptional if the line
spanned by wi A wy is (p, A, t)-exceptional for Q*.

This definition can be equivalently stated in terms of the height of the plane
P and the determinant of the rational form induced by @ on P.

Let f € C.(R?). For every h € H, define
(13.3) foas(higa) = > f(hv)

UENQﬂg

where N ; denotes the set of vectors in 72 which are not contained in any
(p, A, t)-exceptional line or plane.

13.3. Proposition. For all large enough A, for all small enough p (depend-
ing on A), and all large enough t (depending on A and p), at least one of
the following holds:

(1) Let Cy = {k € K : f, as(aik; gol') > Ae?Pt}. Then

i fp,A,t(atk;gQF) dk < e P12,
Ce

(2) There exists P € Mat3(Z) with ||P|| < ePo?! so that
1Q — AP|| < ||P||=*%  where A = (det P)~1/3
The implied constant depends on ||g|| and Dy is absolute.

The reader may compare Proposition 13.3 and its proof with [LMW23,
Prop. 6.1]. It is also worth noting that Proposition 13.3 is equivalent to
showing that f belongs to L *€. The proof of this proposition will occupy
the rest of this section.

Let A and t be large parameters (A is absolute and ¢ > t((Q)), and let
p > 0 a small parameter; these will be explicated later. In what follows n
represents a small number.
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Linear algebra lemmas. We begin with the following lemmas from linear
algebra.

13.4. Lemma. Let A,D > 1 be two parameters. Let vq,...,vs € Z3 be five
vectors so that no three of them are co-planar and |Q(v;)| < 0 for all i.
Then the following hold:

(L-1) Let v = (v1,v2,v3), and assume that
|dety| <n P and |y vl <n7P fori=4,5.

Then there is a matriz P € Mats(Z) with det(P) # 0 and ||P| <
n~*P so that
H’th'y - PH < AP,

(L-2) If |jvi]| < =P for all i, then there is a matriz P as in (L-1) so that
1Q — AP|| < AP where X\ = (det P)™/3,
Proof. Writing @ in the basis {v1,v2,vs} implies that
7'Qy = B = (bij)

where |b;;| < n?. Write

1

- t
Y vy = (a1, a2, a3)
-1 Y AN #
v vy = (ay, a4, a3)".

/ : -D

Then a;,a; € Q have height < n~~.
Note that since no three of the v;’s are co-planar, a;,a; are all nonzero.
Suppose (azaz, a1az, araz) and (ahay, ayas, ajay) are colinear. Then B4 =

273
492 g0 43 = 24 and similarly for the other pairs. But this means v4 and vs
a1a2 a3 a1
are colinear, in contradiction.

Since for i = 4,5, |Q(v;)| < n?, we have

A—-2D I A-2D
Z b,-jaiaj <«n and Z bijaiaj <«Ln
0<i<j<3 0<i<j<3

Since a;, a; € Q have height < n~P, the above imply (L-1).
The second claim (L-2) follows from (L-1) and |v| < n~P. O

13.5. Lemma. Let 0 < 0 < 1, and let 0 < 6 < 1 — 0. For every v € R3
which satisfies |Qo(v)| > e 727, we have

/ llagko|| 270 dk < 5 Le(1H0HO)E ||y 7170
K

where the implied constant is absolute.

Proof. Recall that K acts transitively on the level sets
{veR3:||v|| = c1,Qo(v) = c2}.
Thus we may assume v = (0,¢,1) where € = |Qo(v)|*/? > e~7*, and have

atk'g’l) — (et(l—COSQ—Q\/EESiI’I@)’ 260050—2\/§sin07e—t(l—‘—cos@—;\/issin@)).
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Since for 0 < # < 1/100, we have
1 —cosf —V2esinf = —/2e6 + % +0(6*) and
14 cosf +V2esinf =2+ O(e).

Let ¢’ = min{e, 1/100}, the above implies

6(72+O')t &l
[ kel < [Tt [T sy
K 0
< (-1Ho+o)t 4 5*16(*1*5”6‘”0’5]6

e(_2+f7)t
!
e(—=2+0o)t

< 5716(71+6+o)t.
As we claimed. O

In the bounds in Lemma 13.5, the multiplicative coefficient in front of
Hv||_1_5 tends to zero as t — oo (which is what we want), at the expense of
giving a restriction on v. Without the restrictions imposed in Lemma 13.5,
we have the following general (weaker) bound:

13.6. Lemma. Let v € R3, then
/ lacko] 718 dk < &% jv]| 713
K

where the implied constant is absolute.

Proof. The proof is similar to Lemma 13.5. Indeed, we have

—t

e w/4
/ ||atkv\|*1*5 dk <</ 6(1+5)t d@—l—/ 6(7176)1‘,972725 do
K 0

e—t
< ol 717,

as we claimed. O

Cusp functions of Margulis. Recall the functions
ai(g) = {1/ llgvll : 0 # v € Z°}
as(g) = {1/ llg™ (w1 Awa)|l : 0 # wy Awy € /\2Z3}

from [EMMO8] and [EMMO5).
Forall0£veR3 all0<o <1,and all s > 1 let

Ii(o) ={k € K : |askgqv| < o}.

We will be interested in I5(o) for vectors where |Qo(ggv)| < ¢! and 1 <«
lgov|| < oe®. In this range, we have

(13.4) 13(0)] = (€0 /llgqui)'?,

see e.g. [EMMO5, Lemma A.6].
Let P denote the set of primitive vectors in Z3, and let

Pr={veP: et <o <€,
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for every integer £ > 1.
We make the following observation, which is a special case of [EMMO98,
Lemma 5.6] tailored to our applications here.

13.7. Lemma. Let 0 < 0 < 1 and s > 1. Let vi,v9 € Py be so that
1Qo(gqui)| < ', [lgouil| < oe®, and 2I5,(0) N 2I5 (o) # 0. Then

ai(askgql) <c oaz(askgg) for all k € cl (o),
for every constant c.

Proof. Let v; and vy be as in the statement. Then, in view of (13.4), we
have

laskgque| < o for all k € cI (o).
For every k € ¢} (0), fix a vector vy, so that
a1 (askgQl) = |laskgquil| ™"

Let P = Span{vg,v} where v = vy if vy, = vo and v = v if vy # va. Let u
be the corresponding covector (which is unique up to sign). Then

[(askgq) ull < |[(askgq)™ (vk A V)|
< |laskgquill llaskgqull < oai(askgg) ™,
for all k € I} (o). Taking reciprocal, we have
ai(askggl’) < o ||(asl’<:gQ)*u||71 < oas(askggl),
as it was claimed. O

We will also using the following theorem which is due to Eskin, Margulis
and Mozes [EMMO98].

13.8. Theorem ([EMMO98], Thm. 3.2 and Thm. 3.3). Both of the following
hold fori=1,2 and every g € G.

(1) For every 0 < p < 1, we have

sup/af(askgf) dk <1
s>0

(2) For every s > 0, we have

/ai(asng) dk < s.

The implied constant is < (1 —p)~4||g|* in part (1) and < ||g||* in (2).

Proof. The first statement is [EMMO98, Thm 3.2] and the second is [EMM98,
Thm 3.3]. It follows from the proofs of these statements that the implied
constant depends polynomially on «;(g) < ||g|* and is < 1/(1 — p) in the
first case; see [EMM98, Lemma 5.1] for the dependence on p. O

We will also use the following elementary consequence of Theorem 13.8.
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13.9. Corollary. Let © C K be a set with |©| < o. Then
/ ozl-l/Q(adk:gF) dk < o'/
©
Proof. Let B= {k € K : as(agkgol’) < o~ '}. Then
/ ol (agkgl) dk < / ) (agkgl) dk + o/* / ai(arkgD)?* dk
e enB K\B
< o' 4ot < ot

as we claimed. ]

Approximation by rational forms. The following proposition is one of
the main ingredients in the proof of Proposition 13.3.

13.10. Proposition. There exists some Dy, A (absolute) so that if pD1 <
1—(1)0, and £ > 0 is large enough and the following is satisfied

(13.5) #{v € Py |Qolgou)| < e 44} > el=r)t,

then at least one of the following holds:

(1) There exist planes {P; : 1 <i < N}, for some N < (1720 50 that
#{v € P\ (UP) : |Qo(gqu)| < e~} < 7208,

Moreover, there are intervals {J; : 1 <i < N}, with multiplicity at most
two, so that L(,HQP)Z(e_pE) NJ; # 0 for every v € P;, and

/J a1 (aqyop)kgQl) dk <. e /J az(aq12p)ekgQl) dk

for every constant c.
(2) There exists some P € Matz(Z) with || P|| < eP1P¢ so that

|Q — AP| < e(FIHD1IE here \ = (det P)71/3.

Until the conclusion of the proof of Proposition 13.10, let n = e *¢ and
s = (14 2p)¢, and write I, for I3(n). We will also put

Wi = {v € Pr : |Qolggu)| < e~ 7%}

13.11. Lemma. Let the notation be as in Proposition 15.10. Then at least
one of the following holds.

(1) Part (1) in Proposition 13.10 holds.
(2) There exist W C Wy with #W > n?e’ so that

I,NIy =0 forallv#v cW.
Proof. Suppose the claim in part (2) fails. Recall from (13.4) that
(13.6) |1, = e(=570/2p1/2 < o=tp3/2
where we used s = (1+2p)f, n = e ", and |gov| < |lgglll[v]| < ne®.
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In consequence, we may choose W' C W, with #W' < n%e’ so that
{Ji} = {2I, : v € W'} covers Uy, I, with multiplicity at most two. Discard
the intervals J; which intersect only one I,. For every remaining interval,
Ji, we have

(13.7) llaskggu|| <n for all v with I, N J; # 0 and all k € I,,.

We draw both conclusions of part (1) in the lemma from (13.7). First note
that (13.7) implies that if v,v" so that I, N J; # 0 and I, N J; # 0, and
we put P; = Span{v,v’}, then for every v” so that I,» N J; # 0, v" € P;.
Otherwise
1 < |det(askgqu, askggv’, askgou”| < n®
which is a contradiction assuming s is large enough. Moreover,
#{v:v g UP} < e,

To see the second claim in part (1), note that if v, v’ are so that I, NJ; # ()
and I,y N J; # (), the conditions in Lemma 13.7 are satisfied. Hence

/ ai(askggl) dk <. eps/ az(askggl) dk,
cJ; cJj

as we claimed. O

If part (1) in Lemma 13.11 holds, the proof of Proposition 13.10 is com-
plete. Thus We will assume part (2) in Lemma 13.11 holds, for some C
which will be optimized later, for the rest of the proof.

Recall that K ~ SO(2). Using this isomorphism, we identify K with
[0,27], and cover K with half open intervals {I;} where |I;| = 27/N for
N = [nef].

13.12. Lemma. Let ¢ and W be as in part (2) in Lemma 13.11. For every
i, let
" Wi ={veWe: I, NI = [L]/2},
and Jp = {j : #We; > n2}. Then
#J0 > e
Proof. Let J) = {j : #W,; <n~2}. Then
#(Uy W) < niet.
Moreover, note that since I, NI,y = @ for all v # v/ € W and |I,,| < e~‘n3/2,
#Wej < L1 PPt <"

These and #W > n?e’ imply that

#Te = #{j: #We; 201} 2 0’
as we claimed in the lemma. O

13.13. Lemma. With the notation be as in Lemma 13.12, let j € Jp and let
{vi,...,us} CWy; be so that ‘}”5—3” — HZﬁH > Y2t Then
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(1) No three of {v1,...,vs} are co-planar.
(2) Let v = (v1,v2,v3), then

1<|dety| <n P and ||y lu|| <n7P fori=4,5.
Proof. In the course of the proof, we will write g for go to simplify the

notation. Let us write gv; = v + u; where |ju;]| < e ‘n? and Qo(v}) = 0.
Now for all vy, v € {v;}, we have

(13.8) Qo(gvas 9v3) = Qo(vh, vh) + O(™).
Moreover, since HHZ—Z” — ”Z—ZHH > 77_1/26_4 and v,,vg € Wy ; we can write

Vg = Aaplq + w5 where [Aqg| = O(1) and Y2 < |lwagl < 7% and
w5 L vy (with respect to the usual inner product). Hence,

gUg = Aapgla + Wap  Where wag = we,z + o).
More explicit, applying an element of K, we will assume v/, = (x,0,0). Then
w5 = (0,y,2) and 1?2 <« [wigl < n~5. Moreover, 2\,gzx — y? = 0 since
Qo(vp) = 0, this implies |y| > n~ Y4, thus |z| > 5~ Y2/||v/||. This implies
|Qo(vy, vg)| > n~'/2 which in view of (13.8) gives |Qo(gva, gug)| > n~ /2.

Now assume contrary to the claim in part (1), that gvs = agv; + bgve
(the argument in other cases is similar). Then

a)\31 + b)\gg =1 and awsy + b’w32 =0
Solving for a in the first equation, and replacing in the second we conlcude,
w31 = b(Az2w31 — Az1ws2).

Since [Aqg] = O(1) and 772 < [lwagl| < 1n~°, we conclude that n'® <
|b| < n~10. This and a)3; + bAszz = 1 imply 7'? < |a] < 710, Recall that

1Qo(gv3)| = [a2Qo(gv1) + b2Qo(gva) + 2abQo(gv1, gua)| < n.

Since |Qo(gv1, gu2)| > /2 and ' < |al, |b] < 7719, we get a contradic-
tion so long as A > 40 and 7 is small enough. The proof of (1) is complete.

We now turn to part (2). Let I C {w € R?: |Jw|| = €, Qo(w) = 0} be an
interval with || < 0. Let {w1,we, w3} € I satisfy |w; —w;|| > n~1/2. Let
W = (w1, w2, ws) which is non-singular by part (1). A direct computation
shows that if v’ € {A\w : X € [e72,€?],w € I}, then Wz’ = v’ has a solution
o'l < 7.

As we did in part (1), let us write gv; = v, + u; where Qo(v;) = 0 and
|ui|| < e *n?. Since gui, gva, gus lie in the e~‘n? neighborhood of an interval
IC{weR: ||w|=e¢, Qow) =0} with |I| < n7°. Thus the volume of
the tetrahedron spanned by gv1, gve, gvs is < n~*. This and part (1) give

(13.9) 1 <|detvy|<n™™*

Now applying the above discussion with W’ = (v}, v}, v}) and v = vlj, oL,
there are x/j, 2 € R? satisfying ||2}|| < n7* so that W'z} = v.
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Since gy = W' + E where |E|| < e~‘n?. For i = 4,5, let x; = o, + @
where @ = (gv) "} (u; — Ex}), then
gy = gy + gy
= W'z, + Ex} +u; — B2}, = v, + u; = gv;
moreover, ||Exl]| < e A, ||lui|| < e~n, and |(g7) 7| < efn~*. Thus
||| < nA~*. Altogether, we conclude that ||z;| = ||y~ v;|| < n~*. This
and (13.9), complete the proof of part (2). O

13.14. Lemma. Let the notation be as in Lemma 13.12. Then for every
J € Ju, there exists some k; € K so that

ackjgol’ = €;g;
where ||¢;|| < nA™* and vol(Hg,T') < n*.
Moreover, we can choose the collection {k;} as above so that the following

holds. There exists J] C J; with #J] > n*e’ so that if j,j' € J| are
distinct, then ||kj — ky|| > e~*.

Proof. Fix some j € J;, and let {vy,...,v5} C W, ; be as in Lemma 13.13.
Then conditions of Lemma 13.4 are satisfied with {vy,...,v5}. Let
1 =70) = (v1,v2,03)
By the conclusion of Lemma 13.4 thus v{Qvy; = P + E where
P € Mat3(Z), ||P|<n™*, and |E| <y

We conclude that there exists §; € G, with [|g;|| < n™* so that (§;)'Qog; =
P. This implies: Hg;I" is a periodic orbit with vol(H g;I") < n™*.

Moreover, we conclude from the above that there exists some h; = k}dkj €
SO(Qo) and ¢; € G with [|¢; — I|| < nA~°(M) so that

(13.10) kjakjgoy = €.
Since ||g;]| < n™*, we conclude that

*

en* < |l < llall < mlln™ < ey,
Let us write @ = aga, where |7| = x|logn|. Multiplying (13.10) by (kja,)~",
we get

ackjgomn = €j9; where |le; — I|| < n 7% and g; = (Kjar) ™" ;.

This establishes the first claim.
To see the second claim, let 7,7’ € J;. Repeat the above argument with
J and j', and let kj, kj and ~1(j) and ~v1(j") be the elements as above. If
|kj — kj|| < e™*, then
ackj 9Q = gjyackjgg  where |[|g;; || < 1.
This implies that
() G <n*
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Since #J; > n°e®, the collection of v;(j) for j € J; is distinct, the final
claim in the lemma follows. [l
Proof of Proposition 13.10. Recall that n = e~?‘. Let J/ and {k; : j € J/}
be as in Lemma 13.14. Then #J/ > n®e’, and for all j € 7,
agkngF = €,

where vol(Hz;) <7~ P1 and ||e; — I < nA~P1, where D] is absolute. More-
over, |kj — k| > e~ for all j # j'.

Let N = {gz : vol(Hz) < n~P1,||g|| < nA~P1}. We conclude from the
above that /

{k € K : agkgol € N} > nP1.

If A is large enough, we conclude that
9Q — €9
where vol(HgTl') < 721, and |le — I|| < n~*e7¢, see e.g. [LMW22, Prop.
4.6).
In particular, ¢'Qg is rational form with height < 7
1Q = 9'Qogll < llgl*lle — 1| < eTHHP1,

as we claimed. O

D1 — =Dt and

14. PROOF OF PROPOSITION 13.3

We will complete the proof of Proposition 13.3 in this section; the proof re-
lies on Proposition 13.10 and Theorem 13.8. If part (2) in Proposition 13.10
holds, with some ¢ > pt — 1, then part (2) in Proposition 13.3 holds and the
proof is complete. Thus we assume part (2) in Proposition 13.10 does not
hold for any ¢ > pt — 1.

Notation for the proof and Schmidt’s Lemma. Recall that we identify
A’R3 with the dual of R3, which will be identified with R? using the standard
inner product. Then for every g € G

(14.1) gu1 A gua = g*(v1 A vg)

where g* = (¢*)~1; note that H is invariant under this involution. Also note
that Q*(v) = Qo(g*v) for any v € R3.
For every u € A2R3, we will write

L' (o) = {k € K : [|(atkgq)"ull < o},

u

and put I* := I;"'(e=P!). We will also write I, for I%(e="t).
We emphasize that I, here is shorthand for I'(e™*"), and is does not

L(,lﬁpg)(e_pe), which was used in the

represent a shorthand notation for
proof of Proposition 13.10.
By a variant of Schmidt’s Lemma, see also [EMM98, Lemma 3.1], and

the definition of f, we have

(14.2) flak; gq) < alaik; gq)
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where &(a:k; gg) = max{d(ak; 9q), da(atk, gg)} and
ai(ak; gg) = {||a,5ngv||_1 0#£veE /\/'Q,t}
ao(atk; 9g) = {|(atkgg)*ul| ™" : 0 # u € Ng+ 4 }.

Recall the set C; = {k € K : f(ak;gq) > Ae*'}. Choosing A large
enough to account for the the implied multiplicative constant in (14.2),

ét C Ct71 U Ct’g.
where C;; = {k € K : &;(aik; gg) > e} for i = 1,2. In view of 14.2 and

the above, thus, it suffices to control

/ aq(ack; gg) dk and / ao(ack; gg) dk
Ct71 Ct,?

Let us set
Wii = {v e Ng: NP : ||| <€, 3k € I, ||atkggu| < e '}, and
Wi i={ueNg- NP :|v|| < el, 3k € I* | (atkgg) ful| < e—Apt}‘
Note that if v € Wy 1, then I, N C; # 0, thus [|ggu|| < e(1=40)t gimilarly

for covectors in Wy o. This implies ||v|| < e=4”)%. For i = 1,2 and every
integer £ <t — (A —1)pt =1, let

Wei(€) = Wi 0 Py
The sets Wt’l(ﬂ) We will work with W, 1, the argument for W 5 is similar.

Suppose now v € W, 1(¢) for some ¢ < 1+ (1 — Ap)t. Recall from the
definition of W; ; that

latkggu| < e 4Pt for some k € I,;
thus, |Qo(atkgov)| < e~24Pt < e=4rt. Since a;k preserves the form Qo,

(14.3) 1Qo(gqu)| < e,

Moreover, since v does not belong to any (p, A, t)-exceptional line we have
|v]| > ePt. Since v € Wy 1(¢), we conclude that ¢ > pt — 1.
Fori=1,2, let

Li={pt—1<L<t :#W,,(0) > 1P

and let £ = {pt —1 <<t : 0 &L}
In view of (14.3), we have

Wyi(0) C {v € P |Qo(gqu)| < e_Apé}.
This and the definition of £1, imply that for every ¢ € L1, we have
#{v e Py |Qolgou)| < e~} > =Pt

Thus, the assumptions of Proposition 13.10 holds for any ¢ € £;. If part (2)
in Proposition 13.10 held, the proof of Proposition 13.3 would be complete.
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Therefore, we may assume that part (1) in Proposition 13.10 holds. That
is: There exist planes {P; : 1 < i < N}, for some N < e(1=2P)¢ 50 that

#{v € P\ (UF;) : [Qo(gqu)| < e‘APf} < e1-20)¢
Moreover, there are intervals {J; : 1 < i < N}, with multiplicity at most

two, so that If,lﬁp)g(e_pg) N J; # 0 for such v; thus I, C ¢J; =: J; for an
absolute ¢ > 1. Furthermore, recall that

| artaspibagr)ak < e [ asfaqiesyhagr) dt.

and note that {.J;} has bounded multiplicity depending on .
For every £ € L}, let Wy ;(£) = W,i(£), and for every £ € L;, let Wy ,(¢) =
Wyi \ (UP;). In either case

(14.4) #W](0) < 1P,
We put Wi, = U, Wi, (6).
The task is now two folds: we first show that for all pt —1 < ¢ < ¢/
Z/ lackgqu]| ™70 dk < et
Wy,
this is an easy consequence of (14.4) and Lemma 13.6.
Then we show that for such £,

/ ai1(atkggl) < e’
uJ;

this step is more involved. It relies on Proposition 13.10, Theorem 13.8, and
ideas similar to [EMMO8].

Summing these estimates over all pt —1 < ¢ < t/, we get fCt < P
as we wanted to show. The details follow.

Contribution of Wt/z Applying [EMMO98, Lemma 5.5] we have
[t']

3 /I lakgoul " dk < S o)

Wi o Lot=1] Wy 1 (€)

Using (14.4), one obtains

[t']
Z Z eétHUHfl < Z e—Ze(l—p)E<<€—p€/2

Lpt—1] W; 1 (0) >pt—1
Altogether, we conclude
(14.5) > / lackggu| ™10 dk < eP*1/?
I
Wi, o

Similarly, 32y, 7 [(atkgo) ul| ™' 70 dk < e=P*t/2,
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Contribution of W ;(¢) \ W, ,;(¢). Again we will work with i = 1, the
argument for ¢ = 2 is similar. Let ¢ € £; otherwise Wy1(¢) = W, (¢).
As it was mentioned above, in view of part (1) in Proposition 13.10, there
are intervals {J; : 1 < ¢ < N}, with multiplicity at most two, so that

Iémp)f(e—ﬂf) N J; # 0 for every v € W 1(€). This implies I, C ¢J; =: J; for
every such v, where ¢ > 1 is absolute. Furthermore, recall that

(14.6) /j al(a(1+gp)gngF) dk <« e_pf/ OéQ(CL(H_Qp)gk‘gQF) dk,

K3

and note that {J;} has bounded multiplicity depending on c.

Sublemma. We have

(147 Y /J al(atngr)dk<<e—*Pf(1+Z /J aQ(a(mpwngr)dk)
5, 7,

Let us first assume (14.7) and complete the proof of the proposition. Since
Yo 1j <15, (14.7) implies that

Z/ o (arkgql') dk < ef*pe(l +/A a2(a(1420)0kg9QT") dk)
i Ji UJi

< e P4 2p)0 < e,

where we used part (2) in Theorem 13.8 in the second inequality.
Altogether, for every £ € L4,

(14.8) / Cag(ak; gg) dk < et < e P
ud;

7

where we used ¢ > pt — 1 in the last inequality.
Now summing (14.5) and (14.8) over all pt — 1 < ¢ </, we get

/ ai(ack; gol') < te Pt < e
Ci1

Similarly, [, , Go(atk; gol') < Pt
The proposition follows from these in view of (14.2). O

Proof of the Sublemma. It remains to prove (14.7). The argument is similar
to the arguments pioneered in [EMM98], which are by now well known. To
simplify the notation, let us write s = (14 2p)¢ and put x = ggI'.

Let ny = [100p~%] and let sy = (t — s)/n1. We claim that

(14.9) Z/ a1 (ans,+skx) dk < C™ Z/ a1 (askz) dk + (C + 1)"e P42,
i Ui i Ui

for all integers 0 < n < nj, where C' > 1 is absolute.
Note that the sublemma follows from (14.9) and (14.6). Therefore, the
task is to establish (14.9).
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We first make the following observation

(14.10) Z/ a;ﬂ(adk‘x) dk < e=30/4 for all d > 0.
i i

To see (14.10), first recall from Proposition 13.10 that 3°1; < 1;, hence

Z/ oéﬂ(adkx) dk < / a§/2(adka}) dk.
i i u

Ji

Uji’

Moreover, the number of such intervals .J; is < e(1=27)¢ and |.J;| = e~‘e304/2,
see (13.6) and the paragraph following that equation. Thus

‘U Ji| < Z i < (e0720L . (e(-1=3P) < =30t

Hence (14.10) follows from Corollary 13.9, applied with © = J J;.

Let us now return to the proof of (14.9), which will be completed using
induction on n. The base case n = 0 is trivial.

Fix some n > 0 and some J;. Let M = [e"1+5].];|] and b = |J;|/M. For
every k € L, let hy, = ans,+ska_pns,—s- Then

b
(14.11) /al(a(n+1)51+skx)dkzg /al(aslhkansl+s/~cja:)dk,
J; ~ Jo
J

where kj = jbfor 0 <j <M —1.
If k = kg, see (13.1), then hg = Rju_cns1+s 6in g/ (14c0s ) Where [y —I|| <b

ns1+s___sinf
(14cos0)

is lower triangular. Using the change of variable r = e , we get

b 1%
(14.12) / a1 (ag, hians, +skjz) dk = 6"515/ a1 (g, U_plng, +sk;x) dr.
0 0

/! _ _nsi+s__sinbg -
where b’ = e [teoshy) = 1.

In view of [EMM98, Lemma 5.8], see also [EMM98, Lemma 5.5], we have

b/
/ a1 (G, U_plns, +skjx) dr <
0

v’ b
2 1/2
/ al(u—ransl—i-skjw) dr + e / a2/ (u—rans1+skx) dr
0 0

—ns1—s

Multiplying the above by e and changing the variables from u, back
to hj in the second line above, we conclude that

b/
e_"sl_s/ a1 (g, U—pOng, +skjx) dr <
0

b b
/ a1 (hgans, +skjx) dk + e / aé/Q(hkanlerSk:jx) dk =
0 0

b b
/ a1 (s, 1 skkjz) dk + 251 / b (s, 4 skkja) k.
0 0
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In view of (14.12) and (14.11), the above implies

b
/jal(a(nﬂ)slﬂkx)dk <<E /()al(anlerskij)dk +
i j

b
ety / b (s, 4 skkjz) k.
Altogether, we have shown

/jal(a(n+1)sl+skx) dk </a1(an51+skx) dk + 6251/

Ji @

aé/Q(ansﬁskx) dk.

Summing these over all J;, we get

(14.13) ) /J a1 (agpitys +skr) dk <C Y /J o1 (nsy skr) dk +
J; J;

062812/ aéﬂ(amﬁsk‘x) dk
—~ ] J;
J;

Recall now that ¢ > pt — 1 and s; < p3t/100. This and (14.10) imply that

ey / Y (s, g ska) Ak < eP/10e=30/4 < =pl/2,
N J’L
Ji

This, (14.13) and the inductive hypothesis finish the proof of (14.9). O

15. CIRCULAR AVERAGES OF SIEGEL TRANFORMS
Let f € C.(R?). For every g € G, define

(15.1) flg)=">" flgv)

vEZ3

For any indefinite ternary quadratic form @ with det @ =1, welet gp € G
be so that Q(v) = Qo(ggv), where Qo(x,y,2z) = 2xz — y2.

In this section, we will use Proposition 13.3 and Theorem 12.1 to prove
the following proposition. The proof of Theorem 2.3 will then be completed
using this proposition.

15.1. Proposition. There is an absolute constant M, and for every large
enough E and 0 < p < 1074, there are o1, 02 (depending on p and E) so
that if Q is as above and t is large enough, depending linearly on log(||Q||),
the following holds.

Assume that for every Q' € Mats(Z) with ||Q’| < et and all X € R,

(15.2) l@ - 2@ > [l
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There exists some C depending on E and polynomially on ||Q|| so that the
following holds. For any smooth function £ on K, if

‘/;me@QFK“ﬁdk—/Qfdk/;fdmx‘>C$(ﬂg@k;mt

then there is at least one ({5, E,t)-exceptional line or plane, and at most
four (&, E, t)-exceptional lines {L;} and at most four ({5, E,t)-exceptional
planes {P;}. Moreover

| fakgorysrak = [ gak [ Famy+ M+ 0SS )
K K X
where
M = /Cfsp(atngF)g(k) dk
with
feplarkgql) = > flatkgqu)
veZ3N((U; L)) U(U; ;)
C= {k‘ eK: fsp(atngF) > eglt}
Before starting the proof, we recall the following well-known fact
15.2. Lemma. Suppose there exists g¢'T' € X with vol(Hg'T') < R, so that

d(gQl', g'T) < B
There exists an integral form Q" with ||Q'|| < R* and some X € R so that

1Q — Q|| <« R*p

Proof. Replacing ¢ by hg'y for some h € H and v € ' we may assume
|¢'|| < 1. Similarly, we may assume ||ggl|| < 1.

Since vol(H¢'T') < R, Qo o ¢’ is equivalent to an integral form @"” with
Q"] < R*.

Since d(gol', ¢'T') < B, 9o = €g’y’ where |le—I|| <  and ||7'|] < 1. Thus
IQ - Q' < R*3
for some integral form Q" with ||Q’|| < R* and some X € R. O

Proof of Proposition 15.1. Let E and p be as in the statement, and let ¢ > 0
be a large parameter. We will use Lemma 15.2 in the following form:

Let @ satisfy (15.2). There exists F1 > max(4A7, E), where A7 is as in
Theorem 12.1 so that the following holds. For all ¢ so that ¢ > 4A7logt and
for every x € X with vol(Hz) < ePt/F1,

d(gl,z) > e "

In view of this, part (1) in Theorem 12.1 (applied with G = SL3(R), hence,
m = 2) holds with R = ePt/Er and ¢. Indeed, since AE—Y’ < % and t47 < et/4,

RA7tA7€_2t — eA7pt/E1tA7€—2t S C_t'

?
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hence, part (2) in Theorem 12.1 cannot hold.
For every S, let 1x, o < ¢s < 1x,,4,,, be smooth with S(ps) < S*. Put

fs = psf; we let L be so that S(fs) < SES(f). Recall that aq,an > S*
in X;,g, they belong to L*(X,my), and f < max(ay,az). Thus,

(15.3) / Fdmy = / fsdmx + O(S).

Set € = kgp/(2LE1), where kg is as in Theorem 12.1. We will show the
claim in the theorem holds with

62
32E2°
Apply Lemma 13.4 with =P = eB!, nd = e, and Q. If there are at
least five (4%, I, t)-exceptional lines, then Lemma 13.4 implies

o1 =¢ and g =

M’ ey Me
HQ_)\QIHSUA MD:e( e+ B )t

for some Q' € Mat3(Z) with ||Q'|| < e !, where M’ is absolute. Assuming
E is large compared to this M’, however, this contradicts (15.2) if M > 2M".
Thus, there are at most four ( 17> I, t)-special lines. Similarly, there are at
most four (45, E,t)-exceptional planes.

Denote these lines and the planes (if they exist) by {L;} and {P;}, re-
spectively, and put Exc = (U;L;) U (U; P;). For every k € K, write

Flatkgql) = fs(atkgQl) + fousp(atkgQD) + fip(atkgql)
where fs = gpgf, fcusp is the contribution of Z? \ Exc to f — fs, and fsp is

the contribution of Z3 N Exc to f— fs.
By Theorem 12.1, applied with R = e?//F1 for any &€ € C°(K) we have

(154) | [ Fstarkaqr)e) dk— [€ar [ fsamy| <

S(fs)S(€)e st E <« SES(f£)S(€)e st/ Er,

If we choose S = et = e8Pt/ LEY) the above is < S(f)S(€)e™t/2.
Moreover, by Theorem 13.8 applied with p = 1/2 and the Chebyshev’s
inequality, we have

(15.5) S dk < §712814 = g—1/4,

/{k'atngF¢X1/s}
This and (15.4), reduce the problem to investigating the integral of f — fg =
fcusp+fsp Ovel"c _{kGK f fS>ESl/4}

Let f be as in (13.3) with ¢/4F, E, and t. That is:
fhig) = > f(hw)

UENQ t

where Ng denotes the set of vectors in 73 which are not contained in any
(e/4E, E, t)-exceptional line or plane.
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Let C = {k € K : f(aik; gg) > Eec'/* = ESY/*}. By the definitions,
[ Fomorhaarieyak < el [ Flakiag) .
Thus Proposition 13.3, applied with F and ¢/4F, implies

~ 52
 flagks go) dk < e 382

Ce
From these two, we conclude that
~ 52
(156) ffcusp(atngP) dk <« Hf”ooe_ﬁ
C

In view of (15.3), (15.4), (15.5) and (15.6), we have

[ Fakgariemar— [ gan [ fany
- /c Fop(atkgQD)E(k) dk + O(S(£)S(&)e~=1/32E7)

where C = {k € K : fsp(atngF) > Eeft/4},
This completes the proof if we let 91 = ¢ and g9 = €2 /32E?. O

The Diophantine condition on @, as stated in (15.2), is primarily employed
to derive the desired upper bound estimates for circular averages of the Siegel
transform, namely the application of Proposition 13.3 in the proof. However,
if one assumes the weaker condition on @ specified in Theorem 2.1, it is still
possible to establish a lower bound estimate for these averages. This lower
bound suffices to prove (a stronger version of) Theorem 2.1.

A simplified version of Proposition 15.1, which encapsulates this result,
is presented below.

15.3. Proposition. Let R be large, depending on ||Q||, and let T > R,
Assume that for every Q' € Mats(Z) with ||Q']] < R and all X € R,

(15.7) 1@ = AQ'|| > R*(log T)*T 2.
Then for all f € C°(R3) and ¢ € C°(K) we have

/ F(t10g ThgQT)E (k) dk > / ¢ dk / fdmy +O(S(FSET™)
K K X

where A and k are absolute.

Proof. The proof of this proposition is contained in the proof of Proposi-
tion 15.1, we explicate the proof for the convenience of the reader.
For every S, let Ix,s < @5 < 1xy,600 be a smooth function with

S(ps) < S*. Put fg = pgf; we let L be so that S(fs) < SES(f).
In view of Lemma 15.2, if for some R’ and some ¢’ with vol(H¢'T') < R/,

d(gql', g'T) < R (log T)" T2,



EFFECTIVE EQUIDISTRIBUTION IN RANK 2 71

then there exists Q' € Matz(Z) with ||Q’|| < R4 and X € R so that
1Q = AQ'|| < R4 (log T) M7,

Assuming R’ =< R4 is chosen so that |Q'|| < R implies ||Q’|| < R, the
above contradicts (15.7) so long as A is large enough.

Therefore, by Theorem 12.1, applied with G = SLa(R) (hence m = 2) and
R = RY for any ¢ € C°(K),
(158) || fstanrkgoD)eyat— [k [ fsdmy| <

K X
S(f)SEOR™™ < SES(fSER™.

If we choose S = R*, the above is < S(f)S(§)R™™.

Moreover, recall from (15.3) that

/fdmx :/fsdmx+0(5_*)

Altogether, thus, we conclude
| Hawgrhgol)e) di = [ Fslarkgor)ee) ak
K K
— [ear [ Famy+s(p)s©R,
X

as it was claimed. O

16. LINEAR ALGEBRA AND QUADRATIC FORMS

In this section, we will use transitivity of the action of H on level sets
{v : Qo(v) = ¢} to relate the counting problem in Theorem 2.3 to averages
considered in Proposition 15.1. As mentioned before, the argument is similar
to [DM91, EMMO9S].

Let us begin with the following

16.1. Lemma (cf. [EMM98], Lemma 3.4). Let f > 0 be a smooth function
supported on Bgs(0, R) (with R > 1) and let £ be a smooth function on S.
Let v € R3 and suppose t > 2log R and e'/2 < ||v|| < €'. Then

/ flarkv)E(ke5) dk =

o (Qo(v), e wlDé(rr) + O(S(HS(€)e™)

where {e1,es,e3} is the standard basis for R3,

1 cdy2 . cty?
Jg(e,d) := d/f( Jgé’ ,—y,d) dy that is: Qo(g—g,y,d) =c,

and the implied constants depend polynomially on R.
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Moreover, there is some C > 0 depending on R so that if either ||v|| > Cet
or |Qo(v)| > C, then both sides of the above equality equal zero without the
error term O(S(f)e™*).

Proof. Put K¢(v) = {k € K : f(askv) # 0}. Let k € KC¢(v), then

—R < x:=(atkv,e;) = e'(kv,e1) < R and

16.1
( ) —R <y :=(atkv,es) = (kv,e2) <R

The estimates in (16.1) and e'/2 < ||v|| < €' thus imply that there exists
some C” which depends polynomially on R so that if we let

Krv) ={k € K : ||k es — ol < C'e"},

then K¢(v) C Kgr(v). Note that if Kp(v) = 0 or K¢(v) = 0, we still have
K¢(v) C Kgr(v). Altogether, the range of integration is restricted to Kr(v).
We first note that for all £ € Kr(v), we have

(16.2) Gk eg) — £(pt)] << S(E)e
Similarly, for all k € Kr(v),
z:= (askv, e3) = e “(kv,e3) = e t||v|| + O(e™).

Let us now put

_ (22y)ty? . xz
2e~ o]l 2e~ o]l e~

Then Qo(X,y, e ||v|]) = Qo(v), |x — x| < e, and
| flackv) — (X y, e v]])]| < S(fes)e™.

In view of (16.2), thus, to complete the proof, we need to compute dy.
First note that

o — Qo)+y?

/f(atkv) dk:/f(atk’kyv) dk’.

Write kyv = (v1,v2,v3), then v3 = (1 + O(e™?))||v|| and in the notation
of (13.1),

sin 0 sin 0

y:<klkqﬂ),eg>:’l}1\/§+’U2COS€—’U3\/§.

Thus dk = — 27r((1+0\(/e§—i))||v||) dy on Kg(v), where we used cos 6 =1+0(e~?")

for K'k, € Kgr(v) and v3 = (1 + O(e™?))|Jv]|. Altogether, we get
[ fadko) @b = sy [ £y ol dy + O(S()e ™)

= w7 Qo). e [lo]) + O(S(He ™).

This and (16.2) complete the proof of the lemma; note that the last claim
in the lemma follows from the above argument. O
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Fix some 0 < £ < 10™* and cover S? with disjoint half open cubes {9}
of size between 2 and €2/2. For each i, let

Qia = (1 - 1] ’ (QQQ’/L‘,E)‘
Also set supg; [|gou|| = di and d; — Ce? = info, | lgQwl|, note that d; and
C' depend on HgQH

16.2. Lemma. Let c € R and 0 < ¢ < 10~%. There exist f* € COO(R3) and
& € 0(S?) satzsfymgO<f <fr<1, [ff=0+0@)[f,a
S(e) < el fore= fz ,&i where L is absolute, so that

T (Qo(v) e [olD&i (7o) < L. (€70) ez 44 (Qo(v) <

Ty @)~ o6 2p)

Proof. Let us set

B, ={v=(xy,2) : ly| < l (1 —e)d; <z<d;—Ce |Qo(v) —¢| < e}

Bf = {v=(xy.2): |y < 5. (1 —)(di = Oc*) <2< d;, |Qo(v) — ¢| < e}
Define B; ~ and B similarly, by replacing e by ¢ — C’¢? and ¢ + C’¢? for

a large C’ dependlng on d; and C, respectively. 5
Fix smooth functions fjE satisfying 15” < f < 1 , Ig+ < f;r < lg++,

and S(f) < e7F. Put fF =zfF.
Also fix smooth characteristic functions &; so that

1z, <& < 1/\/0/52(52.) and S(§) < e L
where N5s(Z;) is the d-neighborhood of Z; = {HwH fw € gl )
Suppose now that v is so that J-(Qo(v),e t||vH)§1( ) # 0, then v €
90%Y, . i.e- Moreover, using the deﬁnltlon

Ty @) ol = iy [ 47 -yee ol dy

where Qo(x,y, e t||v]]) = Qo(v), we have f; (x, —y, e~ *||v]|) # 0 for some x,y.
Since % fi <1 B> We thus conclude

(1—e)d; <eMv|| <di — Ce®* and |Qo(v) —¢| <e
These imply that e ‘v € Q; .. Therefore,

1Qi,s (e_tv)l[c—s,c-i-e](QO('U)) =1
Since J ;- (Qo(v), e tlv])€(v/]Jv]]) < 1 the lower bound follows.

We now establish the upper bound. Let e tv € Q; . and |Qo(v) — ¢| < e.
Suppose |y| < 1/2, and let x be so that Qo(x,y,e |v]]) = Qo(v). Then
(x, —y,e~"v) € BY, thus f;(x, —y,e~"||v]]) = e~*[[v]|. Hence

Ty @) ol = iy [ £ y.e ol dy
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as we claimed. O

We also record the following upper bound estimate whose proof relies on
similar (but simpler) arguments. See [EMMO98, Thm. 2.3], also [LMW23,
Lemma 3.9] and a related estimate in [KKL23, Thm. 4].

16.3. Lemma. Let 0 <n < 1. Then for all s > |logn|, we have
#{o e Z%: o] < e, |Qv)] < M} < elHF*
where the implied constants depend polynomially on M and ||Q|

Proof. As indicated above, this is proved in [EMM98, Thm. 2.3], the poly-
nomial dependence stated above is implicit in loc. cit., and is made explicit
in [LMW23, Lemma 3.9] and [KKL23, Thm. 4]. O

|j:1.

Recall that we cover S? with disjoint half open cubes {95 .} of size between
e2 and 52/2. Fort >0 and a < ¢ <b, let

M(Cv et) = #{’U S Z3 HEURS ((1 - E)etvet] ’ Q;,m |Q(’U) - C| < 5}

The following lemma relates the lattice point counting to averages considered
in Proposition 15.1; its proof relies on Lemma 16.1 and Lemma 16.2.

16.4. Lemma. With the notation as in Lemma 16.2, let f; = ff also let &;
be as in that lemma. Then for all t > |loge|, we have

et | lakgqD)& (e dk = (1+ 0()Ni(ere!),

where the implied constants depend polynomially on |al, |b|, and |go|/**.

Proof. Let t =logT. By Lemma 16.1, we have

(16.3) ?/%et/fi(atkv)&(kleg) dk =

(1+0(e )5 (Qo(v), e~ [o)éi(p) + O(S(f:)S(&)e™)
Recall from Lemma 16.2 that ;. = (1 —¢,1] - (g€} .). By that lemma
(16.4)  J(Qo(v), e~ D& () = (1 + O())1e, (€™ V) jer,c46) (Qo(v))

Using the last claim in Lemma 16.1, both sides of (16.3) are zero unless
|v]]| < €' and |Qo(v)] < 1. Therefore, using Lemma 16.3, with 1 small
enough so that S(f;)S(&;)e™ < e'e!® and summing (16.3), we conclude

?/%et/ fi(atngF)fi(k_leg) dk = %et/ Z f,'(atkv)&(k_leg) dk =
vegQZ3

(L+0(e™) Y Jr(Qo(v), e [o& (o) + O(S(f)S(E)e™)
This and (16.4) imply that

25t [ FlarkgqD)é (k™ es) dk = (1-+ O(e)) Nife. ),
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as we claimed. O

17. PROOFS OF THEOREM 2.1 AND THEOREM 2.3

In this section, we will use Proposition 15.1 and Lemma 16.4 to complete
the proof of Theorem 2.3. A similar, but simpler, argument based on Propo-
sition 15.3 and and Lemma 16.4 will also be used to complete the proof of
Theorem 2.1.

17.1. Proof of Theorem 2.3. Let A,¢ be constants as in the statement
of that theorem. Fix a large parameter T', and put ¢t = logT.

The following is our standing assumption in this section: for all Q' €
Mats(Z) with ||Q'|| < T° and all X € R,

(17.1) lo- x| = @]

17.2. Lemma. There exists an absolute constant M', so that for all o <
§/M'" and all E > 5A + 5M'o. There are at most four lines L = {L;} and
at most four planes P = {P;} so that if for some t/5 < { <t any line L or
plane P is (o, E,{)-exceptional then L € L and P € P.

Proof. We prove this for lines, the proof for planes is similar. Let t/5 < £ < t.
Then egf_g e and e < e~ Et/5 Recall from Definition 13.1 that a line
L is (o, E,{)-exceptional if L N Z3 is spanned by v where

of| < e and |Q(v)| < e P!

Hence any such line is (g, F/5,t)-exceptional. .
Applying Lemma 13.4 with =" = e, n = e—2Et/5 and Q, now implies
that if there are at least five (o, E/5, t)-exceptional lines, then

1Q = AQ'|| < pA~M'D = e(—eEH5M e)t/5

for some Q' € Matg(Z) with [|Q’]] < "ot where M’ is absolute. Assuming
E and p are chosen as specified in the statement for this M’, we derive a
contradiction to (17.1). O

In what follows we will apply Proposition 15.1 with £ = max(AM,5A+5)
and p = §. Then Lemma 17.2 implies that there are most four lines {L;}
and at most four planes {P;} so that for any t/5 < ¢ <, any (01/4E, E,{)-
exceptional line or plane belongs to {L;} or {P;}, respectively. Put £ = UL;
and P = UP;.

The following basic lattice point count will be used in the argument

(17.2) #{v e 7% ||v]| < et} < Ol

where C] is absolute.
Let ¢ = e~ * for some & which will be optimized later. For all t/b<e<t
and a < ¢ < b, we put

(e, ez) ={ve 73 v e ((1— €)€£,€£] . Qg’e, |Q(v) — | < e},
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and Nj(c,et) = #Y;(c, e’). Similarly, let
T(c,e') ={veZ®:ve ((1-e)e] $2|Qw) —¢ <el,
and N(c,e’) = #Y(c, eb).
By Lemma 16.4, there exist f; . € C2°(R3) and & € C2°(S?) so that

(17.3) efz./\/'i(c, eé) =1+ O(a))?}%/fg,i’c(agk‘gQF)fi(k1e3) dk.

In view of (17.1), applying Proposition 15.1 with £ and p as above,

/ FraclagkgoD)e (k" es) dk = /K &k ey) dk /R JuiedLeb
+R2,z’,c+O(S(fe,i,c)8(fi)€792e)

where
Ry = [ (ackgoD)e(r) dk
with
FPlackgqD) = > flarkgqw)
wEZ3N(LUP)

and we used fX fgmc dmyx = fR3 foi,cdLeb.
We note that Proposition 15.1 indeed gives a more precise information
where the domain of integration in the definition of R}, . is restricted to

C= {k‘ e K: fés,zc(afngF) > teZ} .

However, the integral over the complement of C is O(S(fgvivc)S(ﬁi)e_Qﬂ), see
(15.5), and it is more convenient for us here to use the above formulation.
Using the definitions of f;; . and &;, see Lemma 16.2, we have

Z/ &i(kles) dk/ fricdLeb=C" %+ O(?),
i VK R3

where the implied constant is O((1 + |c|*)), see also [EMMO98, Lemma 3.8].

Moreover, arguing as in the proof of Lemma 16.4, but only summing over
v = gou for w € Z3 N (L UP), we conclude that

" Rpje=(14+0(e)) - (#(Yile,e) N (LUP)).
Summing this over all i and using the fact that Qgﬁ are disjoint,
(17.4) e Ry =€ Ry = (14 0()(#(Y(c,e’) N (LUP))

(2

We will, as we may, choose & in the definition ¢ = e~** small enough

compared to g2, then using (17.3) and the above discussion,
Nc,e)=C-e® e + R}, - ' +O(%e");
we also used t/5 < ¢ < t.
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Applying this with ¢; = a+ je forall 1 < j < Lb_T“J and all t/5 < ¢ <,

(175) #{veZ?: (1—e)e' <|v| <ef,a<Qv) <b} =
¢ e-(b—a)-e"+ R e+ 0(%eh),
where the implied constant is O((1 + [a[ + [b])*) and R} = 3_; R@,cj-
Apply (17.5) with £ = (1 — je)t for 0 < j < [%1 Summing the resulting
estimate over 0 < j < [A] and using (17.2) for £ < t/4, we obtain a bound

as stated in Theorem 2.3, but with e’ - R’ instead of Ry in the theorem,
where R’ = >, Rj,. Note however that in view of (17.4), we have

et R=014+0@c) - H{veZ2n(LUP):|v| <ea< Q) <b})

This establishes the theorem except for the definition of Cg, and the es-
timates (2.1) and (2.2). See the remark following [EMMO98, Lemma 3.8]
for the definition of Cg. The proof of (2.1) and (2.2) is the content of the
following lemma, which completes the proof. O

17.3. Lemma. Suppose L and P be rational lines and planes, respectively,
and let Span{v} = L NZ3 and Span{w,w'} = PNZ3. Then
(1) If |Q(v)| > (=240 then
#{uecZNL: |ul <e, a<Qu) <b} < 1700
(2) If |Q*(w A w')| > el=2+40)!
#{ueZ>NP:|u| <eha<Qu) <b} <1700

Proof. We will use Lemma 13.5 and an argument based on Lemma 16.4
to prove this. Though, a more hands-on proof is certainly possible. Par-
ticularly, for part (1), we have Q(u) = n?Q(v) for all u € Z> N L, which
immediately implies the claim in part (1).

We will prove part (2), proof of part (1) (using the following argument)
is similar. First note that applying Lemma 16.3 with n = /5,
(17.6) #{ueZ*NP: |ul| < e~ D! a < Qu) < b} <

cHH =Dt o (1-0(0))t

In view of (17.6), we will consider (1—%)25 < ¢ <'t. Let us write w = wAw’

and recall that |Q*(w)| > e(=2+40)! Then
1Q* ()] > 7228 forall (1-8)t<e<t.

Therefore, by Lemma 13.5 applied with ¢, 0 = 1 —6, and 6 = 6/10, we have

(17.7) / (ack) @) dk < -2/ « =51,

Let ¢ = e * for 4 < 6/10. Arguing as in the above prove to relate the
term R’ to the number of points in £ U P, we see that

#ueZ?nNP:(1-e)e <|ul| <ea<Qu) <b}
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s <), i fﬁ’c(atngF) dk, where

ffi’c(agngF) = Z flarkggu).
weZ3NP

Moreover, by a variant of Schmidt’s Lemma, we have
I c(akgal) < ||(agk) ||~
This together with (17.7), thus imply

Summing this over all £ = ¢(1 — je) for 0 < j %j, and using £ < 6/10

and (17.6), the claim in part (2) follows. O

#HueZPNP:(L-e)e < Jul < e'a < Qu) S b} < e ¥,
<1

17.4. Proof of Theorem 2.1. We now use a simplified version of the above
argument to prove the following

17.5. Theorem. Let Q be an indefinite ternary quadratic form with det QQ =
1. For all R large enough, depending on ||Q||, and all T > R at least one
of the following holds.

(1) Let a < b, then we have
#{veZ?: v <T,a<Qv) <b} >
Co(b—a)T + (1 + |a| + [p)NTR™".
(2) There exists Q' € Mats(R) with |Q'|| < R so that
|Q = AQ'|| < R*(log T)**T~%  where A = (det Q') ~"/%.

The constants N, Ag, and kg are absolute, and

do
Co = —_—
© /LHVQH

where L = {v € R3 : ||v]| < 1,Q(v) =0} and do is the area element on L.

Proof. As noted above, the proof follows steps similar to those in the proof
of Theorem 2.3 in §17.1, but replaces the application of Proposition 15.1
with Proposition 15.3. We will use the notation used in §17.1.

We will, as we may, assume throughout the argument that for all Q' €
Mats(R) with ||Q']| < R and all A € R

(17.8) 1Q - 2\Q'|| < R (log T) T2

for some A, which will be determined later in the proof. Otherwise, part (2)
in the theorem holds and the proof is complete.
Recall again the following basic lattice point count

(17.9) #{v e Z3 : |v]| < et} < e,

where C is absolute.
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Let ¢ = e * for some & which will be optimized later. For all t/5 < ¢ <t
and a < ¢ < b, we put

Ti(c,e) ={veZ3:ve((1-e)e] -Q e Q) — | < e},
and N;(c,e) = #Y;(c, ef). Similarly, let
T(c,e) ={veZ®:ve((1-e)ee] -S% QW) — ¢ < e},
and N(c,e’) = #Y(c, eb).
By Lemma 16.4, there exist f; . € C2°(R3) and & € C2°(S?) so that

(17.10) e Ni(c,e’) = (1+0(e /fe,l,c arkgQl)&i(k™ e3) dk.

In view of (17.8), and assuming A is large enough, Proposition 15.3 implies

/fézc aéngF)gz dk‘ >/ 51 3) dk/ fé,i,c dLeb
R3

O(S(fe,ie)S(&)e™™)

where we used fX fg,m dmx = fR3 foi.cdLeb.
Using the definitions of fy; . and &;, see Lemma 16.2, we have

Z/ &i(k"es) dk/ fricdLeb = C"- &%+ O(e?),
i K R3

where the implied constant is O((1 + |c|*)), see also [EMMO98, Lemma 3.8].
We will, as we may, choose A in the definition ¢ = e~** small enough
compared to s, then using (17.3) and the above discussion,

N(c,e') > C- &% et + O(?eb);

we also used t/5 < ¢ < t.
Applying this with ¢; = a + je forall 1 < j < [=%] and all t/5 < ¢ < ¢,

(17.11) #{veZ¥: (1 —e)e’ < ||| <e',a < Q(v) < b} >
% e (b—a)-e' 4+ 0(%eh),
where the implied constant is O((1 + |a| + |b])*).
Apply (17.11) with £ = (1 — je)t for 0 < j < [2£]. Summing the resulting
estimate over 0 < j < [A] and using (17.9) for £ < t/4, we obtain a bound

as stated in part (1) of the theorem. For the definition of Cg, see the remark
following [EMM98, Lemma 3.8]. O

Proof of Theorem 2.1. This is a direct consequence of of Theorem 17.5. In-
deed, let k3 = k9/2N and let A4 = k9. Now Theorem 17.5 applied with
[a,b] = [c — R™"%,c+ R3] for any |c| < R" implies Theorem 2.1. O

Proof of Corollary 2.2. This is a direct consequence of Theorem 2.1. For
more details, see [LM14, §12.3]. O
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Appendices
APPENDIX A. UNIPOTENT TRAJECTORIES AND PARABOLIC SUBGROUPS

In this section G C SLy denotes a semisimple Q-subgroup. We let G =
G(R) and § = Lie(G). Also let §z := § Nsly(Z), then § has a natural Q-
structure, and gz is a GNSLy(Z)-stable lattice in . If there is no confusion,
we will simply write gv for Ad(g)v; similarly for the natural actions on A‘g.

Fix a Euclidean norm | - || on Matx(R). This induces a norm on sly(R)
and on SLy(R). We will also write || - || for the induced norms on exterior
products of slx(R). For g € SLy(R) we let |g| = max{||g]|, [lg~|}-

Let T' € G NSLy(Z) be an arithmetic lattice in G; let X = G/T, and
Xy={gf € X: mi >} forall n > 0.
n =19 oA llgvll = n}  for all n

These are compact subsets of X, and any compact subset of X is contained
in Xn for some 1 > 0.

If L ¢ G is a connected Q-subgroup, we let vz be a primitive inte-
gral vector on the line AY™ X Lie(L) C AY™LG where L = L(R). Recall
from [LMMS19] the definition of the height of L

(A1) ht(L) = [lvz.

We also recall the following setting from [LMMS19]. This notation will
only be used in this section. Let U C G be a unipotent subgroup and let u =
Lie(U). We fix a basis By of u consisting of unit vectors and set By(0,d) =
{>_.en, @s% ¢ |az| < 6} for § > 0 as well as By(e) = exp(Bu(0,1)).

Let A : u — u be an R-diagonalizable expanding linear map (all eigenval-
ues have absolute value > 1). For any k& € Z and any u = exp(z) € U, we
set Ar(u) = exp(M\¥(2)). We note that Ay o Ay = Apig. We shall assume that
there exists kg € N such that for every integer k > ko,

(A2)  exp iy (Bal0,1))) exp (A1 (Ba(0,1))) € exp (Ae(Bu(0,1))-

Since the exponential map exp : u — U pushes the Lebesgue measure on u
to a Haar measure, denoted by | - |, on U, for any measurable B C U

(A.3) IAk(B)| = | det(M\)|¥|B|  for all k € Z.

To avoid cumbersome statements, we suppose throughout that any constant

that is allowed to depend on ht(G) is also (implicitly) allowed to depend on

— A (By(e
AL A w = | det(A)|, and k.

A.1. Theorem. There exist Ag depending on N and Ayg depending on N

and polynomially on ht(G) so that for any g € G, k> 1, and any 0 < e <
1/2 at least one of the following holds.

(1)
{u € By(e) : M\p(u)gl & X} < A1pe/ 49| By (e)].
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(2) There is a Q-parabolic subgroup P C G with ht(P) < Ajg|g|12e/ 49 s0
that all the following are satisfied

(A.da) INe(w)gvpll < Apget/40 for all u € By(e),
(A.4b) Ik (w)gv R, ()|l < Aroe™/? for allu € By/(e),
(A.4c) Ak (u)gvell < Aqget/Ao for all u € By (e),

where Q = Q(R) for Q = [P, P].

This result strengthens [LMMS19, Thm. 6.3]. While the original theorem
only established the existence of a unipotent subgroup, we now demonstrate
that this subgroup may, in fact, be taken to be the unipotent radical of a
Q-parabolic subgroup. Indeed we will prove Theorem A.1, using [LMMS19,
Thm. 5.3], which was also used in the proof of [LMMS19, Thm. 6.3], and
the following theorem, which is of independent interest.

For every subspace V C g, let V- denote the orthogonal complement of
V' with respect to the Killing form k3 on g.

A.2. Theorem. There are positive constants 6,C, depending on G, such
that if g € G is such that there exists a vector v € gz with ||gv|| < 6, then
(1) {w € gz : ||gw|| < 6Y/C} generates a nilpotent subalgebra, v say.

(2) o+ N Ad(g)§z is spanned by vectors of size < Co~1/C.

(3) vt generates a proper parabolic subalgebra of g.

Let us first assume Theorem A.2 and complete the proof of Theorem A.1.

Proof of Theorem A.1. Let E and D be constants as in [LMMS19, Thm. 5.3].
In particular, D depends only on N, and E on N and ht(é). We will show
that Theorem A.1 holds with appropriately chosen A9 > E and Ag > D.
Assume o
[{u € Byl(e) : \e(u)gl & X.}| > E<'/P|By(e)).
Then [LMMS19, Thm. 5.2] implies that there is a rational subspace W C g,
say of dimension ¢, so that
(A.5) sup || Ap(u)gv| = € < €%,
u€By(e)

where vy denotes the primitive vector corresponding to W.

For later use, let us record that Minkowski’s theorem and the above imply
that for every u € By(e), there exists a nilpotent vector z, € gz with

(A.6) Ak (w)gzal| < €Y/ 48,

Let the partial flag A, C --- C Ay, and the function 7 be given as
in [LMMS19, Thm. 5.3]. In particular, rk(As,) = ¢; and n(4p), ..., n(lay1) €
(0,1], with ¢p = 0 and ¢4,1 = dim g, is defined by

n(lo) = n(lg41) =1
n(l;) = max || Ag(u)Ay,|l for 1 < <d;
u€By (e)
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as shown in [LMMS19], the function 7n(e) extends to a function 7 : [0, dim g] —
(0,1] so that —logn : [0,dim §] — R™ is concave and linear on each interval
[lo, 1], - -, [Ca, Lata]-

For 0 <7 <1, put

Exc, = {u € By(e) : ai(Me(u)g) ™ < 7'n(i)},

where «;’s are also as in loc. cit. Then by [LMMS19, Thm. 5.3], we have
|Exc,| < E7YP|By(e)|, where D depends only on dim §.

Moreover, by the last sentence in [LMMS19, Thm. 5.3], we can assume
that Ay, C--- C Ay, is so that

n(k(A)) < max ||(Ar(u)A)],
u€By (e)

where A = W N gz.

We now argue as in the proof of [LMMS19, Lemma 6.2]. Since —logn is
concave, we have n(1) < é/¢. Let k = (4/dimg)~!, and let £/ < p < 1 be
a parameter which will be optimized later. Let 1 < sy < d be the largest

integer so that % < p. The choice of k and n(dimg) = 1 imply that

there is some m > 0 so that % < plfd"‘ for all 0 < d <m and
n(so+m-+1) 1—(m+1

(A7) W > pl=(m+1)s,

Put s = 59 + m, and note that s = ¢; for some j. Let V be the subspace
spanned by Ag, then

IAe(w)gvv|l < n(s) < p' =™ for all u € By(e)

Moreover, V is a nilpotent subalgebra of g, and we can choose a basis
{v1,...,vs} for VN gz so that

(A8) gl < A < dghom,

where A depends only on dim g, see the proof of [LMMS19, Lemma 6.2] for
all these statements.
Put 7 = p*/(2dm8)  Then for all u € By(e) \ Exc, and any w € gz \ V,

T (s + 1) < [ Ak(w)g(As + Zuw))|
< ([ (u)gwl[ [ Ak (w)gAs|l < [[Ak(u)gwlin(s).
This and (A.7) imply that
Ak (w)guwl| = 75F1 pt=tmtn
> pl—(m-l-%)n > Apt=me,
In view of (A.8) and (A.9), for every u € By(e) \ Exc,, the space
Ad(Ak(u)g)(gz N V)
is spanned by {w € §z : || \e(w)gw|| < Ap}.

(A.9)
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Apply Theorem A.2 with Ap'~™% and A (u)gV. Then part (2) of that

theorem implies that (Ad()\k.(u) g)(gz N V))L generates a proper parabolic
subalgebra, Ad(\;(u)g)Lie(P) say. Moreover, if we choose p to be a small
enough power of €, then (A.6) and part (2) in Theorem A.2 imply that

IXe(u)gvp| < p*&V/dm8 « &*  for all u € By(e) \ Exc;,.

Since u +— A (u)gvp is a polynomial map and |Exc,| < 7/P|By(e)|, we
conclude that

| Ar(uw)gvp|| < &* for all u € By (e).

This finishes the proof of (A.4a).

To establish the claims in (A.4b) and (A.4c), we use (A.4a) and follow
the argument in the proof of [LMMS19, Lemma 4.2]. Specifically, we show
that for all u € By(e)\ Excr, Ad(Ag(u)g)Lie(Q) and Ad(Ag(u)g)Lie(Ry(P))
are spanned by vectors of size < p~*. Combined with (A.6), this completes
the proof, provided that p is chosen to be a sufficiently small power of €. [

A.3. Proof of Theorem A.2. We continue to use the above notation. The
proof of Theorem A.2, relies on the following two lemmas.

A.4. Lemma. Let v C g be a nilpotent Lie subalgebra. Then there exists a
parabolic subgroup P such that

v C Lie(R,(P)) C Lie(P) C vt.

Proof. Let vy = v, and for i > 1, define v; to be the niladical of Nj(v;_1).
Then there exists some m so that v,,, = Lie(R,(P)) for a parabolic subgroup
P of G. Since v; C v;41, we have

v C Lie(Ry,(P)).

This and the definition of the Killing form, k3(v,w) = tr(adv o adw), now
imply that Lie(P) C v. The proof is complete. O

A.5. Lemma. There is a positive constant C', depending on dim g, so that
for every A > 2 and 6§ < A= the following holds. If there is a vector v € gz
with ||gv|| < 0, then {w € gz : |[gw| < A} generates a proper Lie subalgebra
of .

Proof. Let [ denote the Lie algebra spanned by {w € gz : ||gw| < A}, and
let gLg~! be the corresponding subgroup. Then [ is spanned by vectors of

size < A*, where the implied constants depend only on dimg. Moreover
gv € [. Thus if § is small enough, we have

(A.10) lgvi| < A*6 < /2,
which in particular implies that [ # g. (]

Proof of Theorem A.2. Let 41 = §* be a small power of § which will be
explicated later. Let us also put A := Ad(g)gz. Then so long as § is small
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enough, {w € A : |Jw|| < 01} generate over Z a lattice in a nilpotent Lie
subalgebra v C g. This establishes part (1) in the theorem.

We now prove part (2). That is: v~ N A is spanned by elements of size
< 07 ! Consider the vectors vi,vs,...,v, that attain the ith successive
minima of A, respectively. Let m = dimv. Then vi,...,v, € v, and
furthermore, ||v;|| > ¢; holds for all i > m.

Let v, ..., v; be the dual basis with respect to the Killing form k. Then
(vi,...,v;) C A/M where M < 1. Since kg(v;,v;) = 6;j, we deduce that
ozl > flosl| . Moreover, TT les]| = T lof |, therefore, [jof | = ffo;]| 1.

The orthogonal complement v is spanned by the vectors (S T
and therefore, increasing M if necessary, it is spanned by {w € A : Jw|| <
M||vms1]|71}. In other words, it is spanned by vectors in A of size < 6, '

We now prove part (3) in the theorem. By applying Lemma A.5, see
in particular (A.10), if 0; is a small enough power of 4, the Lie algebra
generated by v’ cannot be the entire algebra. Furthermore, by Lemma A .4,
we know it must contain a parabolic subalgebra which contains v. Therefore,
(b}) is indeed a nontrivial parabolic subalgebra containing v. g

A.6. An S-arithmetic version of Theorem A.1. We conclude this ap-
pendix with noting that Theorem A.1 can easily be adapted to the S-
arithmetic setting as in [LMMS19], the only difference being that now Ajg
can depend also on #S5 and polynomially on the primes in S. For the record
we state this explicitly; the straightforward modification of the proofs above
to this more general context is left to the reader.

In addition to the semisimple Q-subgroup. G C SLy, we now also choose
a finite set of places S of Q containing the infinite place. Let G = G(Qg) and
§ = Lie(G). Also let gz := § Nsly(Zs). Then § has a natural Q-structure,
and gz, is a G N SLy(Zg)-stable lattice in §. If there is no confusion, we
will simply write gv for Ad(g)v; similarly for the natural actions on A‘g.

Let || - |lo denote the Euclidean norm on Maty(R), and for every finite
place v € S, let |- ||, be a maximum norm with respect to the standard basis
for Matn(Q,) induced by the standard absolute value on Q,. Let || - ||s or
simply || - || denote max,egs || - ||, This induces a norm on sly(Qg) and on
SLy(Qs). We will also write ||-|| for the induced norms on exterior products
of sly(R). For g € SLy(Qs) we let |g| = max{||g]l, g~ ]|}-

Let T' € G NSLy(Zs) be an arithmetic lattice in G; let X = G/T, and

X, ={gl' e X : oyé%leig?(Z) llgv|| > n} for all n > 0.

These are compact subsets of X, and any compact subset of X is contained
in )~(,7 for some 1 > 0.

As it was done in [LMMS19], let U = [[,.¢U» C G be a unipotent
subgroup and let u = Lie(U). We fix a basis By of u consisting of unit
vectors and set By(0,0) = {>_,cp, az2 : |as|s < 6} for 6 > 0 as well as

By(e) = exp(By(0,1)).



EFFECTIVE EQUIDISTRIBUTION IN RANK 2 87

Let A : u — u be a Qg-diagonalizable expanding linear map satisfy-
ing (A.2) and (A.3).

The proof of Theorem A.1 generalizes mutatis mutandis to yield the fol-
lowing result.

A.7. Theorem. There exist A1y depending on N, and Ayy depending on N,
#S and polynomialy on ht(G) and the primes in S so that for any g € G,
k>1, and any 0 < e < 1/2 at least one of the following holds.
(1) o
[{u € By(e) : Ap(u)gl & X.}| < Appet/Ann,
(2) There is a Q-parabolic subgroup P C G with ht(P) < Ajp|g|41el/41 50
that all the following are satisfied

(A.11a) [ Ak(w)gvp| < Ajpet/4n for all u € By (e),

(A.11Db) I\ () gV R, ()|l < Aret/4n for all u € By(e),

(A.11c) Ae(u)gvgl < Apgel/An for all uw € By(e),
where Q = Q(Qg) for Q =[P, P].

APPENDIX B. AVOIDANCE PRINCIPLES: THE PROOFS

This section contains proofs of results in §4. The proofs are by now
standard, and we include them primarily for the convenience of the reader.

B.1. Proof of Proposition 4.4. In this section, we prove Proposition 4.4.
The proof, which is essentially that of [LMW22, Prop. 4.6] mutatis mutandis,
is based on the study of a certain Margulis function, see (B.5). We recall
the details to explicate the necessary changes.

For every d > 0, define the probability measure o4 on H by

1 2
/go(h) dog(h) = 3/ o(aquy ) dr.
-1
Let us first remark on our choice of the interval [—1,2]: We will define a
function fy in (B.5) below. In Lemmas 13.5-B.5, certain estimates for

/ fr(he) d(og, - 0a,)(h)

will be obtained, then in Lemma B.6, we will convert these estimates to
similar estimates for

1
/ fy (ag, 4 ta, ur+) dr.
0

The argument in Lemma B.6 is based on commutation relations between
aq and wu,; similar arguments have been used several times throughout the
paper. Since the function fy can have a rather large Lipschitz constant, we
will not appeal to continuity properties of fy in Lemma B.6. Instead, we
will use the fact that [0,1] C [-1,2] + r for any |r| < 1/2.



88 E. LINDENSTRAUSS, A. MOHAMMADI, Z. WANG, AND L. YANG

Recall that dimt = 2m + 1, and that v is Ad(H)-irreducible. Moreover,
recall that for every highest weight vector w € t, we have

(B.1) Ad(a)w = e™w.
We begin with the following linear algebra lemma.

B.2. Lemma (cf. Lemma A.1, [LMW22]). Let 0 < a < 1/(2m +1). For all
0 # w € ¢, we have

/H Ad(h)w|~*dog(h) < Ce™ ™ ||w|
where C' is an absolute constant.

Sketch of the proof. Standard representation theory of SLy implies that for
every ||w|| = 1, we have

Ad(asuy)w = (e™py(r),...)

where p,(r) = 3. ¢ir' is a polynomial of degree 2m with max{|c;|} > 1.
Thus if we put

I(e) ={re[-1,2]: /2 < pu(r) < e},

then |I(¢)| < €'/®™ where the implied constant is absolute, see e.g. [KM98,
Prop. 3.2].

Moreover, || Ad(asu,)w|| > e™e/2, for every r € I(g). The lemma follows
if we dyadically decompose the domain and summing the resulting geometric

. . . . 1 1
series, which converges independently of « since a < 577 < 5. O

We will also use the following non-divergence result & la Eskin, Margulis,
and Mozes [EMMO98].

B.3. Proposition (cf. [EMO04]). There exist A13, k19 depending only on the
dimension, and a function w : X — [2,00), so that both of the following hold
for allx € X and all d > B,

(B.2a) inj(z) > w(z)~Ms
(B.2b) / w(ha) doP(h) < e 108y () + Bet1sd

where Uc(f) denotes the {-fold convolution and B > 1 depends only of X.

Proof. A function with these properties is constructed in [EMO04]. More
explicitly, see [SS22, Prop. 26| for (B.2a) and [SS22, Thm. 16] for (B.2b). O

Let Y = Hy be a periodic orbit. For every x € X \ Y, define
Iy(z)={wer:0<|w| < Az w(z) 2, exp(w)z € Y}.
Increasing Ajs if necessary, we have
(B.3) #Iy (z) < Evol(Y)
for a constant E depending only on X, see [SS22, Prop. 25] also [LM23, §9].
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Again increasing Ai3 if necessary, for every h = aqu, with d > 0, all
€ [—1,2], and for all w € g and all x € X, we have
(B.4a) IAd(R)w]| < Arze™ 52 wl],
(B.4Db) A3~ le 342 (2) < w(h™'z) < Ayge?3Y%0(2).

Let a = min{1/(2m + 1),1/A;3}, furthermore, we will replace k19 with a
smaller constant if necessary and assume that k19 < am/2.
Define

(B.5) Friz) = {Zwely(:c) [w][~* Iy(z) #0 '

w(x) otherwise

B.4. Lemma. Let C be as in Proposition B.3, and let d > B,,. Then
/f(haf) dog(h) < Ce ™ fy(z) + Ayze?Evol(Y) - (e7"109y(z) + Be13d)

where B is as in Proposition B.3.

Proof. Since Y is fixed throughout the argument, we drop it from the index
in the notation, e.g., we will denote fy by f etc.
Let d > 0 and let h = aqu, for some r € [—1,2]. Let z € X. First, let us
assume that there exists some w € I(hz) with
w] < Aj3~2e~ N34y (ha) =: Y.

This in particular implies that both I(hz) and I(x) are non-empty. Hence,

fhay= Y Jul™= > Jwl™+ > ]~

wel(hx) |w]| <Y [[w||>Y
(B.6) < D IAd(Rw| T + ArgPet o (1 4 #1(ha)) - w(ha)®
wel(x)
< Z Il Ad(h)w|~ a—i—Alge( + #I(ha)) - w(ha),
wel(x)

in the last inequality, we used 0 < o < min{1/2,1/A;3} and w(-) > 1.
Note also that if ||w|| > T for all w € I(hz) (which in view of the choice
of Ays includes the case I(x) = () or if I(hx) = (), then

(B.7) f(hz) < Aize? (1 + #I(ha)) - w(hz).
Averaging (B.6) and (B.7) over [—1,2] and using (B.3), we conclude that

/f (hx)dog(h /||hw|] “dog(h) +
wel(x

Ayze?Evol(Y) - / w(hz) dog(h);

we replace the summation on the right by 0 if I(z) = 0.
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Thus by Lemma B.2 and Proposition B.3, we conclude that

] $0)do) < Cemot S i

wel(x)
vt Bvol(Y) - (e~ 9%h() + Bead)

again, the summation on the right by 0 if I(z) = (). Thus
/f(hx) dog(h) < Ce ™Y f(z) + Aze?Evol(Y) - (e7"10%(z) + BeA139),

The proof is complete. O
B.5. Lemma. Let C, A3, and k19 be as in Proposition B.3, and let
0= [10(A13+ 1)/k10]-

There is an absolute constant Ty so that the following holds. Let T > Ty
and define
logT
di = —
o2

log(4C)
K10 }

foralli =1,... k wherek is the largest integer so that dy, > maX{Bw,
— note that %log logT <k <2loglogT. Then

/fy(hx) dac(l? * ook a((ii)(h) <
(log T)PoT~™2 f (z) 4 B'vol(Y)(T~*"w(z) + 1)
where D{, and k11 depend on dimension and B’ depends on X.

Proof. Again since Y is fixed throughout the argument, we drop it from the
index in the notation, e.g., we will denote fy by f etc.

Let us make some observations before starting the proof. Since d; >
% for all ¢, and k19 < am/2, the following holds

(BS) Cefamdi S e*/‘ﬁlodi S 1/4
Moreover, we have the following two estimates:
k . .
. >0l x 27 log > “logd = d;
B.9 5 d;j >501 x 27 ogT > (24)~ " - log T =d
j=it1

By Lemma B.4, for all d > B,,, we have

(B.10) /f(hx) dog(h) <
Ce ™™ f(z) + A1z Ee®vol(Y) - (e7"19%(x) + BeA13).
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Let A = A;3EB. Iterating (B.10), /-times, we conclude that

/f hix)dol) (h) - ol (hy) <

Cze—amédk /f(hk—l .. h1$) do-c(l?(hl) - d()'c(li)_1 (hk_1) +

A3 Ee®vol(Y)(E), 4+ 2BeA13%)

we used Ce oMk < e=F10de < 1 see (B.8), to bound the /-terms geometric
sum by 2BeA13%  and

~

-1
L= emodk(éj)/w(hkhk_l ) dgc(l?(hl) . ’dac(li)_l(hk— )dac(l )(hk)
J

[1]

Il
=)

again we used Ce—omdi < e*’“odk, in the definition of Zj.
Note also that in view of the definition of A, we have

A3 Ee®vol(Y)(Z), 4 2Be13%) < Avol(Y)el+A3)dk(Z; 4 2),

therefore, we conclude

(B.11) /f i) dol) (h) - ol () <

(Ol e—amtdj, /f(hkl i) dal(j)(hﬁ doc(lf)_ (hr—1) +
Avol(Y)e(ItA1)dk (=) 4 9).

We will apply Proposition B.3, to bound Zj, from above. Let us begin by
applying Proposition B.3, {-times with dj, then

By < e otk /W(hkl --h17) dagi)(hﬂ : ~d0[(1i)71(hk71) + AeA1sdk

where we used e 108k < 1/4 and A = A13EB > 2B to estimate the (-terms
geometric sum.

The goal now is to inductively apply Proposition B.3, £ times with d;
for all 1 < ¢ < k — 1, in order to simplify the above estimate. Applying
Proposition B.3, ¢-times with di_1, we obtain from the above that

= < o r100(dr+di_1) /W(hk_g --hyz) do'g(l?(hl) . .do-c(lil2 (hi—a) +

efmo@dk . ()\eAISdk—l) + AeAISdk'
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Put ©; = 0, and for every 0 < i < k, let ©; = Z
above inequalities inductively, we conclude

i1 45 Continuing the

k—1
Zp < 70000 () 4 A(e Mk 4 Y gm0l Auad

B =1
k—1

< e*mo@@ow(m) + )\(eABdk + Ze*di) < e*fﬂoeeow(w) + )\(eAlsdk + M)
=1

where we used k10(0; > “10€ «(50;) > (A13+2)d;, see (B.9) and the definition
of £, in the second to last inequality and wrote Y e~% < M in the last
inequality.

Iterating (B.11) and using the above analysis, we conclude

/f hix)dol) (h) - ol (i) <

k
Otk e=om®o £ (1) 4+ Avol(Y') Z e~ 10601 o(A1s+1)d; (2i+2)
i=1

where for every 1 < i < k, we have

~

-1

[1]
I

.

e—modi(ﬁ—j)/w(hihil . 'hll’) dO‘C(l?(hl) e dUglfll(hifl) dffg)(hz)

Il
=)

J
Arguing as above, we have
=, < e—mof(Z:j 1 dj) ( )+)\( A1zd; —i—M)

Recall that ©; = Zk-”_- d;; therefore, we conclude that

Jj=t+1
/ Flhi -+ haz) doly) (h) -+ doly) (hy) <
kaze—osz@of(m) + e—mof(ao)\v()l(y')w(m) Z;ﬂ:1 e(A13+1)d¢_'_
k
(M 4+ 2)X*vol(Y) Z o—1100; ,(2A13+1)d;
=1

Recall again from (B.9) and the definition of ¢ that xk100©; > (2413 + 2)d;.
Hence, the last term above is < B’vol(Y') for an absolute constant B’ > \.
Similarly, sine £ d; = log T—O(1) second to last term is < B'vol(Y)T~"11.

Moreover, £y d; =logT — O(1) where the implied constant is absolute,
and k < 2loglogT. Hence,

Cmce—mae(zf:l di) < (log T)1+* log Crp—ma

so long as T is large enough. The proof of the lemma is complete. O
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B.6. Lemma. Let the notation be as in Lemma B.5, in particular for every
T > Ty define dy, . ..,dy as in that lemma. Put d(T) = £ d;, then

1
/ fy (ageryurr) dr < 3(log T)PoT =™ fy () + Bvol(Y) (T"w(z) + 1)
0

where B > 1 depends on X.

Proof. Again, since Y is fixed throughout the argument, we drop it from the
index in the notation, e.g., we will denote fy by f etc.
By Lemma B.5, we have

1 2 2
<B'12) % / T / f(adku""k,l Crr Qg Ury g ‘ad1ur1,1x) drl,l e drk,f <
-1 -1
(log T)PoT =™ f(z) + B'vol(Y) (T w(x) + 1)
Now, for every (rg,...,r12,71.1) € [—1,2]%, we have

Ady Ury o * " Ay Ury, 1 * 0" Ady Uy = Ad(T) Up(7#) 411 1

where 7 = (14 ¢,...,7r1,2) and |¢(7)| < 0.2.
In view of (B.12), there is # = (rg4,...,712) € [-1,2]%! so that

1 [2+e(?)
(B.13) / flageryurx) dr <
3 J1te)

(log T)PoT =™ f () + B'vol(Y) (T w(z) + 1).
Since |¢(7)| < 0.2, we have [0, 1] C [—1, 2]+ (7). Therefore, (B.13) and the
fact that f > 0 imply that
1 [t :
3 / flagiryurx) dz < (log TYPoT =™ f(z) + B'vol(Y)(T""'w(x) + 1).
0
The lemma follows with B = 3B’. O

Proof of Proposition 4.4. Let R > 1 be a parameter and assume that vol(Y) <
R. Recall that for a periodic orbit Y, we put

o) — Pwely @) W™ Iy (z) # 0
fria) = {w(x)I otherwise -
Let ¢(x0) = max{d(zo,Y) %, w(xo)}. Then

(B.14) Y(wo) < fy,a(xo) < vol(Y ) (o),

where the implied constant depends only on X, see (B.3).
With the notation of Lemma B.5, let T' > T and d; = IZ%Z for1 <i<k.
Then

(B.15) logT —b<d(T) <logT

where b is absolute.
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Let Ty > Ty be so that (log T)PoT~9M is decreasing on [T1, oc). Let
(B.16) Ty = inf{T > max(Ty,w(zo)"/"1) : (log T)P0T ™ < d(x0,Y)}.
In other words, for all T' > T, we have T~ "1w(xp) < 1 and

(log T)PoT =™ d(z0,Y)™® < 1.
Furthermore, in view of (B.14) and since vol(Y') < R, for all T' > T,
(log T)Po 7™ fy (w) < R(log T) 0T~ ™ (o)

In particular, using (B.14) again, we have (log T)PoT~1/3 fy-(z9) < R.
Altogether, we conclude that for all T' > T5, we have

(B.17) 3log(T)P0T =™ fy (20) + Bvol(Y)T "1 (w(xo) + 1) < BoR

where By is absolute.
Let T' > T5, and let d(T') = £ d; where d;’s are as above. Using (B.17)
and Lemma B.6,

1
(B.18) / fy(ad(T)ura:) dr S BQR.
0
Let D > 10. Then by (B.18) we have
[{r €[0,1] : fy(aguyurzo) > BoRP}| < BoR/ByRP < R™PH.

In view of (B.14), there some B; (depending on X)) so that dx (asu,zo,Y) <
By 'RP/e implies fy (asu,zo) > BaRP for all s > 0 and r € [0,1]. There-
fore, we conclude from the above that

(B.lg) |{7“ < [0, 1} : dX(ad(T)u,,xo,Y) S (BlRD/a)_lH S R_D+1.
Let now s > log Ts, then by (B.15) there exists some 7" > Tb so that
d(T) —2b<s<d(T)+2b

For every s > log Ty, let Ts be the minimum such 7. Then (B.4a) implies
that is B > 1 (absolute) so that if s > log T, and r € [0, 1] are so that

dx (asupzo,Y) < (BRP/*)L,
then dx (aq(r,)urz0,Y) < (B1RP/®)=1. This and (B.19), imply that
(B.20) [{r €[0,1] : dx (asurz0,Y) < (éRD/a)*l}‘ < R~P+

Let C3 be as in Proposition 4.2, increasing 77 if necessary, we will assume
log Ty > mg| log(inj(z¢))| + Cs5. Using Proposition 4.2, thus,

(B.21) [{r € [0,1] : inj(asurz) < n}| < Czn'/m
for any n > 0 and all s > logT5.
Altogether, from (B.20) and (B.21) it follows that for any s > log 75,

inj(asurxr) <m or

(B22) ’{7“ € [O, 1] : dX(asur$0>Y) < (BRD/a)fl
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In view of [SS22, Thm. 5], the number of periodic H-orbits with volume

< Rin X is < ERﬁ where D depends Aon}y on dimension and F depends
on X. Let D =D + 10 and Cy = max{FE, B,Cs}. Then (B.22) implies

(B.23) HT cl0.1]: inj(asurz) < n or there exists x with H

vol(Hz) < R s.t. dx(asuyxo,x) < (C4RP/*)~1
< Cy(n'/™ 4 R7Y).
We now show that (B.23) implies the proposition. Suppose
dx (z0,x) > S~ ™(log §)P0
for every « with vol(Hz) < R. Then by (B.16), we have
Ty < max{S,w(xzo)"/ 1, T1}.

Therefore, if we let Dy = (max{D}, D + 10})/a and set sg = C3 + log T},
then Proposition 4.4 follows from (B.23). O

B.7. Proof of Proposition 4.6. In what follows all the implied multiplica-
tive constants depend only on X.

We begin by recalling some statements and lemmas which will be used in
the proof. Let vy be a unit vector on the line A3hH C Adg.

B.8. Lemma (Cf. [LM23], Lemma 6.3). There exist A4, A1s, and Cg so
that the following holds. Let vy1,...,v, € I, and let

0 < Cgfl(max{H’yle :1<i<n})
1

—Aia
Suppose there exists some g € G so that vig vy = €9 "
where |le; — I|| < 0. Then, there is some ¢’ € G such that

p— . A
lg" = g7l < Collgll ™28 (max{|l | : 1 < i <n})™
and vig'vg = g'vyg fori=1,...,n.

B.9. Lemma (Cf. [LM23], Lemma 6.2). There exist C7 and Ajs depending
on T, and Ay7 (depending on the dimension) so that the following holds. Let
1,72 € T be two non-commuting elements. If g € G is so that vig vy =

g tvy fori=1,2, then Hgl is a closed orbit with
A + +
vol(HgT') < Cyllgl| ™™ (max{ |l [1, s 1})

The statements in [LM23, Lemma 6.2, and Lemma 6.3] assumed |ga| < 1.
However, the arguments work without any changes and yield Lemmas B.8
and B.9.

We also recall the following lemma which is a consequence of reduction
theory. In this form, the lemma is a spacial case of [LMMS19, Lemma 2.8].

vy for i =1,2

Ale

B.10. Lemma. There exist Dy (depending on m) and Cs (depending on X )
so that the following holds for all 0 <n < 1. Let g € G be so that gI' € X,,.
Then there is some v € I' so that

(B.24) lg7|l < Csn~P2.
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Finally, we recall Proposition 4.2: for all positive ¢, every interval J C
[0,1], and every x € X, we have

(B.25) [{r € J : inj(aqurz) < 5m0}| < CselJ|,

so long as d > mq|log(|J|inj(x))| + Cs.
For the rest of the argument, let

(B.26) t > 100D2mo|log(n inj(z1))| + C3

Let m € [0,1] be so that o = au,z1 € X,. Write z9 = goI' where
lg2| < P2, see (B.24).

Also let k be a constant which will be explicated later and will depend
only on m.

In the course of the proof, we will use k. to denote constants which depend
on k. The notation m. (and the previously used m.) will be used for constants
which depend on m but not on the choice of k above.

Let mg be a constant which depends on m so that

(B.27) |as|| < e™*  forall s > 1.

We will show that unless part (2) in the proposition holds, we have the
following: for every such xg, there exists J(z2) C [0, 1] with [[0, 1]\ J(z2)| <
200C3n/(2m0) so that for all € J(x3), we have:

(a) akurza € Xy,
(b) the map h — hayu,xo is injective over E;, and
(c) for all z € Er.aku,x, we have fio(2) < elt.

This will imply that part (1) in the proposition holds as
Akt UrQtUp' Tl = Ak4-1¢WUp! 4 e—tpL1-

Assume contrary to the above claim that for some xzo as above, there
exists a subset I}, C [0,1] with |I}_4| > 200C3n/(?>m0) so that one of (a),
(b), or (c) above fails. Then in view of (B.25) applied with z2 and k¢, there
is a subset I,q C [0, 1] with |[Ipaq| > 1000571/ (2m0) 5o that for all r € Ipag
we have au,r2 € X, but

e cither the map h — hayu,x2 is not injective on Ey,
e or there exists z € E.axurx2 so that fio(z) > elt.

We will show that this implies part (2) in the proposition holds.
Let us first recall that f; : E;.y — [1,00) is defined as follows

f2(z) = {207&106]7(2) |w|| = if I-(z) # {0} |

inj(z)~“ otherwise

where 0 < o < 1.
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Finding lattice elements v,. We introduce the shorthand notation
hy := agpuyr, for any r € [0, 1].

Let us first investigate the latter situation. That is: for r € I,,q (recall that
hrxo € X)) there exists some z = hih,xo € Ei.hyx2, so that fo(z) > elt.
Since h,x3 € X;), we have

(B.28) inj(hh,x) > ne™™, for all h € E;.

Using the definition of f;,, thus, we conclude that if I;(z) = {0}, then
fra(z) < n~tem. Since t > 100Dsmo|lognl|, assuming mg > m+ 1, D >
m + 1 and ¢ is large enough, we conclude that I;(z) # {0}. Moreover,
using (B.28), we have #1I;(z) < n~™e™t see [LM23, Lemma 6.4] or the
similar estimate [LMW22, Lemma 8.1].

Altogether, if D > m + 1 + 2my and ¢ is large enough, there exists some
w € I;(z) with

0 < ||,wH < e(—D—l—rﬁl—l—l)t —. G_D/t.

The above implies that for some w € t with |Jw| < e~P"* and hy # hy € Ey,
we have exp(w)hih,zo = hah,ze. Thus
(B.29) exp(wr)hr_lsrth = 29
where s, = hy 'hy, w, = Ad(h;'h;)w. In particular, |w,| < e(~P"+mok)
where the implied constant depends only on m. Assuming ¢ is large enough
compared to the implied multiplicative constant,

(B.30) 0 < ||Jwy| < e=P"Fmok+1)t,
Recall that x5 = goI" where |go| < n~P2, thus, (B.29) implies
(B.31) eXp(wr)h;lsrhr = 92')’7’92_1

where 1 #s, € H with ||s, || < e?™! and e # v, € T.
Similarly, if for some r € I.q, h — hh, x5 is not injective, then

hel'sihe = g9y ' # .

In this case we actually have e # v, € g5 L H gy — we will not use this extra
information in what follows.

Some properties of the elements ~,. Recall that ||g2|| < 77?2 and that
t > 100Dsmg|logn|. Therefore, if we put ky = 2mg(k + 1) + 1, then

(B.32) It < e
where we assumed ¢ is large compared to n and used (B.31).
We identify <Zl 22 € SLo(R) with its image in H, however, when we
3 a4

write || || the norm is in G but |a;| denotes the usual absolute value. With
this notation, e.g., h!s,h, is represented by

aq e’ktag
U—p kt Uy
e as a4
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where |a;| < 10et.
Let & > 0 be so that [|gyg~t — I|| > &n?P2 for all v € T'\ {1} and
lg|l < Csn=P2, see (B.24). Then by (B.31), we have

Ju-r (6223 ‘ CZ“Z) up = 1| 2 0P
for some D), depending only on m and Ds. This implies
(B.33) max{e|as, [ar — 1], |as — 1|} > n"2.
Note also that if eX|as| < 72, then

D} (—k+1)t

lagas| < 10n ,
thus |ayas—1] < n*e(=*Dt and (B.33) implies |a; —ay| > nP>. Altogether,
(B.34) max{eX|as], |a; — as|} > nP2.

Since |Ipaq| > 100C3nY (2™0) | there are two intervals .J,.J' C [0,1] with
d(J,J") Z 0t/ ), 1], '] = pt/2me), and

(B.35) | 0 Taa| > 0/™  and  |J' N Lyaa| > n'/™.
Put ‘]77 =JnN Ibad-

Claim: There are > e(k=2%/2 distinct elements in {v, : 7 € J, }.
Fix r € J, as above, and consider the set of 7’ € J,, so that and ~, = 7,
Then for each such 7/,

h,?lsrhr = exp(—w,«)ngyrgg_1 = exp(—wy,) exp(wrf)hr_,lsr/hr/

= exp(wrr/)hr_,lsr/hr/

where w,,s € g and ||wy,|| < e(=P Mok}t
Set 7 = e(r' —r). Assuming D’ = mAH —m; — 1 is large enough, we
conclude that
(B.36) UrSpu_r = hphy ts, b, = exp(ty)s,,
where ||ty || = || Ad(hy Y wyp || < e(PHMoktmi)t - Rinally, we compute
s — aj + asT a2+(a4—a1)7—a372
T as a4 — aszT '

In view of (B.34), for every r € J; the set of r e Jy so that
(B.37) Jaze ™ + (as — a1)(r' — 1) — aze’ (i — 7)?| < 10%TFFV

has measure < n~P2/2¢(=k+Dt/2 gince at least one of the coefficients of this

quadratic polynomial is of size > T]Dé. Let Jy,, be the set of ' € J, for

which (B.37) holds.
If v € J, \ Jyr, then |as + (as — a1)T — ag7?| > 10%e! (recall that T =
ekt (r' — 1)), thus for all 7/ € J, \ J, ., we have

|urs,u_r|| > 10%€" > || exp ()5, ||,
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in contradiction to (B.36).

In other words, for each v € I' the set of r € J, for which ~, = ~
has measure < 7~ P2/2e(-k+DH2 and so the set {v, : r € J,} has at
least > n(Déﬂ)/ze(k—l)t/z > e(k=2/2 ({istinct elements so long as t >
100mo max(D%, Da)|logn|, see (B.26). This establishes the claim.

Zariski closure of the group generated by {7, : r € Ip.q}. Let L
denote the Zariski closure of (7, : r € Ihaq).

First note that by [LMM™*24, Lemma 2.4], we have [L : L°] < 1, where
the implied constant depends only on the dimension. This and

#{77" T E Ibad} > 6(k72)t/2

imply that L° # {e}. Moreover, from [L : L°] < 1 we also conclude
that there exists vi,...,7% C {7 : 7 € Ipaa}, where n depends only the
dimension, so that L equals the Zariski closure of (v; : 1 < i < n).

Recall now from (B.31) that exp(w;)h, s, h, = ggwggl, thus

’Y?“gz_lvH = eXp(Ad(gz_l)wr)-gz_lvH-

Moreover, since ||w,|| < e(=P'+Mok+1)t,

| Ad(gy Vw,|| < p~2mP1e(=D okt )t < o(=D'iok+2)t

for all r € Iaq. Recall that [[y;7t]| < ekit. If D' = mLH —my — 1 is large

enough, we may apply Lemma B.8, with {v1,...,7,}, and conclude that
there exists some g3 € G with

lgo — g3]| < Con~2mPrdis (=D Mokt 2t Auska )t

(B.38) S 6(7D/+A15k2)t7

so that ;.95 Lo = g3 Loy for all i, where ks depends only on m and we
assumed ¢ is large.

In view of the choice of {7; : 1 < i < n}, this implies g.g5 vy = g3 'vn
for all g € L(R). Hence,

(B.39) L(R) C g3 'Ng(H)gs

We also note that [Ng(H) : H] < 1 since H C G is a maximal connected
subgroup.

We now consider two possibilities for the elements {7, : r € Ipaq}-

Case 1. L is commutative. Then L°(R) C g5 ' Hgs is commutative and
#{y ELOR) : [y < it} > elk22

Since for every torus T' C G, we have #(Br(e, R) NT) < (log R)?, where
the implied constant is absolute, L° is unipotent and L C L° - Cg.
We also note that since L° is a one dimensional unipotent subgroup,

#{y € L ||yl < 100e® 7213} « elm2/3,



100 E. LINDENSTRAUSS, A. MOHAMMADI, Z. WANG, AND L. YANG

Furthermore, there are > e(*~2%/2 distinct elements -y, with r € Jp. Thus
# v - el > 100eD3 and 7 € J,} > kD2,
For every r € Ipaq, let
(Zl’r 22”) where |a;,| < 10¢"
3,r 4,r

denote the element in SLy(R) corresponding to s, € H.

We will obtain an improvement of (B.33). Let £n?P2 < T < ek=2t/3 and
assume that ||gg'yr92_1 — I|| > T — by the definition of &, this holds with
T = &n?P2 for all r € I,,q and as we have just seen this also holds for with
T = k=23 for many choices of 1 € Jpaq. Then by (B.31), we have

(B.40) Hu_r ( L e_ktaz,r> w — IH > 107 = O(TV/™0)

erazr Q4 r

where we increase mg in (B.27) if necessary so that above holds.
We claim

(B.41) laz,| > Ye ™.

To see this, first note that by (B.40) max{eX|az .|, a1, — 1|, |as, — 1|} >
Y’. Assume contrary to our claim that |ag,| < Y'e™ . Then

(B.42) max{|a1, — 1|, las, — 1]} > T';
furthermore, we get |az raz.,| < Y=<V Thus,
(B.43) lat raq, — 1] < Yel—ktD)t o o—kt/2,

Moreover, since h. 's.h, is very nearly 92Vr 95 1 and the latter is either a
unipotent element or its minus, we conclude that

(B.44) min(|ar, + as, — 2|, |1, + as, + 2|) < 7P
Equations (B.43) and (B.44) contradict (B.42) if ¢ is large enough. Alto-
gether, (B.41) holds.

We now show that Case 1 cannot occur. Since L° is unipotent and L C
L° - Cg, we conclude from (B.39) combined with (B.31) and (B.38) that

ar, e May, -1
(B.45) Uy ektdg as ") u, € exp(—w,)(hRUR™) - Ca
7/r. 7T

for all r € Ipag, where h € H and ||h|| < 1. We show that this leads to a
contradiction.

Recall the intervals J and J' from (B.35), and let 79 € J' N [,,q. then
lro — r| > 7'/(2m0) for all » € J,. Then, (B.45), yields that

a - _
(B.46) u—pir, (ektZ;r s, ' > Up—ry € exp(—w!.)(up hUh 1u,m) -Cga

for all r € Ipag.
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. a b
Let us write uy,h = (C d

1 =z _ 1 —acz a?z
Uroh (0 1) h lu*’"o - < -2z 1+ acz) '

Let z9 € R be so that

—kt 2

a1,rg € agry \ _ 1 —acz a“zg

oKt = texp(—wy,) 2 14 .
3,10 a4 rq C™ 2o acz

>, then for all z € R we have

By (B.41) applied with Y’ corresponding to Y = £n?*P2, we have |asz .| >
n*e” . Since

lal, 0], |¢], Jd] <1,
comparing the bottom left entries of the matrices, we get |zo| > n”3. Now,
since |ag r,| < 10e’, comparing the top right entries we conclude that

|a|2 < n—D3e(—k+1)t < o~ (k+2)t

Since det(u,,h) = 1, it follows that |c| is also > 1.
Let now r € J, be so that [y.|| > 100e=2*/3. We write r1 = r — 7o,
K ag, and as, = eaz,. By (B.41), applied this time with Y’

dy, =
7 . k—2)t/3 k24
corresponding to Y = e(=2)t/3  we have |ag7r| > Y’ > e4m0; note also that

|ab | < %V In view of (B.46), there exists z, € R so that

/ !/ / / 2
u Alr Gop),,  _ (%r = TG, G, + (a4 — a1,)r1 — a3, 7y
e aé’),r a4,r " ag’),r Qq,r + Tlag,r

—c*z, 1+ acz,

. 2
—sex(-ul) (180 1)

k=2
Recall that |a3 | > e’ a1 ], aar| < €, and |ay, | < e~k moreover
n'/(2mo) <|r1| <1 and by (B.26) e/10 > =1, Thus, so long as k —2 > 5y,

0'1’0'2’),7"’771/”10 < ’aIQ,r + (a4,T - a17T>7n1 - aé,rr%’ < 2’ag,r"

Hence, since wl. is small, |c?z.|n < |a®2.| < |c?2;|. On the other hand,

using 7 = rg, we already established |a|> < e(=**2)! and |c¢| > 1, thus

la?z,| < e(=K+2)t 22, |, which is a contradiction, see (B.26) again.
Altogether, we conclude that Case 1 cannot occur.

Case 2. L is not commutative. In other words, there are r,r’ € I;,,q so that
v and 7~ do not commute.
Recall from (B.38) that
Y93 v = g3 vg  and  w.g3 vm = g3 vm.
where [|go — g3|| < e(=P'TAske)t,
In view of Lemma B.9, thus, we have HgsI' is periodic and

- A
vol(HgsT') < Crn~ P2 (max{ |||, 51 1}) ™' < Crelt+Aiskot,
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Then for t large enough,
vol(HgsI") < e(GHAw)kat  anq dx(goT', g3T') < e(=D'+Aiska)t
where D' = mLH —rm — 1.
Since goI' = w9 = apu,, 1, part (2) in the proposition holds with 2/ =
(agur, ) "tgsT and Dy = max{2+ Ajgky, 1+ My + Ajske} so long as t is large
enough. [l

APPENDIX C. PROJECTION THEOREMS

We begin by recalling a theorem of Gan, Guo, and Wang [GGW22|. Let

2 n n
)= ({1, 510> or) CR™

Forallr € [0,1] and all 1 < d < n, let m, 4 : R" — R? denote the orthogonal
projection into

Span{¢/(r), €@ (r),.... €9 (r)}.
The following theorem follows from [GGW22, Thm.2.1], combined with a
finitary adaptation of the argument presented in [GGW22, §2].
C.1. Theorem. Let 1 < d < n and let 0 < o < d. Let p be the uniform
measure on a finite set © C Bgrn(0,1) satisfying
p(Be(w,b) NO) < Tb* for all w and all b > by

where T >1 and 0 < b; < 1.
Let 0 < c < 10~ *a. For every b > by, there exists a subset J, C [0, 1] with

110, 1]\ Jo| < Ceb* so that the following holds. Let r € Jy, then there exists
a subset Oy, C O with

PO\ By,) < Ceb™
such that for all w € ©y,, we have
p({w’ €0 |ma(w) — mq(w)| < b}) < C b
where the implied constants are absolute.

Proof. Since 1 < d < n is fixed throughout the argument, we will simplify
the notation by writing 7, instead of 7, 4.
For every r € [3,1] and all w € ©, define

m(m,(w)) = p({w’ : [|m(w) — m(w')]| < b}).
Let E1, Es, ... be large constants to be specified later. Put e = ¢/E;. For
all r € [3,1], set

Opxe(r) = {w : mP(m,(w)) > Y@~ 1},

Suppose, contrary to the claim in Theorem C.1 that there exists a subset
Tgxe C [%, 1] with [Igxe| > Esb°/2 50 that for all r € ITgxc, we have

(C.1) p(Opxe(r)) > Eob /2.
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We will get a contradiction with [GGW22, Thm. 2.1], provided that F; and
FE5 are large enough.

First note that, for every r € Iy, the number of b-boxes {B;,} required
to cover m(Opxe(r)) is < BE3Y~tb~atE1e, Let T;, = 7, 1(B;,) N Bgrna(0, 1),
and put 7, = {T;,}. Note that

(C.2) #T, < EsY1p-othae,

Let Ay C Igy. be a maximal b-separated subset, and extend this to a
maximal b-separated subset A, of [%, 1]. Equip Ay x © with the product

measure p X o, where ¢ denotes the uniform measure on Ab. Let
F={(r,w) € Ay x © : mb(m,(w)) > Yo 1€}
={(r,w) € Ay X O : w € Opx(r)}.
In view of (C.1) and |Igge| > E2b™/2, we have o x p(F) > E%bEQ.
For every w € ©, let Fy, = {r € Ay : (r,w) € F'}, and set
O ={we®:0(F,) > EngQ}.
Then, using Fubini’s theorem, we conclude that p(©') > %Egbez.
The above definitions thus imply
S ar(w) > Bsb Tt forallw e ©
reN,
where E3 = O(FE32), for an absolute implied constant.
Let o' = pler. Applying [GGW22, Thm. 2.1] with €2, p’ and {7, : r € Ay},
> #Tr > Eg(n,c, )Y p/ (R4 Fe
reNy
> LE3E(n,c,a)Y 10 bt EE

where E = 10'°" and in the second line we used p/'(R") = p(©’) > %E%ng.
Thus there exists some r € As so that

(C.3) #T, > IY 7 Ey(n, c,a) B3yt (DHDe,
Now comparing (C.3) and (C.2) we get a contradiction so long as F is large
enough and b is small enough. The proof is complete. ([

Recall that the n-dimensional (n > 2) irreducible representation of SLa(RR)
can be normalized so that for all w € R",

UrW = (’LU : gl(r)a w - 5(2)(’/“), L, W g(n)(,r))
Recall also that t ~ R?™*! is an irreducible representation of Ad(H) where
m = 1 if G is isogeneous to SO(3,1) or SLa x SLy
m = 2 if G is isogeneous to SL3 or SU(2,1)

m = 3 if G is isogeneous to Spy
m = 5 if G is isogeneous to Go
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Theorem C.1 thus applies to the adjoint action of u, on these spaces. For
every 1 < d < 2m+1, let tg denote the space spanned by vectors with weight
m,...,m—d+ 1. Let w4 : t — t4 denote the orthogonal projection.

C.2. Theorem. Let0 < a,d<2m+1,d € Z, and 0 < by < 1. Let p be the
uniform measure on a finite set © C B(0,1) with
p(Be(w,b) NO) < Tb for all w and all b > by
where T > 1.
Let 0 < c < 10~*a. For every b > by, there exists a subset Jy, C [0, 1] with

110, 1]\ Jo| < CL0*<* so that the following holds. Let r € Jy, then there exists
a subset ©p, C © with

p(G \ @b,r) S ch*C2
such that for all w € ©y, we have
p({w' € O : |ma(Ad(ur)w) — ma(Ad(u)w')|| < b}) < Crpmnl@d=e,
APPENDIX D. MEASURES AND PARTITIONS OF UNITY

In this appendix we collect some of the results from [LMW22, §6-8] which
were used in this paper.

Regular tree decomposition. Let us recall the following discussion from

[LMW22, §6] see also [BFLM11, Lemma 5.2]. Let t,Dgp > 1and 0 < e < 1 be

three parameters: ¢ is large and arbitrary, Dg is moderate and fixed, and ¢ is

small and fixed; in particular, our estimates are allowed to depend on Dy and

e, but not on ¢. Let 8 = e for some & satisfying 0 < x(Dg + 1) < 107 5¢.
Let F' C B(0,1) satisfy that

et/Q < #F < €D0t,

and assume that

(D.1) Giyw) <T  forallwe F
where T > 0 satisfies the following
(D.2) T < Pot1)t,
Fix L € N, large enough, so that both of the following hold
(D.3) 275 (Dg + 1) < £/100 and  (4m + 2)L < 2°L/100,
Define ko := [(—logy 8)/L] and k1 := [(1 4+ a~log, T)/L] + 1; note that
(D.4) g(thi—la - .

For every ky < k < k1, let C ;. denote the collection of 2-Lk_cubes in t.

D.1. Lemma. For all large enough t, we can write F = F' YUY, F}) (a
disjoint union) with

#F' < BYVY(#F)  and  #F; > % (#F)
so that the following hold.
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(1) For every i and every ko — 10 < k < ky, there exists some T so that
for every cube C € Cp, we have

(D.5) Hri=2) < wF;NC <2 or F;NC=0.
(2) For every i, we have
g\ (w) < p2m=2Y forallwe F
F;6 —
Proof. Part (1) is proved in [LMW22, Lemma 6.4].
For part (2) see [LMW22, Lemma 6.5]. O

Covering lemmas. Fix 0 < n < 0.01 and let 8 = n?. For m > 0, we
introduce the shorthand notation Qg for

(D:6)  Qllp,, ={uy ls| < B2} {ar i 7| < 82U,

where for every ¢ > 0, let Us = {u, : |r| < d}, see (3.6).
Define Q,C]; C G by thickening Qg in the transversal direction as follows:

(D.7) QG = QI - exp(B(0,2%).
D.2. Lemma. For every m > 0, there exists a covering
{QTGn-yj 27 € Tmsyj € Xapo}

of Xo, with multiplicity K, depending only on X. In particular, #J, <
n71ﬁ74m766m_

Proof. This is proved in [LMW22, Lemma 7.1], we recall the set up to ex-
plicate the bound claimed here. There exists a covering

{(B5 By - exp(Be(0, 5%))) 4k : k € K, i € Xay}

of Xy, with multiplicity O(1) depending only on X.
Let us write BSBQ = BZQH - By, - exp(B:(0, 4%)). Then

— _1 — —
(D.8) (Bgln,o.w?) ' (Bgln,O.IBQ) - (Bi,cm),

where ¢ depends only on m, see Lemma 3.2.
Let {9 € Xoy : k € K} be maximal with the following property

G . BG L C
Bo‘01n,0.01ﬂ2-yi N Bo.om,o.om?-yj =0 foralli+#j.

In view of (D.8) thus {BSBQ.Qk : k € K} covers Xy, with multiplicity O(1).
Since mg(Bgﬁg) = np4m+6 we that K < n~13—4m—6,
The rest of the proof goes through as in [LMW22, Lemma 7.1]. O
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Boxes and complexity. Let prd : R3 — H be the map
prd(s, 7,7) = ug aru,.

A subset D C H will be called a box if there exist intervals I* C R (for
« = =,0) so that
D=oprd(I~ x I" x I").
We say = C H has complexity bounded by L (or at most L) if = = JF' 5,
where each Z; is a box.
For every interval I C R, let OI = Oyggy 7! (recall that n = B1/2), and

put I =1\ 8I. Given a box D = prd(I~ x I° x I't), we let
(D.9a) D= mul(f_ x 10 x Iif) and
(D.9b) oD =D\ D.
More generally, if D = prd(I~ x I° x I") is a box, and = C D has
complexity bounded by L, we define 9= := |JJE; and
(D.10) Zp = JEi
where the union is taken over those i so that Z; = prd(I; x I? x I;") with
|I;| > 100n|I"| for « = +,0.

D.3. Admissible measures. Let A > 0. Let £ = E{exp(w)y : w € F}. A
probability measure pg on & is said to be A-admissible if

pe = [
ZwEF Mw Z Y

weF

where for every w € F, p,, is a measure on E.exp(w)y satisfying that if
hexp(w)y is in the support of fi,

A (hexp(w)y) = Aow(h) dmr(h) where 1/A < g, () < A,

for some A > 0 independent of w € F. Moreover, there is a subset E,, =
U?:l Ew,i C E so that

(1) 11w ((E\ Ew)-exp(w)y) < ABpuw(E. exp(w)y),
(2) The complexity of E, ; is bounded by A for all ¢, and

(3) Lip(owlg, ;) < A for all 4.

Convex combination of measures. The following lemma was used sev-
eral times in the paper, in particular, in the proof of Lemma 7.2.

D.4. Lemma. Let ¢,d > 0. Assume that e /2 < 3 and that h — hz is
injective on E - ay - {u, : v € [0,1]}. Let

E=E{exp(w)y:we F} C X,

be equipped with an admissible measure pg. For every r € [0, 1],

(D.11) /(p(adusagur dpe(z Zcz/ aqusz) dpe, (z) + O(8* Lip(y)),
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where & = E{exp(w)y; : w € F;} C X, and F; C B(0,3) satisfies
(1) BI™F2 - (§#F) < Fy < '™ (3£F), and
(2) Q. exp(w)y; C agu,E for all w € F;, where

Qff = {ug «s| < B2} Aar t 7| < B} {ur < || <}
The implied constant depends on X.

Proof. This is proved in [LMW22, Lemma 8.9]. We provide road map to
the argument to elucidate the claims made above regarding Fj ;.
To see part (1), and with the notation as in [LMW22, Lemma 8.7], we
have ¢f < N}, (e7*Bn) - (#F)~'. Therefore, if i, > pAm+8e=¢ then
N] > ﬂ4m+4 . (#F)

,r —

Moreover, by Lemma D.2, #J, < n~'1f74m=6el < 374m=7¢f. Thus,

> o o d, <8

J Am+8 o —£
¢ <B m+8¢

One now defines F; := Fljrm where again we used the notation which is
used after the conclusion of the proof of [LMW22, Lemma 8.7]. Then

BIMEY - (#F) < #F; < B (#F),
see [LMW22, eq. (8.18)].
As it is argued in the proof of [LMW22, Lemma 8.9], the claim in (D.11)
holds with & = E.{exp(w)y; : w € F;}, see LMW22, eq. (8.21)].
Part (2) above is [LMW22, eq. (8.14)]. O
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